
Citation: Golzari, K.; Kong, Y.; Reed,

S.A.; Posada-Quintero, H.F.

Sympathetic Arousal Detection in

Horses Using Electrodermal Activity.

Animals 2023, 13, 229. https://

doi.org/10.3390/ani13020229

Academic Editor: Emanuela

Dalla Costa

Received: 29 November 2022

Revised: 4 January 2023

Accepted: 5 January 2023

Published: 7 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

animals

Article

Sympathetic Arousal Detection in Horses Using
Electrodermal Activity
Kia Golzari 1, Youngsun Kong 1 , Sarah A. Reed 2 and Hugo F. Posada-Quintero 1,*

1 Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
2 Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
* Correspondence: h.posada@uconn.edu; Tel.: +1-(860)-486-1556

Simple Summary: Monitoring stress in horses continuously can help us improve their quality of life.
Currently, the detection of stress in horses relies on the observation of their behavior. This cannot be
implemented continuously, as it is impossible to have someone looking at the horse all the time. One
way to monitor stress in a continuous and automatic way is collecting the heart rate. The heart rate
detects the arousal caused by stress, but it can be affected by physical activity and other emotions.
Another way to assess the arousal caused by stress is measuring the changes in the conductance of
the skin, called electrodermal activity (EDA). EDA can detect stress and pain in humans better than
the heart rate. We have collected EDA in horses for the first time and evaluated its capability to detect
arousal. We caused arousal in the horses using two tests. First, we collected EDA while the horses
were being fed, which causes continuous arousal. Second, we used an umbrella to cause a startle and
short-lasting arousal. EDA was sensitive to both tests. This shows that EDA is sensitive to arousal in
horses and can be potentially used to detect stress and pain continuously.

Abstract: The continuous monitoring of stress, pain, and discomfort is key to providing a good
quality of life for horses. The available tools based on observation are subjective and do not allow
continuous monitoring. Given the link between emotions and sympathetic autonomic arousal, heart
rate and heart rate variability are widely used for the non-invasive assessment of stress and pain
in humans and horses. However, recent advances in pain and stress monitoring are increasingly
using electrodermal activity (EDA), as it is a more sensitive and specific measure of sympathetic
arousal than heart rate variability. In this study, for the first time, we have collected EDA signals from
horses and tested the feasibility of the technique for the assessment of sympathetic arousal. Fifteen
horses (six geldings, nine mares, aged 13.11 ± 5.4 years) underwent a long-lasting stimulus (Feeding
test) and a short-lasting stimulus (umbrella Startle test) to elicit sympathetic arousal. The protocol
was approved by the University of Connecticut. We found that EDA was sensitive to both stimuli.
Our results show that EDA can capture sympathetic activation in horses and is a promising tool for
non-invasive continuous monitoring of stress, pain, and discomfort in horses.

Keywords: sympathetic arousal; horses; electrodermal activity

1. Introduction

The sole absence of pain and discomfort is an indicator of animal welfare [1]. For that reason,
continuous monitoring of those negative feelings is key to preventing stress and providing a
good quality of life for horses. Several subjective techniques exist for welfare assessment, using
protocols concentrating on feeding, health, and behavioral information [2–4]. These subjective
tools do not allow continuous monitoring. Traditionally, mean heart rate (HR) and heart rate
variability (HRV) have been used to assess autonomic arousal in horses [5,6]. HRV is also
used in humans to assess autonomic arousal, but recently, objective pain and stress monitoring
has been implemented using electrodermal activity (EDA), as EDA is a more sensitive and
specific measure of sympathetic arousal than HRV [7]. The EDA signal is also referred to in the
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literature as galvanic skin response (GSR) and represents the conductance of the skin, which is
modulated by sweat secretion (electrolyte solution) and has been gaining attention recently as
a sensitive marker of sympathetic arousal because sweat glands are innervated solely by the
sympathetic nervous system. However, to the best of our knowledge, no studies have evaluated
the feasibility of EDA signal collection in horses.

HRV is a traditional measure that quantifies the fluctuation in time between heartbeats.
HRV is controlled by the autonomic nervous system (ANS) to maintain cardiovascular
homeostasis and normal blood pressure. HRV can be used to assess the sympathetic and
parasympathetic branches of the ANS [8]. Because the higher frequencies (HFs) of HRV are
solely affected by the parasympathetic branch, and both sympathetic and parasympathetic
branches influence low-frequency (LF) components, HF and LF are used as markers of
parasympathetic and sympathetic autonomic control, respectively, and the LF/HF ratio is
used to assess the sympathetic and parasympathetic balance.

Several studies have used HRV for animals, including cattle, dogs, small ruminants,
pigs, poultry, rodents, and horses [2,3,9–21]. For example, a visual Startle test (abrupt
opening of an umbrella near the horse) was used as an acute stressor to activate autonomic
reaction, and significant changes in the frequency indices of HRV were found [22]. Other
studies evaluated stress and temperamental traits in horses [5,23–25]. Physical effort was
reported to affect HRV [25,26], reducing the specificity of the tool for stress assessment. Fur-
thermore, the use of LF as a measure of the sympathetic activity of the ANS is controversial
since the low-frequency band also contains parasympathetic dynamics.

For its part, EDA is solely dependent on the sympathetic branch of the ANS because
sweat glands are only innervated by this branch, which has made EDA an ideal target for
detecting emotions [27]. Therefore, EDA can be used to quantitatively assess the sympa-
thetic autonomic function [28–32]. Theoretically, EDA manifests the time and amplitude of
stimuli at the skin level generated from control centers in the brain (hypothalamus) [33,34].
According to studies on humans [35], the frequency band limits of sympathetic nervous
system activity are confined largely under the low-frequency ranges determined using
power spectral density analysis of EDA signals. It was also recently proven that EDA
responses to sympathetic stimulus were more consistent and reliable than the HRV in-
dices in humans [36]. The possibility of developing an EDA-based objective biomarker
for multi-level human pain assessment has been addressed and tested [37]. Moreover, a
real-time pain detection algorithm was demonstrated using a wrist-worn EDA device and a
smartphone [38]. EDA was also confirmed to be a good and reliable monitoring marker of
acute stress levels [39]. More recently, EDA was investigated in rats [40] and humans [41]
(under review) to demonstrate it as a physio-marker of early detection in central nervous
system oxygen-toxicity-induced seizure application.

We hypothesize that EDA can be used as an objective tool for the assessment of stress
in horses. In this study, we assess the feasibility of sympathetic arousal detection using
EDA in horses.

2. Materials and Methods
2.1. Animals

For this study, 15 horses (6 geldings, 9 mares) of mean age 13.11 ± 5.4 years, mean body
weight of 512.5 ± 60 kg in the University of Connecticut herd (9 Thoroughbreds, 4 Quarter
Horses, and 2 Morgans) were studied. All horses were determined to be healthy based on
physical examination. This study was reviewed and approved by the Institutional Animal
Care and Use Committee (IACUC) of the University of Connecticut (protocol number
A21-048) and complied with all the institutional, provincial, and national regulations on
animal use in research.

2.2. Device Setup

Horses were outfitted with an own-designed elastic strap on their thorax that firmly
held an EDA device (Shimmer GSR+, Shimmer Sensing, Dublin Ireland) using two hydrogel
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Silver/Silver Chloride (Ag/AgCl) electrodes placed just behind the left foreleg. The area
under the electrodes was clipped and cleaned with alcohol. Figure 1 depicts the sensor
placement on the animal. The signals were captured at a 128 Hz sampling frequency and
Bluetooth-transmitted to a laptop to be stored and visualized in real-time.
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Figure 1. Device placement on the horse’s body.

2.3. Protocol

To investigate sympathetic arousal, EDA signals were recorded in response to two
different tests: (1) Feeding test and (2) Startle test. The two tests were carried out in different
sessions. The Feeding test provides a continuous (tonic) stimulus, while the Startle test
is an acute stimulus. The idea is to show that EDA can serve as an indicator for long-
and short-lasting sympathetic arousal. The device was connected 10 min before the data
recording was started to allow animals to become accustomed to the device.

1. Feeding test: Feeding tests were carried out at the animal’s regular feeding time at
2:00 pm [42]. For each animal, a continuous 4 min segment was extracted, comprising
2 min of baseline (pre-feeding) data followed by a 2 min feeding stage. Animals were
fed hay followed by grain on their normal feeding schedule in their assigned stall.
Maintaining their normal schedule avoided additional disturbances that could create
undesirable arousal linked to a change in their routine. The recording was performed
for four animals at a time.

2. Startle test: In the Startle test [22], the horses were taken one by one to a familiar, quiet,
covered arena by an experienced handler familiar to the horses. The same handler
handled all horses used. The horse was stood quietly in front of the solid wall that
surrounds the arena. First, two minutes of baseline data were recorded. After that,
a rainbow umbrella was opened abruptly from behind the wall and spun for one
minute. The umbrella was positioned in the visual field of the horse. Data recording
continued for two minutes after the conclusion of the spinning. Accordingly, the
total length of the recording for the Startle test was 5 min (2 min baseline, 1 min after
umbrella was opened, and 2 min after umbrella was removed).

2.4. EDA Signal Processing
2.4.1. Preprocessing of EDA Data

The EDA signals were inspected to avoid including motion-artifact-induced responses
visually and using the 3-axis accelerometer data. The EDA signals were down-sampled to
4 Hz and then filtered by a Butterworth lowpass filter of order five and a cutoff frequency
of 1 Hz, followed by a median filter (1 s length) to remove high-frequency noise from the
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raw signal. The cutoff frequency was chosen to be conservative enough to capture the
unseen sympathetic dynamics in the spectral analysis.

2.4.2. Time-Domain Indices of EDA

Generally, EDA is analyzed in time domain identifying its tonic and phasic compo-
nents [43,44]. The mean value of the tonic component is called the skin conductance level
(SCL), and the rapid shifts observed in the phasic component are termed skin conduc-
tance responses (SCRs). We decomposed the EDA signal using the cvxEDA method [45].
The method is physiologically inspired and thoroughly explains EDA through a rigorous
methodology based on Bayesian statistics, convex mathematical optimization, and sparsity.
This method models the EDA signal as a summation of phasic and tonic components and
an additive white Gaussian noise that incorporates model prediction error, measurement
errors, and artifacts. The SCL and the number of non-specific SCRs (NS.SCRs) during a
period of time are commonly used measures of sympathetic arousal based on EDA. The
NS.SCRs were computed as the number of phasic drivers whose amplitude was greater
than a threshold of 0.05 µs per minute.

2.4.3. Spectral Analysis of EDA

Given that there is no prior information about the morphological and spectral distribution
of EDA signal in horses, we first investigated these characteristics by comparing with our
previously collected data in humans and rats [35,40]. For illustration purposes, samples of
SCRs of humans [37] and horses (one of the subjects included in this study) are compared
in Figure 2. Remarkably, the sample horse SCR was similar to the sample human SCR. The
spectral content, in humans, was confined mainly below 0.15 Hz in resting conditions, 0.25 Hz
under stress (postural, physical, and cognitive), and about 0.37 Hz under intense physical
activity. For the rats, it was approximately twice as large as human EDA [35].
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To further confirm our observations using spectral analysis, we evaluated EDA for the
entire feeding session to ensure that the observation is generalizable. We applied a sampling
frequency of 4 Hz that is high enough to capture the dynamic of sympathetic arousal. The
power spectral analysis was performed by applying Welch’s periodogram method with 50%
overlapped data. A Blackman window (length of 256 points) was used for each segment, the
fast Fourier transform was calculated for each windowed segment, and the power spectra
of the segments were averaged. Each spectrum was normalized, divided by its total power.
Finally, we evaluated the frequencies containing 95% of the normalized spectral power across
the animals. The power was confined mainly under 0.14 Hz. Figure 3 represents the ensemble
plots of power spectrum distribution across the subjects.
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2.4.4. Statistical Analysis

Since feeding is a continuing or tonic stimulus, the long-lasting sympathetic arousal
was quantified using the SCL and NS.SCRs. The SCL and NS.SCR were computed from each
animal before feeding (pre-feeding) and during feeding. The differences in the obtained
indices, before feeding and during feeding, were statistically evaluated.

For its part, the Startle test involved instantaneous stimuli, allowing the observation
of short-time reactions. From each horse, the tonic and phasic component were extracted
from a 100 s window starting 40 s before the stimulus and ending 60 s after the stimulus
was applied. The mean values of tonic and phasic components were obtained for five
consecutive 20 s segments from each signal. The differences between those 20 s segments
were statistically evaluated.

The normality of the values were tested using the one-sample Kolmogorov–Smirnov
test [46–48]. For normally distributed indices, we used a parametric test (t-test, p < 0.05) to
evaluate the significance of the differences. For non-normally distributed indices, we used
a nonparametric test (two-sided Wilcoxon rank sum test, 0.05 level of significance).

3. Results

Figure 4 shows the EDA signal and its components for a 2 min pre-feeding interval
followed by a 2 min feeding period for a given horse. The differences in NS.SCRs between
pre-feeding and feeding are visually evident.
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For the Feeding test, as the SCL and NS.SCRs indices were found non-normally
distributed using the Kolmogorov–Smirnov test, we used a two-sided Wilcoxon rank sum
test at a 0.05 level of significance to evaluate the differences between pre-feeding and
feeding. Figure 5 illustrates the resulting SCL and NS.SCRs obtained for the Feeding
test. We found no significant differences in SCL (p-value = 0.1049), while NS.SCRs were
significantly elevated during feeding compared to pre-feeding (p-value = 0.0281).
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Figure 5. (a) Boxplot for SCL at pre-feeding and feeding stages (p-value = 0.1049). (b) Boxplot for
NS.SCR at pre-feeding and feeding stages (p-value = 0.0281). * Represents statistically significantly
differences (p-value < 0.05) between pre-feeding and feeding.

Figure 6 shows the ensemble average of the phasic component of all horses aligned
using the startle time (the exact time at which the umbrella was opened) in such a way
that the values where all set to zero at this particular reference time. A clear elevation in
the phasic component of EDA can be observed across horses. The mean values of tonic
and phasic components were found to be non-normally distributed. Hence, a two-sided
Wilcoxon rank sum test was applied to evaluate the p-value of each pair of intervals at a
0.05 level of significance. Subsequently, Bonferroni correction was performed. The results
indicate that the mean of the phasic component significantly increased in the segment right
after starting the stimulus and remained elevated until the end of the test (p-value = 0.0039).
The mean tonic component did not show significant differences between the 20 s segments.
Figure 7 shows box plots for mean phasic responses within each segment.
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Figure 7. The boxplot of mean value of the phasic component of EDA (a) and tonic component of
EDA (b) within 20 s segments starting from 40 s before the startle (umbrella) stimulus onset up to
60 s after stimulus onset. Significant differences (if p < 0.05) between segments are presented by a
double arrow.

4. Discussion

We have tested the feasibility of EDA to capture the sympathetic arousal produced
by a long-lasting stimulus (Feeding test) and a short-lasting stimulus (umbrella Startle
test) in horses. We found that EDA was able to detect sympathetic arousal elicited by both
stimuli, especially its phasic component. In the Feeding test, we observed that the horses
were more aroused during the feeding stage compared to the baseline, which was reflected
on the phasic index of EDA (NS.SCRs). This was not observed in the tonic index of EDA
(SCL), likely due to the high variability in the tonic component [49]. On the other hand,
the umbrella Startle test was evaluated with HRV analysis and found powerful enough to
stimulate an acute sympathetic activation [22]. The responses to this acute stimulus were
reflected on EDA as a significant elevation in the phasic component of EDA after the onset
of stimuli, while the animals showed 1 s latency between the onset of the stimulus and the
EDA phasic response. The mean value of the phasic component did not drop significantly
within the second and third 20 s intervals after the stimulus. The phasic component of EDA
is the most suitable target for the observation of short-lasting stimulus such as a startle or
acute pain in humans [37,50].

Our results suggest that EDA can be used to assess sympathetic stimuli continuously
and objectively in horses and to develop tools to assess their welfare. Many of the currently
available assessments of pain, stress, and welfare are at least somewhat subjective, including
facial expressions [51–53] and body behaviors [54] whose sensitivity and evaluation can be
affected by short observation periods and a lack of experience of the evaluator [55] Importantly,
inter-observer agreement for facial expressions was lower than agreement on behaviors [56].
Continuous, objective monitoring may be useful in horses recovering from medical care,
adjusting to new environments, or under stressful conditions, especially when personnel time
is limited. Continuous monitoring may also allow for the earlier identification of stress than
other assessments, although this requires further research [50,57–59]. Moreover, in clinical set-
tings, EDA can be used as a reliable, sympathetic marker to improve the prediction of changes
in arterial pressure in anaesthetized horses instead of, or in addition to, parasympathetic tone
activity assessment [60,61].

HRV is the most widely used tool to assess autonomic function in humans and horses.
In humans, it has been widely proven that the association between LF (0.045–0.15 Hz) compo-
nents of HRV and sympathetic arousal are also reflected in the low-frequency components
of EDA (0.045–0.25 Hz) [35]. In horses, the LF spectral contents of HRV (0.01–0.07 Hz) are
considered the most relevant frequency ranges to sympathetic activation [62,63]. Looking into
the spectral content of the EDA signal, similar to our observations in humans, we found that
most of the power of EDA in horses is contained in the LF band (below 0.14 Hz). However,
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further research exploring EDA in response to other stimulus is needed to confirm the spectral
content of the signal in horses.

As for the analysis of the EDA signal, we found that signal decomposition repre-
sents a challenge, as the current decomposition algorithms (cvxEDA, sparsEDA, Ledalab,
psPM, etc. [44]) were developed for human EDA. In this study we used the cvxEDA for
decomposition. The results (Figure 4, bottom panel) show the estimation of phasic drivers
during baseline and feeding for a given horse. Although the results are correlated with
the increase in phasic events (SCRs and drivers), the number of drivers is overestimated
(multiple extra phasic components are wrongfully identified). Similar results were obtained
with the other tools for EDA decomposition. Hence, although the current techniques
helped us assess the elevation in phasic activity, an EDA decomposition algorithm specially
designed for horse EDA would be ideal. More data are necessary for this purpose.

In this study, we collected EDA behind the left foreleg of the horses using a human
wearable sensor. The results are promising; however, the amplitude and quality of the signal
can be potentially improved by testing different locations, similar to previous research in
humans [64]. A comprehensive and systematic study would be required to optimize the
measurement location on the animal’s body in terms of signal quality and motion artifact
robustness. Then, further methods for dealing with motion artifacts could be produced. We
have previously developed methods for motion artifact detection and removal in human
EDA [65,66]. In addition, an EDA recording device specially designed for the spectral
characteristics of horse EDA will be developed in future studies to improve the quality of
the signal.

5. Conclusions

In this study, we evaluated the feasibility of sympathetic arousal detection using EDA
in horses. In particular, we used a Feeding test to induce overall arousal and a Startle test
to induce acute stress. We found that the indices of the phasic component of EDA were
sensitive to both tests and can potentially detect long-term and acute stress. Our results
suggest that EDA has the potential to capture sympathetic activation in horses and provide
a non-invasive continuous monitoring of stress, pain, and discomfort.
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