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1. Feed Additives – Health 

This section discusses the feed additives that have the potential to improve growth 

performance and carcass characteristics by enhancing the health status of grow-finish pigs. 

The feed additives discussed are acidifiers, essential oils, DFM, yeasts, Cu, and Zn. 



1.1.  Acidifiers 

There were 32 research articles for acidifiers with 68 comparisons from 16 countries 

during the grow-finish or finishing period which met the requirements for inclusion. Of these, 

68 comparisons reported growth performance data and 42 comparisons reported carcass data. 

Most acidifiers collected for this review were organic acids that were in the form of short-chain 

fatty acids (SCFA; 39 comparisons), medium-chain fatty acids (MCFA; 1 comparison), and 

benzoic acid (10 comparisons), and were added alone or in combinations (SCFA and MCFA; 18 

comparisons) from 0.05 to 5.0% in the diets.  

1.1.1.  Growth performance - Acidifiers 

Average daily gain significantly increased (P ≤ 0.05) in 18 comparisons (average of 5.8%) 

and significantly decreased (P ≤ 0.05) in 4 comparisons (average of 10.8%) compared to control 

pigs (Table S1). The greatest proportion of the comparisons found no evidence of difference (P 

> 0.10) in ADG (46 comparisons). Of these, ADG was numerically increased (P > 0.10) in 31 

comparisons (average of 3.4%) and numerically decreased in 15 comparisons (average of 3.4%) 

compared to control pigs. Feed efficiency significantly increased (P ≤ 0.05) in 13 comparisons 

(average of 6.4%) and significantly decreased (P ≤ 0.05) in 1 comparison (9.7%) compared to 

control pigs. The greatest proportion of the comparisons found no evidence of difference (P > 

0.10) in ADG (51 comparisons). Of these, G:F was numerically increased (P > 0.10) in 40 

comparisons (average of 3.8%) and numerically decreased in 9 comparisons (average of 3.1%) 



compared to control pigs. By comparing different acid types, acid blends and benzoic acids 

improved ADG more than SCFAs, while acid blends and SCFA improved G:F more than 

benzoic acid. Compared to control pigs, those fed acidifiers had 4.1% (18 comparisons), 2.8% 

(10 comparisons), and 0.3% (39 comparisons) improvement in ADG when fed acid blends, 

benzoic acid, and SCFA, respectively. Feed efficiency was improved by 4.2% (18 comparisons), 

2.1% (10 comparisons), and 2.9% (39 comparisons) in pigs fed acid blends, benzoic acid, and 

SCFA, respectively, compared to control pigs. There were not enough data to support whether 

different types of basal diets and inclusion levels affected the response to acidifiers for ADG 

and G:F in grow-finish pig diets. In summary, feeding acidifiers has the potential to improve 

growth performance.



Table S1. Studies on the effects of dietary acidifiers on growth performance. 
     Difference, % 
Author Country Acids Inclusion, % Sig. ADG G:F 
Thacker and Bowland 
(1980) Canada Propionic acid 

3.0 ns -2.7 6.3 
6.0 ADG -12.2 4.5 
9.0 ADG -14.9 10.8 

Thacker and Bowland 
(1981) Canada 

Propionic acid 3.5 ns 1.3 7.1 
7.0 ns -3.8 5.9 

Calcium propionate 3.5 ns 4.8 6.6 
7.0 ns -8.3 -6.8 

Thacker et al. (1981) Canada Propionic acid 5.04 ADG, G:F -8.1 8.8 
5.04 ADG -7.9 6.1 

Giesting and Easter (1985) USA Fumaric acid 1.5 ns2 2.5 -2.7 
3.0 7.6 0.0 

Thacker et al. (1992) Canada Propionic acid 2.5 ns -1.2 4.1 
Baustad (1993), Exp. 1 Norway Formic acid 0.6 ADG, G:F 11.4 11.3 

1.2 ns 5.3 6.2 
Baustad (1993), Exp. 2 Norway Formic acid 0.6 ADG, G:F 7.0 7.0 
Baustad (1993), Exp. 3 Norway Formic acid 0.6 ns 3.8 3.6 
Krause et al. (1994) USA Fumaric acid 2.5 ns 2.3 3.6 
Siljander-Rasi et al. (1998) Finland Formic acid 0.8 ns 1.4 1.0 
Partanen et al. (2002) Finland Formic acid 0.8 G:F 4.7 4.9 

Formic acid and sorbate 0.8 ADG, G:F 8.6 9.9 
Canibe et al. (2005) Denmark Formic acid 1.8 ns 9.0 5.4 
Jansons and Nudiens 
(2005) Lativia Formic acid, acetic acid, citric 

acid, and phosphoric acid  0.6/0.4/0.3 ADG 5.9 n/a 
Bühler et al. (2006) Switzerland Benzoic acid 1.0 ns 4.0 1.7 
Campbell et al. (2006) Ireland Acid blend 0.3 ns -5.4 -7.5 

Fumaric acid 0.2 ns -8.1 -6.3 

Partanen et al. (2006) Finland 
Sorbate-coated formic acid 

0.3 ns 4.9 3.7 
0.6 ADG 6.4 3.7 
1.2 ADG, G:F 5.6 7.3 

Formic acid and lactic acid 
0.3 ADG, G:F 6.4 5.5 
0.6 G:F 4.6 4.6 
1.2 G:F 5.4 5.0 

Eisemann and Heugten 
(2007) USA Formic acid, ammonium 

formate 

1.2/1.0 ns -0.9 2.4 
1.0/0.8 ns -0.1 5.2 
0.8/0.6 ns 0.9 3.9 

1.0 ns 2.9 3.4 
0.8 ns -1.0 2.5 



0.6 ns -1.4 2.3 

Øverland et al. (2007) Norway 

Formic acid 1.0 ns 1.8 3.4 
Benzoic acid 0.85 ns 2.3 3.9 
Sorbic acid 0.85 ns 2.4 4.4 
Fat coated Ca-butyrate 1.2 ns 7.2 0.9 
Inulin coated Ca-butyrate 1.5 ns -2.9 0.5 

Guy et al. (2008) UK 
Formic acid and propionic 
acid 0.7/0.6/0.5/0.0.3 ns -1.5 -0.9 
Formic acid, fumaric acid, 
and propionic acid 1.0/0.8/0.6/0.5/0.4 ns -0.3 -1.3 

Kijparkorn et al. (2009) Thailand Formic acid, lactic acid, citric 
acid, fumaric acid  0.4 G:F -12.5 -9.7 

Thacker and Haq (2009) Canada Propionic acid and acetic 
acid 1.0 ns 4.8 -0.7 

Jansons et al. (2011) Lativia Formic acid, acetic acid, citric 
acid, and phosphoric acid  

0.6/0.4/0.34 ADG 6.2 n/a 
0.6/0.4/0.34 ns -1.3 n/a 

Upadhaya et al. (2014) South 
Korea 

Fumaric acid, citric acid, 
malic acid, MCFA (capric 
and caprylic acid) 

0.1 
ADG2 

3.9 2.8 
0.2 6.0 3.7 

Cho et al. (2015) South 
Korea Benzoic acid 0.5 ns 0.1 -1.1 

Giannenas et al. (2016) Greece Benzoic acid 0.5 ns 2.9 7.1 
Zhai et al. (2017) China Benzoic acid 0.3 ADG2, G:F2 5.9 3.1 

0.5 5.2 3.1 

Lei et al. (2018) South 
Korea 

Fumaric acid, citric acid, 
malic acid, MCFA (capric 
and caprylic acid) 

0.05 ns 3.1 4.7 
0.1 ns 5.4 6.3 

Nguyen Thi (2018) Vietnam 
Fumaric acid, lactic acid, 
calcium formate, and 
phosphoric acid 

0.2 ADG 5.6 4.3 

Morel et al. (2019) New 
Zealand 

Benzoic acid 0.5 ns 0.5 0.7 
Butyrate 0.15 ns 2.4 0.3 

Nguyen et al. (2019) South 
Korea 

Fumaric acid, citric acid, 
malic acid, MCFA (capric 
and caprylic acid) 

0.1 ADG 4.1 4.5 
0.2 ADG, G:F 4.5 5.0 

O’ Meara et al. (2020) Ireland Benzoic acid 0.25 ns2 2.9 -0.9 
0.5 1.1 1.8 

Tran Thi Bich et al. (2020) Thailand 
Formic acid, acetic acid, 
lactic acid, propionic acid, 
citric acid, and sorbic acid) 
and MCFAs 

0.2 ADG, G:F 5.3 8.1 



Muniyappan et al. (2021) South 
Korea 

Fumaric acid, citric acid, 
phosphoric acid, and malic 
acid 

0.05 
ADG2 

2.5 1.4 
0.1 3.3 1.8 

Tutida et al. (2021) Brazil Lactic, citric, and ascorbic 
acid 0.1/0.05 ns 0.0 0.0 

1Significant level at P ≤ 0.05. Difference is calculated as [(treatment value – control value) / control value] * 100%. 
2Polynomial contrasts were used for statistical analysis. 
3Significant level at 0.05 < P ≤ 0.10.   
4For experiments using factorial treatment structures, if the interaction of factors of either interested variable was observed the 

effect of the feed additive within each level of the other factor is included within the database. 



1.1.2.  Carcass Characteristics - Acidifiers 

Back-fat significantly decreased (P ≤ 0.05) in 3 comparisons (average of 12%) compared to 

control pigs. The greatest proportion of the comparisons found no evidence of difference (P > 

0.10) in BF (21 comparisons; Table S2). Of these, BF was numerically increased (P > 0.10) in 14 

comparisons (average of 2.6%) and numerically decreased in 5 comparisons (average of 3.2%) 

compared to control pigs. For percentage lean, all comparisons found no evidence of 

difference (P > 0.10) in percentage lean. Of these, percentage lean was numerically increased (P 

> 0.10) in 9 comparisons (average of 0.9%) and numerically decreased in 15 comparisons 

(average of 1.4%) compared to control pigs. Loin muscle area/depth significantly increased (P 

≤ 0.05) in 2 comparisons (average of 6.3%) compared to control pigs. The greatest proportion of 

the comparisons found no evidence of difference (P > 0.10) in LAM/LD (9 comparisons). Of 

these, LMA/LD was numerically increased (P > 0.10) in 7 comparisons (average of 2.6%) and 

numerically decreased in 2 comparisons (average of 6.9%) compared to control pigs. These 

results could be expected because the mechanisms do not directly affect the protein and lipid 

metabolism. Also, it appears that acidifiers’ impacts on ADG and G:F were not great enough to 

affect carcass characteristics.



Table S2. Studies on the effects of dietary acidifiers on carcass characteristics. 
     Difference, % 
Author Country Acidifiers Inclusion, 

%  Sig. Yield BF percentage 
lean LMA/LD 

Thacker and Bowland 
(1980) Canada Propionic acid 

3.0 ns 0.1 -2.4 n/a n/a 
6.0 BF 2.2 -5.9 n/a n/a 
9.0 BF -3.5 -15.3 n/a n/a 

Thacker and Bowland 
(1981) Canada 

Propionic acid 3.5 ns -0.4 0.9 n/a n/a 
7.0 ns -0.6 -2.6 n/a n/a 

Calcium propionate 3.5 ns -0.6 -6.6 n/a n/a 
7.0 BF -2.7 -14.8 n/a n/a 

Thacker et al. (1992) Canada Propionic acid 2.5 ns -0.6 n/a -0.6 n/a 
Baustad (1993), Exp. 1 Norway Formic acid 0.6 ns n/a n/a -0.5 n/a 

1.2 ns n/a n/a -1.6 n/a 
Baustad (1993), Exp. 2 Norway Formic acid 0.6 ns n/a n/a 4.2 n/a 
Baustad (1993), Exp. 3 Norway Formic acid 0.6 ns n/a n/a 0.8 n/a 
Partanen et al. (2002) Finland Formic acid 0.8 ns 0.5  1.3  0.2  n/a 

Formic acid and sorbate 0.8 ns 0.0  1.3  0.3  n/a 
Campbell et al. (2006) Ireland Acid blend 0.3 ns -0.3 n/a n/a n/a 

Fumaric acid 0.2 ns 0.5 n/a n/a n/a 

Partanen et al. (2006) Finland 

Sorbate-coated formic 
acid 

0.3 ns -0.1  6.2  -1.0  n/a 
0.6 ns -0.8  0.0  -0.2  n/a 
1.2 ns 0.1  1.6  -0.3  n/a 

Formic acid and lactic 
acid 

0.3 ns -0.4  1.6  -0.3  n/a 
0.6 ns 0.0  2.3  -0.3  n/a 
1.2 ns 0.5  0.8  0.5  n/a 

Øverland et al. (2007) Norway 

Formic acid 1.0 ns 0.4  n/a -2.7  n/a 
Benzoic acid 0.85 Yield 2.3  n/a -1.8  n/a 
Sorbic acid 0.85 ns -0.3  n/a -2.8 n/a 
Fat coated Ca-butyrate 1.2 ns -0.1  n/a -2.9  n/a 
Inulin coated Ca-butyrate 1.5 ns -0.4 n/a -3.6 n/a 

Thacker and Haq 
(2009) Canada Propionic and acetic acid 1.0 ns 0.0  14.4  -1.7  4.1  

Upadhaya et al. (2014) South 
Korea 

Fumaric acid, citric acid, 
malic acid, MCFA (capric 
and caprylic acid) 

0.1 
LMA2 

n/a n/a n/a 4.6  
0.2 n/a n/a n/a 8.1  

Nguyen Thi (2018) Vietnam 
Fumaric acid, lactic acid, 
calcium formate, and 
phosphoric acid 

0.2 ns -0.8  0.5  n/a 2.5  

Morel et al. (2019) Benzoic acid 0.5 ns 0.1 0.0 n/a 1.4 



New 
Zealand Butyrate 0.15 ns -0.4 1.1 n/a 3.4 

Nguyen et al. (2019) South 
Korea 

Fumaric acid, citric acid, 
malic acid, MCFA (capric 
and caprylic acid) 

0.1 ns n/a n/a n/a -7.2  
0.2 ns n/a n/a n/a -6.5  

O’ Meara et al. (2020) Ireland Benzoic acid 
0.25 

ns2 
-0.1  3.6  -0.5  1.3  

0.5 -0.5  -0.7  0.5  2.6  
1.0 -0.9  -3.6  1.1  3.0  

Muniyappan et al. 
(2021) 

South 
Korea 

Fumaric acid, citric acid, 
phosphoric acid, and 
malic acid 

0.05 
ns2 

n/a 1.2  0.5  n/a 
0.1 n/a 2.2  0.1  n/a 

1Significant level at P ≤ 0.05. Difference is calculated as [(treatment value – control value) / control value] * 100%. 
2Polynomial contrasts were used for statistical analysis. 



1.2.  Essential Oils (EO) 

There were 13 research articles for EO with 20 comparisons from 6 countries during the 

grow-finish or finishing period with added dietary levels of 0.003 to 0.1%. Of these, 20 

comparisons reported growth performance data and 17 comparisons reported carcass data. 

Essential oils used in these experiments were extracted from caraway, citrus, cinnamon, 

Chinese cinnamon, oregano, clove, clover, rosemary, fenugreek seed, eucalyptus, lemon, 

garlic, and Eucommia ulmoides. Because of the similar antibacterial properties between essential 

oils and acids, these two additives are sometimes blended as a single additive. Therefore, 5 

more articles (5 experiments) from 4 countries with blended additives (EO and acids) were 

also included. 

1.2.1.  Growth Performance - Essential Oils 

Average daily gain significantly increased (P ≤ 0.05) in 10 comparisons (average of 9.9%) 

compared to control pigs (Table S3). Half of the studies found no evidence of difference (P > 

0.10) in ADG (10 comparisons). Of these, ADG was numerically increased (P > 0.10) in 6 

comparisons (average of 3.8%) and numerically decreased (P > 0.10) in 3 comparisons (average 

of 1.7%) compared to control pigs. Feed efficiency significantly increased (P ≤ 0.05) in 7 

comparisons (average of 10.9%) and tended to increase (0.05 < P ≤ 0.10) in 1 comparison (4.5%) 

compared to control pigs. Half of the studies found no evidence of difference (P > 0.10) in G:F 

(9 comparisons). Of these, G:F was numerically increased (P > 0.10) in 6 comparisons (average 



of 3.5%) and numerically decreased (P > 0.10) in 2 comparisons (average of 1.5%) compared to 

control pigs. Overall, the results suggest that EO had positive effects on ADG and G:F (80 and 

82% of all the comparisons). Moreover, the beneficial effects of EO were significant (P < 0.10) 

for ADG and G:F in 50 and 57% of all the comparisons, respectively. For EO and acid blends, 

there are only 7 comparisons for both ADG (average of 1.9% improvement) and G:F (average 

of 2.2% improvement). Of these, 71% of the comparison where pigs fed the additive had 

increased ADG (average of 3.8%) and G:F (average of 3.7%), and 29% of the comparisons had 

reduced ADG (average of 2.9%) and G:F (average of 1.5%) compared to control. There were 

insufficient data to support whether different types of basal diets and inclusion levels affected 

EO response for ADG and G:F. In summary, adding EO alone or in combination with acids has 

the potential to improve growth performance. However, there was only a small amount of 

research on EO’s effect on growth performance, and only three studies were conducted in the 

US; therefore, the use of EO may not be beneficial in US-based conditions. More experiments 

are needed to determine the effect of including EO in the diets of grow-finish pigs. 



Table S3. Studies on the effects of dietary essential oils (EO) with or without acids on growth performance. 
     Difference, %1 
Author Country Additive Inclusion, 

% Sig.1 ADG G:F 
Essential oils       

Onibala et al. 
(2001) Indonesia 

Oregano EO 0.0025 ADG, G:F 4.1 5.8 
Thyme EO 0.0025 ADG, G:F 8.8 6.5 
Garlic EO 0.0025 ADG, G:F 5.9 7.7 

Yan et al. (2010) South 
Korea Thyme, rosemary, and oregano EO 0.01 ADG 6.6 6.6 

Simitzis et al. 
(2010) Greece Oregano EO 

0.025 ns 11.1 n/a 
0.05 ns 2.6 n/a 
0.1 ns 3.7 n/a 

Zhou et al. (2016) China Eucommia ulmoides oliver leaf polyphenolic 
extract 0.08 ADG, G:F 18.8 19.9 

Zou et al. (2016) China Oregano EO 0.0025 ADG, G:F 18.6 15.7 
Li et al. (2017) South 

Korea 
Cinnamon, oregano, clove, thyme, and 
rosemary EO 

0.05 ns 3.8 4.1 
0.05 ns 1.0 2.0 

Soto et al. (2017) USA 
Caraway, garlic, thyme, and cinnamon 0.020 ns -0.5 1.3 
Oregano, citrus, and anise 0.013 ns 0.5 1.0 
Caraway, garlic, thyme, cinnamon, oregano, 
citrus, and anise 0.033 ns 0.0 -0.3 

Zou et al. (2017) China Oregano EO 0.0025 ADG, G:F 10.2 9.4 
Cheng et al. (2018) China Oregano EO 0.025 ADG, G:F 10.6 11.0 
Lan and Kim 

(2018) 
South 
Korea 

Fenugreek seed, clover, and Chinese 
cinnamon EO 0.01 ADG 5.0 5.9 

Lowell et al. 
(2018) USA Oregano EO 0.025 ns -2.9 0.0 

Huang et al. 
(2021) China Eucalyptus, oregano, thyme, lemon, garlic EO 0.02 ADG, G:F3 10.3 4.5 

Tutida et al. 
(2021) Brazil Thymol and Carvacrol 0.100 ns -1.6 -2.6 
       
Essential oils and Acidifier Blends 

Cho et al. (2014) South 
Korea 

Citric acids, sorbic acid, and EOs (thymol and 
vanillin) 

0.025 ADG2 4.3 3.0 
0.05 4.0 3.0 

Walia et al. (2017) Ireland 
Formic acid, citric acid, and EOs (citrus fruit 
extract, cinnamon, oregano, thyme, and 
capsicum) 

0.4 ns -4.6 -2.5 

Oh et al. (2019) 0.1/0.0255 ADG2, G:F2 2.2 2.7 



South 
Korea 

Citric acids, sorbic acid, and EOs (thymol and 
vanillin) 0.2/0.055 5.4 5.9 

Resende et al. 
(2020) Brazil Benzoic acid and EOs (thymol, 2-

methoxyphenol, and eugenol) 0.3 ADG 3.3 3.8 
Hutchens et al. 

(2021) USA Citric acids, sorbic acid, and EOs (thymol and 
vanillin) 0.3/0.1/0.054 ns -1.2 -0.5 

1Significant level at P ≤ 0.05. Difference is calculated as [(treatment value – control value) / control value] * 100%. 
2Polynomial contrasts were used for statistical analysis. 
3Significant level at 0.05 < P ≤ 0.10. 
4Feed additive was added at 0.3, 0.1% in nursery phase 1 and 2, respectively, and 0.05% in grow-finish phase. 
5For the low inclusion treatment, feed additive was added at 0.1% in nursery phase and 0.025% in grow-finish phase. For the 

high inclusion treatment, feed additive was added at 0.2% in nursery phase and 0.05% in grow-finish phase. 



1.2.2.  Carcass Characteristics - Essential Oils 

Back-fat significantly decreased (P ≤ 0.05) in 3 comparisons (average of 2.7%) compared to 

control pigs (Table S4). The greatest proportion of the comparisons found no evidence of 

difference (P > 0.10) in BF (11 comparisons). Of these, BF was numerically increased (P > 0.10) 

in 5 comparisons (average of 3.7%) and numerically decreased (P > 0.10) in 6 comparisons 

(average of 5.5%) compared to control pigs. Percentage lean significantly increased (P ≤ 0.05) in 

3 comparisons (average of 2.5%) compared to control pigs. The greatest proportion of the 

comparisons found no evidence of difference (P > 0.10) in percentage lean (6 comparisons). Of 

these, percentage lean was numerically increased (P > 0.10) in 3 comparisons (average of 1.2%) 

and numerically decreased (P > 0.10) in 2 comparisons (average of 1.5%) compared to control 

pigs. Loin muscle area/depth significantly increased (P ≤ 0.05) in 3 comparisons (average of 

7.1%) compared to control pigs. The greatest proportion of the comparisons found no evidence 

of difference (P > 0.10) in LMA/LD (7 comparisons). Of these, LMA/LD was numerically 

increased (P > 0.10) in 4 comparisons (average of 1.0%) and numerically decreased (P > 0.10) in 

3 comparisons (average of 2.3%) compared to control pigs. For essential oils and acid blends, 

there are only 3 experiments, and the effects on carcass characteristics were small and not 

statistically significant [BF (average of 0.5% improvement); percentage lean (average of 1.7% 

improvement); and LMA (average of 0.1% improvement)]. These results suggest that adding 

EO alone had some positive effects on carcass characteristics, which may be due to the 



improvement in growth performance. However, there was only a small amount of research on 

EO’s effect on carcass characteristics, and only two research were conducted in the US. 

Therefore, more experiments are needed to determine the effect of including EO in the diets of 

grow-finish pigs. 



Table S4. Studies on the effects of dietary essential oils (EO) with or without acids on carcass characteristics. 
     Difference, %1 

Author Country Additive Inclusion, 
% Sig.1 Yield BF 

percent
age 
lean 

LMA/LD 

Essential oils         

Onibala et al. 
(2001) Indonesia 

Oregano EO 0.0025 
Yield, BF, 

percentage 
lean 

3.5 -7.5 2.4 n/a 

Thyme EO 0.0025 
Yield, BF, 

percentage 
lean 

3.8 -7.8 2.6 n/a 

Garlic EO 0.0025 
Yield, BF, 

percentage 
lean 

3.3 -7.7 2.5 n/a 

Simitzis et al. 
(2010) Greece Oregano EO 

0.025 ns -0.6 4.1 n/a n/a 
0.05 ns 0.1 -3.2 n/a n/a 
0.1 ns 0.5 1.8 n/a n/a 

Yan et al. (2010) South 
Korea 

Thyme, rosemary, and 
oregano EO 0.01 LMA n/a n/a n/a 12.3 

Zhou et al. (2016) China Eucommia ulmoides oliver 
leaf polyphenolic extract 0.08 ns 0.8 -9.9 -2.5 -6.3 

Zou et al. (2016) China Oregano EO 0.0025 Yield 8.2 -0.5 n/a n/a 
Li et al. (2017) South 

Korea 
Cinnamon, oregano, clove, 
thyme, and rosemary EO 

0.05 LMA n/a n/a n/a 5.4 
0.05 LMA n/a n/a n/a 3.7 

Soto et al. (2017) USA 

Caraway, garlic, thyme, and 
cinnamon 0.020 ns 0.3 6.3 -0.4 0.8 
Oregano, citrus, and anise 0.013 ns 0.0 3.1 0.0 1.2 
Caraway, garlic, thyme, 
cinnamon, oregano, citrus, 
and anise 

0.033 ns 0.1 3.1 0.2 2.0 

Cheng et al. 
(2018) China Oregano EO 0.025 ns -0.8 -14.2 2.8 0.0 

Lowell et al. 
(2018) USA Oregano EO 0.025 Yield -0.8 -3.9 0.7 -0.1 

Huang et al. 
(2021) China Eucalyptus, oregano, thyme, 

lemon, garlic EO 0.02 ns 0.3 -1.4 n/a -0.6 
         
Essential oils and Acidifier Blends 

Cho et al. (2014) 0.025 ns2 n/a n/a n/a -2.7 



South 
Korea 

Citric acids, sorbic acid, and 
EOs (thymol and vanillin) 0.05 n/a n/a n/a -2.4 

Walia et al. (2017) Ireland 
Formic acid, citric acid, and 
EOs (citrus fruit extract, 
cinnamon, oregano, thyme, 
and capsicum) 

0.4 
Yield, BF3, 
percentage 
lean, LMA 

-1.1 -7.0 2.0 4.0 

Oh et al. (2019) South 
Korea 

Citric acids, sorbic acid, and 
EOs (thymol and vanillin) 

0.1/0.0254 percentage 
lean2,3 

n/a 4.2 0.5 0.1 
0.2/0.054 n/a 4.2 2.6 1.5 

1Significant level at P ≤ 0.05. Difference is calculated as [(treatment value – control value) / control value] * 100%. 
2Polynomial contrasts were used for statistical analysis. 
3Significant level at 0.05 ≤ P < 0.10.  
4For the low inclusion treatment, feed additive was added at 0.1% in nursery phase and 0.025% in grow-finish phase. For the high 

inclusion treatment, feed additive was added at 0.2% in nursery phase and 0.05% in grow-finish phase. 



1.3.  Direct-Fed Microbials (DFM) 

There were 48 research articles for DFM with 79 comparisons from 14 countries during the 

grow-finish or finishing period which met the requirements for inclusion. Of these, 73 

comparisons reported growth performance data, and 33 comparisons reported carcass data. 

Most strains of DFM used in the studies were Bacillus spp., Lactobacillus spp., and Enterococcus 

faecium. A DFM additive could contain a single or several strains of microbials. In addition, 

comparisons were also included when yeast (Saccharomyces cerevisiae) was added with other 

microbials as a blended DFM product. The effect of the single addition of yeast in diets was 

discussed in the yeast section. 

1.3.1.  Growth Performance - DFM 

Average daily gain significantly increased (P ≤ 0.05) in 25 comparisons (average of 6.3%), 

tended to increase (0.05 < P ≤ 0.10) in 2 comparisons (average of 3.9%), and significantly 

decreased (P ≤ 0.05) in 1 comparison (5.8%) compared to control pigs (Table S5). The greatest 

proportion of the comparisons found no evidence of difference (P > 0.10) in ADG (43 

comparisons). Of these, ADG was numerically increased (P > 0.10) in 30 comparisons (average 

of 3.6%) and numerically decreased (P > 0.10) in 13 comparisons (average of 2.3%) compared to 

control pigs. in pigs fed DFM. Feed efficiency significantly increased (P ≤ 0.05) in 18 

comparisons (average of 6.1%) and tended to increase (0.05 < P ≤ 0.10) in 3 comparisons 

(average of 3%) compared to control pigs. The greatest proportion of the comparisons found 



no evidence of difference (P > 0.10) in G:F (45 comparisons). Of these, G:F was numerically 

increased (P > 0.10) in 32 comparisons (average of 3.9%) and numerically decreased (P > 0.10) 

in 11 comparisons (average of 2.2%) compared to control pigs. Overall, the results suggest that 

DFM positively affected ADG and G:F (80% of all the comparisons). Moreover, DFM showed 

positive statistical improvement (P < 0.10) in 38 and 32% of all the comparisons for ADG and 

G:F, respectively. Similarly, Zimmermann et al. [50] conducted a meta-analysis and found 

probiotics significantly improved ADG and G:F of weaned piglets and finishing pigs. There 

were insufficient data to support whether different types of basal diets affected the response to 

DFM for ADG and G:F in grow-finish pigs. The effect of strain and inclusion level of DFM 

cannot be discussed because most studies used a blend of several microbials with varying 

concentrations. In summary, DFM has the potential to improve growth performance (3.3% 

improvement for ADG and G:F) of grow-finish pigs. However, there were relatively fewer US-

based studies for DFM; therefore, the effects of DFM in US-based conditions may not be the 

same as what we discussed in this section.  



Table S5. Studies on the effects of DFM on growth performance. 
   

Inclusion, % 
 Difference, %1 

Author Country DFM4 Sig.1 ADG G:F 
Pollmann et al. (1980) USA L. acidophilus 0.05 ns -1.2 -0.9 

Streptococcus faeciurn 0.05 ns -1.2 -0.9 
Harper et al. (1983) USA L. acidophilus 0.1/0.05 ADG -5.8 -3.0 

0.05 ns 1.3 -1.4 
Kim et al. (1998) USA L. acidophilus 0.05 ns 2.2 -0.4 

Kyriakis et al. (2003) Greece B. toyoi 
1.0/0.5/0.2×109 

spores/kg ADG 4.5 n/a 
1.0/0.5/0.2×109 

spores/kg ADG 8.3 n/a 

Alexopoulos et al. (2004) Greece B. licheniformis and B. subtilis 
0.04/0.02 ADG, G:F 2.2 4.5 
0.04/0.04 ADG, G:F 3.6 5.7 
0.04/0.06 ADG, G:F 3.6 5.3 

Rekiel et al. (2005) Poland Pediococcus acidilactici 0.01 ns -1.9 -1.9 
Jukna et al. (2005) Lithuania Saccharamyce cerevisiae, L. casei, L. 

acidophilus, Streptococcus faecium, B. subtilis 0.20 ns 20.3 n/a 
Shon et al. (2005) South Korea L. reuteri and L. salivarius complex 0.2 ns 3.2 1.4 
Chen et al. (2006) South Korea B. subtilis, B. coagulans, and L. acidophilus 0.1 ns 5.3 3.7 

0.2 ADG 11.4 5.1 
Chen et al. (2006) South Korea Enterococcus faecium SF68 0.1 ns2 4.9 2.0 

0.2 4.1 4.0 
Davis et al. (2008) USA B. lichenformis and B. subtilis 0.05 G:F 0.6 3.0 
Ko et al. (2008) South Korea L. acidophilus, L. plantarum, B. subtilis, B. 

coagulans, and Saccharomyces cerevisiae 0.5 ns 4.6 7.7 

Ko and Yang (2008) South Korea L. acidophilus, L. plantarum, B. subtilis, B. 
coagulans, and Saccharomyces cerevisiae 

0.1 ns 7.5 0.9 
0.5 ns 6.5 2.9 
1.0 ns 4.3 -1.4 

Černauskienė et al. (2010), 
Exp. 1 Lithuania Enterococcus faecium 1010 cfu/kg ADG 3.1 -0.6 
Černauskienė et al. (2010), 
Exp. 2 Lithuania Enterococcus faecium 1010 cfu/kg ns 1.5 3.0 

Meng et al. (2010) South Korea B. subtilis endospores and Clostridium 
butyricum 0.2 ADG, G:F 7.5 7.9 

Giang et al. (2011) Vietnam 

B. subtilis 0.3 ns 1.3 1.8 
B. subtilis and Saccharomyces boulardi 0.3 ns 2.6 2.9 
B., Saccharomyces boulardi, Enterococcus 
faecium, L. acidophilus, Pediococcus 
pentosaceus, and L. fermentum 

0.3 ADG 5.2 5.3 



Nitikanchana et al. (2011) USA B. species 0.2 × 109 cfu/g ns2 -2.3 0.8 
2 × 109 cfu/g -1.4 0.4 

Hossain et al. (2012) South Korea L. acidophilus, L. plantarum, B. subtilis, B. 
coagulans, and Saccharomyces cerevisiae 0.5 ADG 7.9 6.0 

Cui et al. (2013) China B. subtilis 2.0 ADG, G:F 3.6 2.4 

Kerr et al. (2013) USA Pediococcus acidilactici 0.011 ns 0.8 -1.5 
B. licheniformis and B. subtilis 0.05 ns -1.1 -5.4 

Liu et al. (2013) China Yeasts, lactic acid-producing bacteria, and B. 
subtilis 1.0 ns 3.2 2.9 

Balasubramanian et al. 
(2016) South Korea B. coagulans, B. licheniformis, B. subtilis, and 

Clostridium butyricum 
0.01 ADG2, 

G:F2 
2.7 4.9 

0.02 3.2 5.2 
Dowarah et al. (2016) India L. acidophilus NCDC-15 0.02 ADG, G:F 11.7 9.4 

Pediococcus acidilactici FT28 0.02 ADG, G:F 14.9 9.8 
Giannenas et al. (2016) Greece Enterococcus faecium 0.0035 ns 3.0 6.8 
Jørgensen et al. (2016) Denmark B. licheniformis and B. subtilis 0.04 ADG, G:F 3.3 1.9 

Sarker et al. (2016) South Korea L. acidophilus, L. plantarum, B. subtilis, B. 
coagulans, and Saccharomyces cerevisiae 

0.2 ns -6.2 -7.2 
0.4 ns -0.5 3.9 
0.8 ns 2.1 13.1 

Nguyen et al. (2017) South Korea Enterococcus faecium 0.01 ADG, G:F 3.9 3.1 

Tufarelli et al. (2017) Italy 
Streptococcus thermophilus, Bifidobacterium 
animalis ssp. Lactis, L. acidophilus, L. 
helveticus, L. paracasei, L. plantarum, and L. 
brevis. 

100 mg/kg 
BW ADG3 3.0 n/a 

Balasubramanian et al. 
(2018) South Korea B. coagulans, B. licheniformis, B. subtilis, and 

Clostridium butyricum 
0.01 ADG, G:F 6.0 8.4 
0.02 ADG, G:F 7.4 9.3 

Bučko et al. (2018) Slovak L. plantarum 3g/day ns -1.2 0.4 
Nguyen Thi (2018) Vietnam B. subtilis, L. spp., Saccharomyces cerevisiae 0.2 ADG 4.7 3.3 

Samolińska et al. (2018) Poland L. lactis, Carnobacterium divergens, L. casei, 
L. plantarum, and Saccharomyces cerevisiae 

0.055 ns 2.2 2.2 
0.055 ns 3.1 3.5 
0.055 ns 2.5 3.0 

Shi et al. (2018) China B. subtilis and Devosia sp. 0.2 ns -3.2 10.9 
0.2 ADG 15.3 5.1 

Lan and Kim (2019) South Korea B. licheniformis and B. subtilis 
0.02 

ns2 
1.8 0.0 

0.04 2.0 0.9 
0.08 5.4 1.2 

Wang and Kim (2019) South Korea B. subtilis and P. farinosa 0.1 ADG2, 
G:F2,3 

1.7 2.0 
0.2 3.8 4.0 

Peet-Schwering et al. (2020) Netherlands B. amyloliquefaciens and B. subtilis 0.04 G:F 1.4 0.5 



Reszka et al. (2020) Poland EM Carbon Bokash 0.5/0.3 ns 1.4 0.8 
Rybarczyk et al. (2020) Poland Saccharomyces cerevisiae, L. casei, and L. 

plantarum 
0.30 ns -5.9 n/a 
0.50 ns -2.4 n/a 

Frimpong et al. (2021) Ghana 
L. sp., B. sp., and Saccharomyces cerevisiae 0.1 ns n/a 9.0 
L. sp., B. sp., Saccharomyces cerevisiae, and 
Paenibacillus polymyxa 0.15 ns n/a 4.1 

Grela et al. (2021) Poland 
Lactococcus lactis, Carnobacterium divergens 
S1, L. casei, L. plantarum, and Sacharomyces 
cerevisiae 

0.1 ADG, 
G:F3 2.5 3.0 

Kwak et al. (2021) South Korea 
L. plantarum, L. fermentum, L. salivarius, 
Leuconostoc paramesenteroides, and B. 
subtilis, and B. licheniformis 

0.2 ADG3, 
G:F 4.8 8.6 

Pomorska-Mól et al. (2021) Poland Leuconostoc mesenteroides, L. casei, L. 
plantarum, Pediococcus pentosaceus. 4 × 1012 cfu/kg ns 3.7 n/a 

Rybarczyk et al. (2021) Poland B. licheniformis  and B. subtilis 0.04 ADG, G:F 14.6 7.7 
Shen et al. (2021) China B. subtilis 5 × 109 cfu/kg ns 0.8 6.7 

biodegradable B. subtilis 5 × 109 cfu/kg G:F 3.6 13.0 
Tutida et al. (2021) Brazil B. spp., B. bifidum, E. faecium, L. acidophilus 0.05 ns -1.4 0.0 

1Significant level at P ≤ 0.05. Difference is calculated as [(treatment value – control value) / control value] * 100%. 
2Polynomial contrasts were used for statistical analysis. 
3Significant level at 0.05 < P ≤ 0.10.   
4Bacillus spp. is abbreviated as B., and Lactobacillus spp. is abbreviated as L.  
5The basal diets in the middle and bottom comparison contained long-chain inulin and Jerusalem artichoke, respectively, while 

the top comparison did not. 



1.3.2.  Carcass Characteristics - DFM 

Back-fat significantly increased (P ≤ 0.05) in 1 comparison (16.8%), significantly decreased 

(P ≤ 0.05) in 2 comparisons (average of 13.1%) and tended to decrease (0.05 < P ≤ 0.10) in 3 

comparisons (average of 2.9%) compared to control pigs (Table S6). The greatest proportion of 

the comparisons found no evidence of difference (P > 0.10) in BF (15 comparisons). Of these, 

BF was numerically increased (P > 0.10) in 6 comparisons (average of 7.1%) and numerically 

decreased (P > 0.10) in 9 comparisons (average of 6.3%) compared to control pigs. Percentage 

lean tended to increase (0.05 < P ≤ 0.10) in 1 comparison (1.8%) compared to control pigs. The 

greatest proportion of the comparisons found no evidence of difference (P > 0.10) in percentage 

lean (12 comparisons). Of these, percentage lean was numerically increased (P > 0.10) in 9 

comparisons (average of 1.8%) and numerically decreased (P > 0.10) in 3 comparisons (average 

of 1.8%) compared to control pigs. Loin muscle area/depth significantly increased (P ≤ 0.05) in 

1 comparison (average of 10.9%) compared to control pigs. The greatest proportion of the 

comparisons found no evidence of difference (P > 0.10) in LMA/LD (18 comparisons). Of these, 

LMA/LD was numerically increased (P > 0.10) in 14 comparisons (average of 2%) and 

numerically decreased (P > 0.10) in 3 comparisons (average of 3.4%) compared to control pigs. 

The small effects and lack of statistical differences of DFM on carcass characteristics may 

suggest that the mechanisms of DFM do not directly affect pigs' protein and lipid metabolism. 



Even though DFM has beneficial effects on growth performance, the improvement in growth 

did not equally improve BF, percentage lean, and LMA/LD to the same extent.



Table S6. Studies on the effects of DFM on carcass characteristics. 
   

Inclusion, % 

 Difference, %1 

Author Country DFM4 Sig.1 Yield BF 

perce
ntage 
lean 

LMA/L
D 

Kim et al. (1998) USA L. acidophilus 0.05 ns 0.8 -5.6 1.5 n/a 

Jukna et al. (2005) Lithuani
a 

Saccharamyce cerevisiae, L. casei, L. 
acidophilus, Streptococcus faecium, 
B. subtilis 

0.20 ns 2.7 n/a n/a n/a 

Rekiel et al. (2005) Poland Pediococcus acidilactici 0.01 ns 0.3 0.4 2.4 2.2 
Černauskienė et al. (2010), 
Exp. 1 

Lithuani
a Enterococcus faecium 1010 cfu/kg ns -0.3 n/a -2.0 n/a 

Černauskienė et al. (2010), 
Exp. 2 

Lithuani
a Enterococcus faecium 1010 cfu/kg ns 0.1 n/a n/a n/a 

Meng et al. (2010) South 
Korea 

B. subtilis endospores and 
Clostridium butyricum 0.2 ns n/a n/a n/a 4.3 

Nitikanchana et al. (2011) USA B. species 
0.2 × 109 

cfu/g BF2,3 0.5 -4.2 0.7 0.0 
2 × 109 cfu/g 0.9 -1.4 0.5 1.1 

Hossain et al. (2012) South 
Korea 

L. acidophilus, L. plantarum, B. 
subtilis, B. coagulans, and 
Saccharomyces cerevisiae 

0.5 ns n/a 20.3 n/a n/a 

Cui et al. (2013) China B. subtilis 2.0 BF, LMA 2.0 16.8 n/a 10.9 
Balasubramanian et al. 
(2016) 

South 
Korea 

B. coagulans, B. licheniformis, B. 
subtilis, and Clostridium 
butyricum 

0.01 
ns2 

n/a 4.5 0.9 1.2 
0.02 n/a -5.1 1.5 2.4 

Sarker et al. (2016) South 
Korea 

L. acidophilus, L. plantarum, B. 
subtilis, B. coagulans, and 
Saccharomyces cerevisiae 

0.2 ns n/a -10.9 n/a n/a 
0.4 ns n/a -4.2 n/a n/a 
0.8 ns n/a -9.1 n/a n/a 

Nguyen et al. (2017) South 
Korea Enterococcus faecium 0.01 ns n/a n/a n/a 0.5 

Balasubramanian et al. 
(2018) 

South 
Korea 

B. coagulans, B. licheniformis, B. 
subtilis, and Clostridium 
butyricum 

0.01 ns n/a -2.2 n/a 0.1 
0.02 BF n/a -8.2 n/a 2.8 

Bučko et al. (2018) Slovak L. plantarum 3g/day BF n/a -18.1 3.6 1.2 
Nguyen Thi (2018) Vietnam B. subtilis, L. spp., Saccharomyces 

cerevisiae 0.2 ns -0.8 -1.0 n/a 2.9 

Runjun et al. (2018) India P. acidilactici 2 × 109 cfu/g ns 0.6 -10.7 3.1 n/a 
L. acidophilus 2 × 109 cfu/g ns -0.5 -7.9 2.1 n/a 

Reszka et al. (2020) Poland EM Carbon Bokash 0.5/0.3 ns n/a n/a n/a 5.0 



0.5/0.3 ns n/a n/a n/a -1.5 
0.5/0.3 ns n/a n/a n/a 0.6 

Rybarczyk et al. (2020) Poland Saccharomyces cerevisiae, L. casei, 
and L. plantarum 

0.30 ns n/a 8.1 -2.0 -5.8 
0.50 ns n/a 6.3 -1.3 -2.9 

Grela et al. (2021) Poland 
Lactococcus lactis, Carnobacterium 
divergens S1, L. casei, L. 
plantarum, and Sacharomyces 
cerevisiae 

0.1 
BF3, 

percenta
ge lean3 

-0.5 -3.0 1.8 1.9 

Rybarczyk et al. (2021) Poland B. licheniformis  and B. subtilis 0.04 ns 0.9 n/a n/a n/a 
Tian et al. (2021) China L. reuteri 5 × 1010 

cfu/kg ns 2.2 3.1 n/a 1.9 
1Significant level at P ≤ 0.05. Difference is calculated as [(treatment value – control value) / control value] * 100%. 
2Polynomial contrasts were used for statistical analysis. 
3Significant level at 0.05 < P ≤ 0.10.   
4Bacillus spp. is abbreviated as B., and Lactobacillus spp. is abbreviated as L.  



1.4.  Yeasts – Yeast Culture and Yeast-Derived Ingredients 

There were 22 research articles for yeasts with 36 comparisons from 12 countries during 

the grow-finish or finishing period which met the requirements for inclusion. Of these, 36 

comparisons reported growth performance data, and 24 comparisons reported carcass data. 

Yeast was included in the diets as yeast culture, hydrolysate yeast culture, or mannan 

oligosaccharide (MOS). Yeast products were derived from Saccharomyces cerevisiae (yeast) 

and Phaffia rhodozyma (red yeast) yeast strains. Because of the lack of studies for individual 

yeast products, the effects of yeast culture and yeast-derived ingredients were combined and 

discussed for growth performance and carcass characteristics. 

1.4.1.  Growth Performance - Yeasts 

Average daily gain significantly increased (P ≤ 0.05) in 9 comparisons (average of 5.6%) 

compared to control pigs (Table S7). The greatest proportion of the comparisons found no 

evidence of difference (P > 0.10) in ADG (27 comparisons). Of these, ADG was numerically 

increased (P > 0.10) in 16 comparisons (average of 3.2%) and numerically decreased (P > 0.10) 

in 11 comparisons (average of 4.1%) compared to control pigs. Feed efficiency significantly 

increased (P ≤ 0.05) in 10 comparisons (average of 7.8%) compared to control pigs. The greatest 

proportion of the comparisons found no evidence of difference (P > 0.10) in G:F (23 

comparisons). Of these, G:F was numerically increased (P > 0.10) in 12 comparisons (average of 

3.9%) and numerically decreased (P > 0.10) in 10 comparisons (average of 3.6%) compared to 



control pigs. There were not enough data to support whether different basal diets affected the 

response of yeasts on ADG and G:F. Moreover, there were insufficient comparisons or 

information to determine the effect of different concentrations of active yeast ingredients on 

ADG and G:F. Overall, the results suggest that yeasts positively affected ADG and G:F (69 and 

67% of all the comparisons, respectively), with 25 and 30% of all the comparisons being 

significant (P ≤ 0.05). In summary, yeasts can be a potential feed additive with relatively large 

magnitude on improving the growth performance of grow-finish pigs, especially for G:F.



Table S7. Studies on the effects of yeasts and yeast-derived ingredients on growth performance. 
     Difference, %1 
Author Country Yeast form6 Inclusion, % Sig.1 ADG G:F 

Barber et al. (1971) UK Yeast culture (7.1 and 3.1)/(3.6 and 
1.6)4 ADG 2.9 n/a 

Bowman and Veum (1973) USA Yeast culture 2.005 ns -5.3 0.0 
2.005 ns 2.9 3.3 

Burnett and Neil (1977), Exp. 1 UK Yeast culture 0.05 ns -0.6 -0.9 
Burnett and Neil (1977), Exp. 2 UK Yeast culture 0.05 ns 0.6 0.0 
Bae et al. (1999) South 

Korea MOS 0.10 ns 1.3 4.7 

Davis et al. (2002) USA MOS 0.2 ns 1.2 -1.3 
Campbell et al. (2006) Ireland MOS 0.15 ns -5.4 -7.0 
Reynoso-González et al. (2010), 
Exp. 1 Mexico Yeast culture 0.75 ns -7.0 -2.6 

1.5 ns -3.5 -3.2 
Reynoso-González et al. (2010), 
Exp. 2 Mexico Yeast culture 0.755 ns 4.8 4.9 

0.755 ns -2.2 -6.1 
Ha et al. (2012) South 

Korea Yeast culture 2.0 ns -1.4 n/a 
Kerr et al. (2013) USA Yeast culture 0.1 ns -13.7 -11.7 
Wenner et al. (2013) USA MOS 0.2/0.1/0.055 ns 0.8 1.6 
Edwards et al. (2014) Australia MOS 0.04/0.025 ns 3.6 3.9 
Lei and Kim (2014) South 

Korea Yeast culture6 0.1 G:F2 3.6 4.6 
0.2 2.4 5.2 

Giannenas et al. (2016) Greece MOS 0.1 ns 3.4 9.1 
Szakacs et al. (2016) Romania Yeast extract 0.03 ns 4.9 10.4 

0.03 ns 1.6 -2.5 
Gong et al. (2018) China Yeast culture 0.3 ADG 8.4 5.2 

Zhang et al. (2019) South 
Korea 

Hydrolysate 
yeast culture 

0.05 
ADG2, 

G:F2 

2.6 3.8 
0.10 3.7 0.8 
0.50 3.9 4.8 
1.00 7.0 5.0 

Bo et al. (2020) Vietnam Yeast extract 
2.00 G:F 6.0 13.2 
4.00 G:F 9.7 17.7 
6.00 G:F 10.3 16.8 

Dávila-Ramírez et al. (2020) Mexico Yeast culture 0.2 ADG 5.4 2.0 
0.3 ADG 6.1 -0.5 



He et al. (2021) China Yeast culture 2.0 ns -1.6 1.5 
Mayorga et al. (2021) USA Yeast culture 0.025 ns 3.3 n/a 
Namted et al. (2021) Thailand Hydrolysate 

yeast culture 
0.5 G:F -1.6 6.6 
1.0 ns -2.3 0.4 

Tutida et al. (2021) Brazil MOS 0.04/0.02 ns 0.8 -0.4 
1Significant level at P ≤ 0.05. Difference is calculated as [(treatment value – control value) / control value] * 100%. 
2Polynomial contrasts were used for statistical analysis. 
3Significant level at 0.05 < P ≤ 0.10.  
4Inclusion levels of sequential phases. 
5For experiments using factorial treatment structures, if the interaction of factors of either interested variable was 

observed the effect of the feed additive within each level of the other factor is included within the database. 
6Yeast culture and yeast-derived ingredients (MOS) were produced from strains of Saccharomyces cerevisiae, except the 

yeast culture used in Lei and Kim (2014). Yeast culture used in Lei and Kim (2014) was derived from Phaffia rhodozyma. 
  



1.4.2.  Carcass Characteristics - Yeasts 

All 21 comparisons found no evidence of difference (P > 0.10) in BF. Of these, BF was 

numerically increased (P > 0.10) in 12 comparisons (average of 4.1%) and numerically 

decreased (P > 0.10) in 8 comparisons (average of 14.4%) compared to control pigs (Table S8). 

Percentage lean tended to increase (0.05 < P ≤ 0.10) in 3 comparisons (average of 0.8%) and 

tended to decrease (0.05 < P ≤ 0.10) in 1 comparison (1.2%) compared to control pigs. Half of 

the studies found no evidence of difference (P > 0.10) in percentage lean (4 comparisons). Of 

these, percentage lean was numerically increased (P > 0.10) in 2 comparisons (average of 4.9%) 

and numerically decreased (P > 0.10) in 2 comparisons (average of 1.3%) compared to control 

pigs.. All the comparisons found no evidence of difference (P > 0.10) in LMA/LD. Of these, 

LMA/LD was numerically increased (P > 0.10) in 10 comparisons (average of 3.6%) and 

numerically decreased (P > 0.10) in 7 comparisons (average of 1.9%) compared to control pigs. 



Table S8. Studies on the effects of yeasts and yeast-derived ingredients on carcass characteristics. 
     Difference, %1 
Author Country Yeast form6 Inclusion, % Sig.1 Yield BF percent

age lean 
LMA/L

D 
Barber et al. (1971) UK Yeast 

culture 
(7.1 and 3.1)/(3.6 

and 1.6)4 ns -0.9 0.5 n/a -0.6 

Bowman and Veum (1973) USA Yeast 
culture 

2.005 ns n/a 7.1 -0.9 -3.2 
2.005 ns n/a -2.8 -1.7 0.7 

Burnett and Neil (1977), 
Exp. 2 UK Yeast 

culture 0.05 ns 0.9 2.5 n/a n/a 
Campbell et al. (2006) Ireland MOS 0.15 ns -0.6 n/a n/a n/a 
Reynoso-González et al. 
(2010), Exp. 1 Mexico Yeast 

culture 
0.75 ns -2.3 -12.4 n/a -2.4 
1.5 ns 0.0 -19.4 n/a 6.9 

Reynoso-González et al. 
(2010), Exp. 2 Mexico Yeast 

culture 
0.755 ns 1.1 -10.6 n/a 0.9 
0.755 ns -0.8 8.0 n/a -0.3 

Ha et al. (2012) South 
Korea 

Yeast 
culture 2.0 ns n/a 0.0 n/a n/a 

Wenner et al. (2013) USA MOS 0.2/0.1/0.055 ns n/a -2.6 n/a 1.4 
Edwards et al. (2014) Australia MOS 0.04/0.025 Yield 2.2 2.7 n/a n/a 
Lei and Kim (2014) South 

Korea 
Yeast 

culture6 
0.1 ns2 n/a n/a n/a 2.5 
0.2 n/a n/a n/a 0.8 

Zhang et al. (2019) South 
Korea 

Hydrolysat
e yeast 
culture 

0.05  
percentage 

lean2,3 

n/a 0.8 -1.2 n/a 
0.1 n/a 3.3 0.6 n/a 
0.5 n/a 3.5 1.4 n/a 
1.0 n/a 4.5 0.4 n/a 

Bo et al. (2020) Vietnam Yeast 
extract 

2.00 ns n/a 0.0 n/a 1.6 
4.00 ns n/a 1.3 n/a 0.5 
6.00 ns n/a 4.0 n/a -0.3 

Dávila-Ramírez et al. (2020) Mexico Yeast 
culture 

0.2 ns 0.0 -24.6 n/a 4.7 
0.3 ns 0.5 11.2 n/a 16.6 

Namted et al. (2021) Thailand 
Hydrolysat

e yeast 
culture 

0.5 ns -0.8 -30.7 6.6 -1.9 
1.0 ns -0.4 -12.2 3.2 -4.3 



1Significant level at P ≤ 0.05. Difference is calculated as [(treatment value – control value) / control value] * 100%. 
2Polynomial contrasts were used for statistical analysis. 
3Significant level at 0.05 < P ≤ 0.10.  
4Inclusion levels of sequential phases. 
5For experiments using factorial treatment structures, if the interaction of factors of either interested variable was observed the 

effect of the feed additive within each level of the other factor is included within the database. 
6Yeast culture and yeast-derived ingredients (MOS) were produced from strains of Saccharomyces cerevisiae, except the yeast 

culture used in Lei and Kim (2014). Yeast culture used in Lei and Kim (2014) was derived from Phaffia rhodozyma.  



1.5.  Copper (Cu) 

There were 55 research articles for Cu with 157 comparisons from 11 countries during the 

grow-finish or finishing period with added dietary levels of 50 to 300 mg/kg with most studies 

ranged between 120 to 250 mg/kg. Of these, 155 comparisons reported growth performance 

data and 83 comparisons reported carcass data. The Cu sources used in the studies were in 

inorganic [CuSO4, Cu2O, CuO, Tribasic Cu chloride (TBCC), CuS] or organic form (Cu-AAs). 

1.5.1.  Growth Performance - Cu 

Average daily gain significantly increased (P ≤ 0.05) in 30 comparisons (average of 6.2%), 

tended to increase (0.05 < P ≤ 0.10) in 3 comparisons (average of 4.1%), and significantly 

decreased (P ≤ 0.05) in 1 comparison (0.1%) compared to control pig (Table S9). The greatest 

proportion of the comparisons found no evidence of difference (P > 0.10) in ADG (121 

comparisons). Of these, ADG was numerically increased (P > 0.10) in 81 comparisons (average 

of 3.8%) and numerically decreased (P > 0.10) in 33 comparisons (average of 3.4%) compared to 

control pigs. Feed efficiency significantly increased (P ≤ 0.05) in 30 comparisons (average of 

5.1%), tended to increase (0.05 < P ≤ 0.10) in 3 comparisons (average of 1.0%), and significantly 

decreased (P ≤ 0.05) in 2 comparisons (average of 3.7%) compared to control pigs. The greatest 

proportion of the comparisons found no evidence of difference (P > 0.10) in G:F (114 

comparisons). Of these, G:F was numerically increased (P > 0.10) in 71 comparisons (average of 

3.1%) and numerically decreased (P > 0.10) in 37 comparisons (average of 2.7%) compared to 



control pigs. Overall, the results suggest that Cu positively affected ADG and G:F (74 and 70 % 

of all the comparisons). Most studies used corn or barley as the major ingredient in basal diets. 

Copper supplementation in the barley diet had a greater percentage improvement in ADG 

(2.8%; 60 comparisons) and G:F (3.1%; 59 comparisons) than Cu supplementation in corn-

based diets [ADG (2.0%; 89 comparisons) and G:F (0.8%; 84 comparisons)]. Most studies used 

Cu inclusion from 125 to 250 mg/kg added level (137 comparisons) and increasing the Cu level 

did not further improve the performance. In summary, the growth-promoting effects of Cu can 

potentially improve growth performance (2.5 and 1.8% improvement for ADG and G:F).  

Table S9. Studies on the effects of Cu on growth performance. 
   

Inclusion, 
mg/kg 

 Difference, % 
Author Countr

y Cu Sig. ADG G:F 

Lucas and Calder (1957), Exp. 1 UK CuSO4 200 ns 3.9 0.7 
Lucas and Calder (1957), Exp. 2 UK CuSO4 200 ns 6.5 7.1 

King (1960) UK CuSO4 0.10% G:F 2.9 6.1 
0.10% ADG, G:F 7.7 11.0 

Wallace et al. (1960), Exp. 1 USA CuSO4 
100 ns 11.1 -1.8 
150 ns 5.2 0.9 
200 ns 0.7 0.9 

Wallace et al. (1960), Exp. 2 USA CuSO4 2004 ns -3.8 -8.0 
2004 ns 3.3 4.5 

Wallace et al. (1960), Exp. 3 USA CuSO4 1004 ns 0.0 17.6 
1004 ns -6.5 0.3 

Bellis (1961) UK CuSO4 125 ns 3.9 3.3 
250 ADG, G:F 7.1 8.0 

Lucas et al. (1961), Exp. 1 UK CuSO4 
62 ns -1.1 -1.4 

125 ns 1.1 0.6 
250 ns 4.5 0.6 

Lucas et al. (1961), Exp. 2 UK CuSO4 
62 ns 2.2 0.9 

125 ns 2.2 1.8 
250 ns 3.3 2.1 

Barber et al. (1962) UK CuSO4 2504 ADG, G:F 14.5 5.5 
2504 ADG 5.1 2.2 

Braude et al. (1962) UK CuSO4 2504 ADG, G:F 9.7 8.6 
2504 ADG, G:F 6.2 5.2 

Lucas et al. (1962) UK CuSO4 250 ns 2.6 -0.1 
Gipp et al. (1967) USA CuO 1504 ns -4.7 -2.3 

1504 ns 0.4 4.2 
Barber et al. (1968), Exp. 1 UK CuSO4 250 ADG, G:F 11.1 9.0 



Barber et al. (1968), Exp. 2 UK CuSO4 250 ns 7.1 3.9 
Barber et al. (1968), Exp. 3 UK CuSO4 250 G:F 5.3 4.4 
Hanrahan and O'Grady (1968) Ireland CuSO4 250 ns -12.2 -6.0 
Boyazoglu and Barrett (1970) South 

Africa CuSO4 150 ns n/a 4.4 
300 ns n/a -0.8 

Barber et al. (1971), Exp. 1 UK CuSO4 2504 G:F 4.5 5.3 
2504 G:F -1.4 4.1 

Barber et al. (1971), Exp. 2 UK CuSO4 2504 ADG, G:F 8.1 6.1 
2504 ns -3.8 -1.3 

Barber et al. (1971), Exp. 3 UK CuSO4 250 ADG, G:F 7.4 5.6 
DeGoey et al. (1971) USA CuSO4 250 ADG 15.2 1.9 

Kline et al. (1971) USA CuSO4 
150 

ADG2 
7.2 -2.4 

200 -0.1 -7.8 
250 8.4 -0.5 

Kline et al. (1972) USA CuSO4 
2504 ns 14.8 5.4 
2504 ns -3.2 10.7 
2504 ns 5.5 -6.7 

Braude and Ryder (1973) UK CuSO4 
150 

ADG2, G:F2 
3.1 3.6 

200 4.4 3.9 
250 5.9 5.5 

Elliot and Amer (1973), Exp. 1 Canada CuSO4 250 ns -6.8 n/a 

Elliot and Amer (1973), Exp. 2 Canada CuSO4 

125 ns -4.3 10.0 
150 ns 0.0 0.3 
175 ns 1.8 1.9 
200 ns 1.8 10.0 
225 ns -3.7 1.9 
250 ns -10.2 1.3 

Gipp et al. (1973), Exp. 1 USA CuSO4 250 ns 4.1 3.3 
Gipp et al. (1973), Exp. 2 USA CuSO4 250 ns -1.3 -3.3 
Gipp et al. (1973), Exp. 3 USA CuSO4 250 ns -4.0 -0.7 
Kline et al. (1973), Exp. 1 USA CuSO4 250 ADG, G:F 8.9 6.7 
Kline et al. (1973), Exp. 2 USA CuSO4 250 ns 0.4 -2.9 
Kline et al. (1973), Exp. 3 USA CuSO4 250 ns -5.5 9.3 
NCR-42 Committee on Swine 
Nutrition (1974), Exp. 1 USA CuSO4 250 ns 1.8 0.1 

NCR-42 Committee on Swine 
Nutrition (1974), Exp. 2 USA CuSO4 

125.5 ns 2.1 0.3 
187.5 ns 2.3 -0.3 
250 ns 3.5 1.5 

Bellis (1975) UK CuSO4 1754 ns -1.5 0.0 
1754 ADG, G:F 3.1 2.8 

Castell et al. (1975), Exp. 1 Canada CuSO4 
1255 ns 4.8 -1.5 
2005 ns 8.7 4.1 
1255 ns 4.3 4.2 
2005 ns 6.3 3.5 

Castell et al. (1975), Exp. 2 Canada CuSO4 
1255 ns 2.0 2.2 
2005 ns 1.7 0.9 
1255 ns 2.8 5.5 
2005 ns 2.6 5.2 

Castell et al. (1975), Exp. 3 Canada CuSO4 125 ns -0.4 -3.3 
200 ns 0.9 -3.0 

Castell et al. (1975), Exp. 4 Canada CuSO4 125 ns 2.0 3.3 
200 ns -2.0 2.9 

Castell et al. (1975), Exp. 5 Canada CuSO4 125 ns 3.3 2.1 
200 G:F 3.1 4.3 



Hansen and Bresson (1975) Denmar
k CuSO4 

125 ADG, G:F 4.9 5.2 
200 ADG 3.9 3.2 

Omole et al. (1976) Nigeria CuSO4 
125 ns 9.3 5.5 
200 G:F 14.8 8.5 

Barber et al. (1978) UK NA 250 ADG, G:F 2.0 2.9 

Cromwell et al. (1978), Exp. 1 USA CuSO4 
125 ns 4.5 0.3 
188 ns 2.8 -2.2 
250 ns 14.0 2.0 

Cromwell et al. (1978), Exp. 2 USA CuSO4 125 G:F 0.4 2.3 
250 G:F 1.3 3.5 

Cromwell et al. (1978), Exp. 3 USA CuSO4 250 ns 2.8 2.5 
CuS 250 ns -2.7 2.2 

Pond et al. (1978) USA CuSO4 200 ns 0.0 -3.2 
Eisemann et al. (1979) USA CuSO4 120 ns -6.6 -2.0 
Prince et al. (1979), Exp. 1 USA CuSO4 250 ns 1.8 1.5 
Prince et al. (1979), Exp. 2 USA CuSO4 250 ns 5.3 5.4 
Barber et al. (1981), Exp. 1 UK CuSO4 250 ADG, G:F 4.1 3.7 
Barber et al. (1981), Exp. 2 UK CuSO4 250 ADG, G:F 2.6 2.5 

Ribeiro de Lima et al. (1981), 
Exp. 1 USA CuSO4 

2504 ns 10.0 1.7 
2504 ns -4.6 0.0 
2504 ns -3.7 -1.4 

Ribeiro de Lima et al. (1981), 
Exp. 2 USA CuSO4 250 ns 0.8 -4.6 
Ribeiro de Lima et al. (1981), 
Exp. 3 USA CuSO4 250 ns 0.0 1.5 

Braude and Hosking (1982) UK CuSO4 
125 ADG, G:F 4.4 4.8 
200 ADG, G:F 3.1 2.8 

200/125 ADG, G:F 3.3 3.4 
250/125 ADG, G:F 4.9 4.8 

Bradley et al. (1983) USA CuSO4 
52.5 ns 0.0 n/a 

112.5 ns -1.8 n/a 
232.5 ns -1.8 n/a 

Prince et al. (1984), Exp. 1 USA CuSO4 250 ns 0.1 1.4 
Prince et al. (1984), Exp. 2 USA CuSO4 250 ADG3 3.0 1.6 
Southern and Stewart (1984), 
Exp. 1 USA CuSO4 250 ns 3.8 n/a 
Southern and Stewart (1984), 
Exp. 2 USA CuSO4 250 ns 0.0 n/a 
Rowan and Lawrence (1986) UK NA 183 ns -0.1 -0.7 

Astrup and Matre (1987) Norwa
y CuSO4 

63 ns 1.1 6.3 
125 ns 4.8 5.3 
250 ns 3.5 4.6 

Lüdke and Schöne (1988), 
Exp.1 

German
y CuSO4 250 ns 10.7 2.1 

Lüdke and Schöne (1988), 
Exp.2 

German
y CuSO4 250 ns 5.7 2.5 

Schöne et al. (1988) German
y CuSO4 250 ns 14.2 5.2 

Ward et al. (1991) USA CuSO4 250 ns 2.5 -5.5 
Myer et al. (1992) USA CuSO4 250 ns -1.1 -1.1 
Southern et al. (1993) USA NA 250 ns -1.1 0.0 
Apgar and Kornegay (1996) USA CuSO4 200 ns -2.8 n/a 



Cu-Lys 200 ns 11.1 n/a 
Lauridsen et al. (1999) Denmar

k CuSO4 175 ns 0.3 -5.0 
Davis et al. (2002) USA CuSO4 175/125 ADG, G:F 6.6 3.6 
Hernández et al. (2009) Australi

a Cu-AA 504 G:F -1.1 -5.4 
504 ns -3.2 0.4 

Coble et al. (2014) USA CuSO4 50 G:F 2.0 -1.9 
125 ns 1.5 -1.9 

Cu-AA 50 ns 2.0 -0.4 
Feldpausch et al. (2016) USA CuSO4 1254 ns 0.5 1.3 

1254 ns -0.5 -1.3 
Coble et al. (2017) USA CuSO4/TBCC 75 ADG2 3.9 -2.2 

150 3.9 -1.8 
Coble et al. (2018) USA TBCC 150 ns 1.7 0.3 

Coble et al. (2018), Exp. 1 USA TBCC 
1504 ADG3, GF3 0.0 0.3 
1504 ADG3, GF3 0.0 1.1 
1504 ADG3, GF3 2.4 1.6 

Coble et al. (2018), Exp. 2 USA TBCC 
1506 ns 0.0 0.3 
1506 ns 1.1 0.0 
1506 ns 2.2 1.8 
1506 ns 1.1 0.6 

Carpenter et al. (2019) USA CuSO4/Cu-AA 
70 

ns2 
1.7 0.8 

100 2.3 1.1 
130 1.1 1.7 

Seidu et al. (2020) China CuSO4 125 ns 4.2 -1.1 
215 ADG 5.2 -6.2 

Blavi et al. (2021) USA 
CuSO4 125 ns 2.2 0.0 

250 ns 1.1 -0.5 
Cu2O 125 ns 2.2 0.0 

250 ADG3 6.7 -2.9 
1Significant level at P ≤ 0.05. Difference is calculated as [(treatment value – control value) / control 

value] * 100%. 
2Polynomial contrasts were used for statistical analysis. 
3Significant level at 0.05 < P ≤ 0.10. 
4For experiments using factorial treatment structures, if the interaction of factors of either interested 

variable was observed the effect of the feed additive within each level of the other factor is included 
within the database. 

5The top two comparisons were the results of the barrows and the bottom two comparisons were 
the results of the gilts. 

6The top two comparisons were the results of the feeding Cu in grow-finish phase and the bottom 
two comparisons were the results of feeding Cu in the finish phase. The basal diet Lys concentrations 
from the top to bottom comparisons were at 92.5, 100, 92.5, and 100% of the requirement. 

1.5.2.  Carcass Characteristics – Cu 

Back-fat significantly decreased (P ≤ 0.05) in 3 comparisons (average of 10.3%) and tended 

to decrease (0.05 < P ≤ 0.10) in 1 comparison (5.4%) compared to control pigs (Table S10). The 



greatest proportion of the comparisons found no evidence of difference (P > 0.10) in BF (69 

comparisons). Of these, BF was numerically increased (P > 0.10) in 24 comparisons (average of 

3.5%) and numerically decreased (P > 0.10) in 36 comparisons (average of 4.1%) compared to 

control pigs. Percentage lean significantly increased (P ≤ 0.05) in 2 comparisons (average of 

1.1%) compared to control pigs. The greatest proportion of the comparisons found no evidence 

of difference (P > 0.10) in percentage lean (23 comparisons). Of these, percentage lean was 

numerically increased (P > 0.10) in 16 comparisons (average of 2.8%) and numerically 

decreased (P > 0.10) in 7 comparisons (average of 1.1%) compared to control pigs. Loin muscle 

area/depth significantly increased (P ≤ 0.05) in 5 comparisons (average of 4.4%) and 

significantly decreased (P ≤ 0.05) in 1 comparison (7.5%) compared to control pigs. The greatest 

proportion of the comparisons found no evidence of difference (P > 0.10) in LMA/LD (56 

comparisons). Of these, LMA/LD was numerically increased (P > 0.10) in 43 comparisons 

(average of 3.4%) and numerically decreased (P > 0.10) in 11 comparisons (average of 1.4%) 

compared to control pigs. 



Table S10. Studies on the effects of Cu on carcass characteristics. 
   

Inclusion, 
mg/kg 

 Difference, % 

Author Country Form Sig. Yield BF 
percenta
ge lean 

LMA/L
D 

Lucas and Calder (1957), 
Exp. 1 UK CuSO4 200 ns 1.3 -7.5 n/a 1.5 
Lucas and Calder (1957), 
Exp. 2 UK CuSO4 200 ns -0.1 -9.1 n/a 2.7 

Bellis (1961) UK CuSO4 125 ns 0.5 n/a n/a n/a 
250 ns 0.1 n/a n/a n/a 

Lucas et al. (1961), Exp. 1 UK CuSO4 
62 ns 1.1 -4.8 n/a 1.4 
125 ns 1.8 0.0 n/a -0.7 
250 ns 2.0 0.0 n/a -1.4 

Lucas et al. (1961), Exp. 2 UK CuSO4 
62 ns -0.3 0.0 n/a 5.4 
125 ns 0.4 3.8 n/a 2.5 
250 ns 0.7 3.8 n/a 5.0 

Braude et al. (1962) UK CuSO4 2504 ns n/a 0.7 n/a 1.4 
2504 ns n/a 1.4 n/a 3.9 

Lucas et al. (1962) UK CuSO4 250 ns -0.1 4.4 n/a 5.0 
Boyazoglu and Barrett (1970) South 

Africa CuSO4 150 ns 0.0 -7.5 n/a 12.5 
300 ns 0.6 -10.0 n/a 9.5 

Barber et al. (1971), Exp. 1 UK CuSO4 2504 ns 1.1 -1.2 n/a n/a 
2504 ns 0.4 -17.0 n/a n/a 

Barber et al. (1971), Exp. 2 UK CuSO4 2504 ns 0.1 -4.0 n/a n/a 
2504 ns 0.3 9.3 n/a n/a 

Barber et al. (1971), Exp. 3 UK CuSO4 250 ns -0.5 -1.0 n/a n/a 

Braude and Ryder (1973) UK CuSO4 
150 

ns2 
0.5 1.9 n/a 1.9 

200 0.7 0.0 n/a 1.9 
250 0.4 0.0 n/a 3.4 

Gipp et al. (1973), Exp. 2 USA CuSO4 250 LMA n/a -2.4 -1.3 -7.5 
Gipp et al. (1973), Exp. 3 USA CuSO4 250 ns n/a -1.5 0.7 2.1 
NCR-42 Committee on 
Swine Nutrition (1974), Exp. 
1 

USA CuSO4 250 ns 
n/a -10.2 n/a 4.3 

Bellis (1975) UK CuSO4 175 ns 0.1 -2.7 n/a 1.0 
175 ns 0.4 2.2 n/a 1.7 

Castell et al. (1975), Exp. 1 Canada CuSO4 
1255 ns 1.9 n/a n/a 0.0 
2005 ns -0.1 n/a n/a -2.3 
1255 ns -1.4 n/a n/a 1.7 
2005 ns 1.1 n/a n/a 5.6 



Castell et al. (1975), Exp. 2 Canada CuSO4 
1255 ns 0.1 n/a n/a 7.3 
2005 ns -1.9 n/a n/a 4.8 
1255 ns -1.9 n/a n/a -1.3 
2005 ns 0.2 n/a n/a 2.9 

Castell et al. (1975), Exp. 3 Canada CuSO4 125 ns 0.5 1.7 n/a 3.7 
200 ns 0.5 3.3 n/a 3.0 

Castell et al. (1975), Exp. 4 Canada CuSO4 125 ns 1.0 -1.9 n/a 4.1 
200 ns 0.8 -4.6 n/a 12.0 

Castell et al. (1975), Exp. 5 Canada CuSO4 125 ns 0.4 -1.0 n/a 3.4 
200 ns 0.5 -1.9 n/a 2.7 

Hansen and Bresson (1975) Denmark CuSO4 125 ns n/a 0.0 n/a n/a 
200 ns n/a 2.9 n/a n/a 

Omole et al. (1976) Nigeria CuSO4 125 ns -0.3 2.6 n/a 3.4 
200 ns 0.8 -5.8 n/a 14.5 

Barber et al. (1978) UK n/a 250 BF -0.3 -8.1 n/a n/a 

Barber et al. (1981), Exp. 1 UK CuSO4 250 BF -0.8 -21.0 n/a 0.6 
Barber et al. (1981), Exp. 2 UK CuSO4 250 ns 0.0 0.0 n/a n/a 

Braude and Hosking (1982) UK CuSO4 
125 ns 0.4 -3.2 n/a n/a 
200 ns 0.7 -1.4 n/a n/a 

200/125 ns 1.1 -2.7 n/a n/a 
250/125 ns 0.4 -2.7 n/a n/a 

Rowan and Lawrence (1986) UK NA 183 ns -0.4 0.0 n/a n/a 

Astrup and Matre (1987) Norway CuSO4 
63 ns 1.1 3.1 n/a n/a 
125 ns 0.7 2.7 n/a n/a 
250 ns 0.0 -1.0 n/a n/a 

Ward et al. (1991) USA CuSO4 250 ns -0.7 -5.4 1.4 -0.9 
Myer et al. (1992) USA CuSO4 250 ns n/a 2.9 n/a -3.1 
Southern et al. (1993) USA NA 250 ns -0.7 n/a n/a n/a 
Hernández et al. (2009) Australia Cu-AA 504 ns -0.3 -3.4 n/a n/a 

504 ns -0.6 -13.6 n/a n/a 

Coble et al. (2014) USA CuSO4 50 ns -0.8 3.1 -0.4 0.0 
125 ns -0.1 -1.6 0.1 -0.4 

Cu-AA 50 ns -0.6 3.1 34.7 1.1 
Feldpausch et al. (2016) USA CuSO4 1254 ns 0.2 -0.3 0.4 0.6 

1254 ns -0.1 0.8 0.4 0.9 
Coble et al. (2017) USA 75 -0.8 -5.8 1.4 2.2 



CuSO4/T
BCC 150 

percenta
ge lean2, 

LD2 
-0.5 -2.6 0.8 2.1 

Coble et al. (2018) USA TBCC 150 ns 0.2 0.0 0.0 0.6 

Coble et al. (2018), Exp. 1 USA TBCC 
1504 ns 0.0 -1.8 0.3 -1.1 
1504 ns -0.5 -3.0 1.3 1.2 
1504 ns 0.3 1.9 -0.4 2.6 

Coble et al. (2018), Exp. 2 USA TBCC 
1506 ns 2.2 -6.0 1.3 0.9 
1506 ns -0.2 7.1 -1.2 -1.2 
1506 ns 0.9 -6.5 1.3 0.9 
1506 ns -0.4 7.7 -2.7 -2.6 

Carpenter et al. (2019) USA CuSO4/C
u-AA 

70 
ns2 

0.4 0.9 -0.2 0.2 
100 0.4 -0.6 0.1 -0.5 
130 -0.3 -0.3 0.2 0.9 

Blavi et al. (2021) USA 
CuSO4 125 ns 0.3 11.5 -1.2 5.5 

250 ns 0.4 -1.8 0.5 3.6 
Cu2O 125 ns 0.5 1.8 0.1 1.5 

250 ns 0.5 -9.7 1.3 6.6 
1Significant level at P ≤ 0.05. Difference is calculated as [(treatment value – control value) / control value] * 100%. 
2Polynomial contrasts were used for statistical analysis. 
3Significant level at 0.05 < P ≤ 0.10. 
4For experiments using factorial treatment structures, if the interaction of factors of either interested variable was observed 

the effect of the feed additive within each level of the other factor is included within the database. 
5The top two comparisons were the results of the barrows and the bottom two comparisons were the results of the gilts. 
6The top two comparisons were the results of the feeding Cu in grow-finish phase and the bottom two comparisons were 

the results of feeding Cu in the finish phase. The basal diet Lys concentrations from the top to bottom comparisons were at 
92.5, 100, 92.5, and 100% of the requirement. 



1.6.  Zinc (Zn) 

There were 13 research articles for Zn with 30 comparisons from 6 countries during the 

grow-finish or finishing period which met the requirements for inclusion. Of these, 30 

comparisons reported growth performance data, and 21 comparisons reported carcass data. 

The growth-promotive levels of Zn were close to the control Zn levels used in most research 

(ranged approximately between 50 to 100 mg/kg); therefore, only trials with the total Zn level 

above or at approximately 100 mg/kg were used in this literature review. The difference in Zn 

levels between control diets and the growth-promotive Zn diets ranged between 38 to 400 

mg/kg. The Zn sources used in the studies were inorganic (ZnO, ZnSO4, Zn-HCl, Zn hydroxy 

chloride) or organic form (Zinc glycinate, Zn-AA). 

1.6.1.  Growth Performance – Zn 

Average daily gain significantly increased (P ≤ 0.05) in 1 comparison (18.7%), tended to 

increase (0.05 < P ≤ 0.10) in 1 comparison (1.1%), and significantly decreased (P ≤ 0.05) in 1 

comparison (14.4%) compared to control pigs (Table S11). The greatest proportion of the 

comparisons found no evidence of difference (P > 0.10) in ADG (27 comparisons). Of these, 

ADG was numerically increased (P > 0.10) in 12 comparisons (average of 4.0%) and 

numerically decreased (P > 0.10) in 11 comparisons (average of 3.2%) compared to control pigs. 

Feed efficiency tended to increase (0.05 < P ≤ 0.10) in 4 comparisons (average of 1.2%) 

compared to control pigs. The greatest proportion of the comparisons found no evidence of 



difference (P > 0.10) in ADG (26 comparisons). Of these, G:F was numerically increased (P > 

0.10) in 14 comparisons (average of 4.2%) and numerically decreased (P > 0.10) in 11 

comparisons (average of 2.6%) compared to control pigs. Overall, the results suggest that Zn 

had positive but relatively small effects on ADG and G:F. Moreover, there were insufficient 

data to support whether different types of basal diets and inclusion levels affected the 

response to Zn for ADG and G:F.



Table S11. Studies on the effects of Zn on growth performance. 
      Difference, %1 

Author Country Zn Basal, 
mg/kg 

Added, 
mg/kg Sig.1 ADG G:F 

Kline et al. (1972) USA ZnSO4 

100 1004 ns 8.1 -5.1 
100 2004 ns -1.8 14.4 
100 1004 ns -8.8 -0.3 
100 2004 ns -9.7 1.3 
100 1004 ns 0.0 -3.7 
100 2004 ns 5.7 -2.5 

Omole et al. (1976) Nigeria Zn powder 50 1004 ns 11.9 9.0 
50 1004 ns 9.7 5.0 

Eisemann et al. (1979) USA ZnO 100 400 ns 2.7 4.4 
Wedekind et al. (1994) USA ZnSO4 52 60 ns -3.4 0.0 
Rupić et al. (1997) Croatia ZnSO4 37 84 ADG 18.7 3.8 

Hernández et al. (2009) Australia Zn-AA 
70 404 ns 0.2 -1.5 
70 404 ns 1.8 1.5 
70 404 ns 2.7 2.2 
70 404 ns -3.0 3.7 

Paulk et al. (2014) USA ZnO 50 755 ns 0.0 -2.9 
50 755 ns -1.8 -2.1 

Feldpausch et al. (2016) USA ZnO 110 1504 ns 1.0 1.3 
110 1504 ns 0.0 -1.3 

Holen et al. (2018) USA Zn-AA 70 40 ns 2.2 3.7 
70 80 ns 1.1 3.4 

ZnSO4 70 80 ns 2.2 2.5 

Cemin et al. (2019) USA 
Zn 

hydroxychloride/ 
ZnSO4 

113 50 
ADG2,3 

1.1 -0.3 
113 50 0.0 -0.8 

Cemin et al. (2019) USA Zn 
hydroxychloride 

50 37.5 
G:F2,3 

-2.1 0.5 
50 75 -1.1 1.9 
50 112.5 -1.1 1.4 
50 150 -1.1 0.8 

Villagómez-Estrada et al. 
(2021) Spain ZnSO4/Zn-HCl 60 60 ns -1.4 1.4 
Natalello et al. (2022) Italy Zn glycinate 22.3 100 ADG -14.4 -7.6 



1Significant level at P ≤ 0.05. Difference is calculated as [(treatment value – control value) / control value] * 100%. 
2Polynomial contrasts were used for statistical analysis. 
3Significant level at 0.05 < P ≤ 0.10.    
4For experiments using factorial treatment structures, if the interaction of factors of either interested variable was 

observed the effect of the feed additive within each level of the other factor is included within the database. 
5High Zn diet was fed for 72 d in the top comparison and 27 d in the below comparison. 



1.6.2.  Carcass Characteristics - Zn 

Back-fat significantly increased (P ≤ 0.05) in 1 comparison (13.1%) compared to control 

pigs. The greatest proportion of the comparisons found no evidence of difference (P > 0.10) in 

BF (18 comparisons; Table S12). Of these, BF was numerically increased (P > 0.10) in 5 

comparisons (average of 1.3%) and numerically decreased (P > 0.10) in 11 comparisons 

(average of 2.9%) compared to control pigs. All the comparisons found no evidence of 

difference (P > 0.10) in ADG (14 comparisons). Of these, percentage lean was numerically 

increased (P > 0.10) in 12 comparisons (average of 1.1%) and numerically decreased (P > 0.10) 

in 1 comparison (0.4%) compared to control pigs. All the comparisons found no evidence of 

difference (P > 0.10) in LMA/LD (15 comparisons). Of these, LMA/LD was numerically 

increased (P > 0.10) in 11 comparisons (average of 0.9%) and numerically decreased (P > 0.10) 

in 4 comparisons (average of 1.5%) compared to control pigs. 



Table S12. Studies on the effects of Zn on carcass characteristics. 
      Difference, %1 

Author Country Zn Basal, 
mg/kg 

Added, 
mg/kg Sig.1 Yield BF 

percent
age 
lean 

LMA/L
D 

Omole et al. (1976) Nigeria Zn powder 50 1004 ns -0.5 -5.1 n/a 2.6 
50 1004 ns -0.2 0.9 n/a -2.9 

Hernández et al. (2009) Australia Zn-AA 
70 404 ns 0.0 3.4 n/a n/a 
70 404 ns 0.9 -6.0 n/a n/a 
70 404 ns -0.3 13.1 n/a n/a 
70 404 ns -0.3 -7.6 n/a n/a 

Paulk et al. (2014) USA ZnO 50 755 ns -0.1 -1.7 3.9 0.4 
50 755 ns 1.2 0.8 3.2 -1.8 

Feldpausch et al. (2016) USA ZnO 110 1504 ns 0.1 -1.6 0.1 0.1 
110 1504 ns -0.3 -0.5 0.1 0.4 

Holen et al. (2018) USA Zn-AA 70 40 ns -0.4 0.9 0.2 0.8 
70 80 ns 0.3 -3.2 0.3 -0.4 

ZnSO4 70 80 ns 0.5 -2.3 1.3 2.7 

Cemin et al. (2019) USA 
Zn 

hydroxychlor
ide/ ZnSO4 

113 50 Yield
2 

1.4 0.0 1.4 0.5 
113 100 1.4 0.0 1.5 0.7 

Cemin et al. (2019) USA 
Zn 

hydroxychlor
ide 

50 37.5 
ns2 

-0.3 0.0 0.2 0.6 
50 75 -0.5 -1.7 0.2 -0.9 
50 112.5 -0.1 0.6 0.0 0.7 
50 150 -0.1 -1.7 0.4 0.1 

Villagómez-Estrada et al. 
(2021) Spain ZnSO4/Zn-

HCl 60 60 ns 0.3 n/a -0.4 n/a 
Natalello et al. (2022) Italy Zn glycinate 22.3 100 ns -0.2 n/a n/a n/a 

1Significant level at P ≤ 0.05. Difference is calculated as [(treatment value – control value) / control value] * 100%. 
2Polynomial contrasts were used for statistical analysis. 
3Significant level at 0.05 < P ≤ 0.10.    
4For experiments using factorial treatment structures, if the interaction of factors of either interested variable was observed 

the effect of the feed additive within each level of the other factor is included within the database. 
5High Zn diet was fed for 72 d in the top comparison and 27 d in the below comparison. 



2. Feed Additives – Energy and Lipid Metabolism 

This section discusses the feed additives that can potentially improve growth performance 

and carcass characteristics by affecting the energy and lipid metabolism of grow-finish pigs. 

The feed additives discussed are betaine, Cr, CLA, and L-carnitine. 

2.1.  Betaine 

There were 20 research articles for betaine with 37 comparisons from 9 countries during 

the grow-finish or finishing period with added dietary levels of 0.02 to 1.05 %. Of these, all 

comparisons reported growth performance data, and 32 comparisons reported carcass data.  

2.1.1.  Growth Performance - Betaine 

Average daily gain significantly increased (P ≤ 0.05) in 7 comparisons (average of 10.6%), 

tended to increase (0.05 < P ≤ 0.10) in 1 comparison (4.3%), and significantly decreased (P ≤ 

0.05) in 2 comparisons (average of 2.8%) compared to control pigs (Table S13). The greatest 

proportion of the comparisons found no evidence of difference (P > 0.10) in ADG (27 

comparisons). Of these, ADG was numerically increased (P > 0.10) in 10 comparisons (average 

of 2.4%) and numerically decreased in 15 comparisons (average of 3.3%) compared to control 

pigs. Feed efficiency significantly increased (P ≤ 0.05) in 5 comparisons (average of 13.2%) and 

significantly decreased (P ≤ 0.05) in 1 comparison (0.4%) compared to control pigs. The greatest 

proportion of the comparisons found no evidence of difference (P > 0.10) in G:F (29 

comparisons). Of these, G:F was numerically increased (P > 0.10) in 18 comparisons (average of 



2.7%) and numerically decreased in 9 comparisons (average of 2.3%) compared to control pigs. 

Most comparisons (19 comparisons) had added betaine levels of 0.1 and 0.125%; therefore, the 

effect of betaine levels is not evaluated. There were insufficient data to support whether 

different types of basal diets affected the response to betaine for ADG and G:F. However, 

betaine may have a more beneficial effect on ADG and G:F in limit-fed pigs [176, 177]. In 

summary, the results suggest that betaine had relatively small positive effects on ADG (1.3% 

improvement) but may benefit G:F more (2.7% improvement).

Table S13. Studies on the effects of dietary betaine on growth performance. 
    Difference, %1 
Authors Country Inclusion, % Sig.1 ADG G:F 
Smith et al. (1994) USA 0.1004 ADG3 5.7 2.4 

0.1004 ns 1.1 -1.3 
Smith et al. (1994) USA 0.100 ns 3.3 4.1 
Matthews et al. (1998), Exp 1 USA 0.125 ns -0.5 -3.6 
Matthews et al. (1998), Exp 2 USA 0.125 ns 0.0 5.6 
Øverland et al. (1999) Norway 1.050 ns 4.2 2.3 
Matthews et al. (2001) USA 0.250 ns 0.0 0.4 

Matthews et al. (2001) USA 
0.125 

ns2 
-3.6 6.7 

0.250 -8.3 3.3 
0.500 -8.3 0.4 

Young et al. (2001) USA 0.140 ns -1.6 -1.3 
Lawrence et al. (2002), Exp 1 USA 0.1255 ns -0.6 2.3 

0.1255 ns 3.1 2.7 
Lawrence et al. (2002), Exp 2 USA 0.100 ns 0.9 3.8 

Siljander-Rasi et al. (2003) Finland 
0.025 

ADG2, GF2 
-0.5 -0.4 

0.050 6.8 5.6 
0.100 9.7 7.5 

Feng et al. (2006) China 0.125 ns 4.6 1.6 
Dunshea et al. (2009) Australia 0.150 ns 2.1 0.9 
Huang et al. (2009) China 0.125 ADG 5.5 2.6 
Nakev et al. (2009) Bulgaria 0.1006 ns -7.1 n/a 

0.1006 ns -4.5 n/a 

Yang et al. (2009) South Korea 
0.200 ADG, G:F 3.3 15.0 
0.400 ADG, G:F 27.5 23.2 
0.600 ADG, G:F 17.6 14.6 

Van Heugten (2014), Exp 1 USA 0.200 ns -2.9 1.2 

Van Heugten (2014), Exp 2 USA 
0.063 

ns2 
-2.1 -1.3 

0.125 -1.1 -1.6 
0.188 0.8 1.6 

Madeira et al. (2015) USA 0.330 ns 1.1 0.4 
Wang et al. (2015) China 0.100 ns 1.2 0.0 



Lothong et al. (2016) Thailand 0.100 ns -5.6 -6.3 
Mendoza et al. (2017), Exp 1 USA 0.200 ADG -5.1 -1.1 

Mendoza et al. (2017), Exp 2 USA 
0.063 

ns2 
-1.2 -1.0 

0.125 -1.8 -3.0 
0.188 -0.1 0.0 

Lan and Kim (2018) South Korea 0.100 ADG 3.7 2.9 
1Significant level at P ≤ 0.05. Difference is calculated as [(treatment value – control value) / 

control value] * 100%. 
2Polynomial contrasts were used for statistical analysis. 
3Significant level at 0.05 < P ≤ 0.10. 
4The top comparison used a solid form of betaine and the bottom comparison used a liquid form 

betaine. 
5Treament diets were fed from 82 to 106 kg in the top comparison and fed from 104 to 116 kg in 

the bottom comparison. 
6The top comparison represented male pigs and the bottom comparison represented female pigs. 
 

2.1.2.  Carcass Characteristics - Betaine 

Back-fat significantly decreased (P ≤ 0.05) in 3 comparisons (average of 10.7%) compared 

to control pigs (Table S14). The greatest proportion of the comparisons found no evidence of 

difference (P > 0.10) in BF (29 comparisons). Of these, BF was numerically increased (P > 0.10) 

in 13 comparisons (average of 2.0%) and numerically decreased in 16 comparisons (average of 

2.9%) compared to control pigs. Percentage lean significantly increased (P ≤ 0.05) in 1 

comparison (5.2%) compared to control pigs. The greatest proportion of the comparisons 

found no evidence of difference (P > 0.10) in percentage lean (24 comparisons). Of these, 

percentage lean was numerically increased (P > 0.10) in 15 comparisons (average of 3.6%) and 

numerically decreased in 8 comparisons (average of 1.2%) compared to control pigs. Loin 

muscle area/depth tended to increase (0.05 < P ≤ 0.10) in 1 comparison (6.3%) and significantly 

decreased (P ≤ 0.05) in 3 comparisons (average of 2.3%) compared to control pigs. The greatest 



proportion of the comparisons found no evidence of difference (P > 0.10) in LMA/LD (20 

comparisons). Of these, LMA/LD was numerically increased (P > 0.10) in 10 comparisons 

(average of 1.9%) and numerically decreased in 10 comparisons (average of 2.2%) compared to 

control pigs 



Table S14. Studies on the effects of dietary betaine on carcass characteristics. 
    Difference, %1 
Authors Country Inclusion, % Sig.1 Yield BF percenta

ge lean 
LMA/LD 

Smith et al. (1994) USA 0.1004 LMA3 n/a -3.2 1.6 6.3 
0.1004 ns n/a 0.8 2.6 8.9 

Smith et al. (1994) USA 0.100 ns n/a -3.2 0.5 -1.6 
Matthews et al. (1998), Exp 
1 USA 0.125 Yield 0.9 1.4 -0.2 0.5 
Matthews et al. (1998), Exp 
2 USA 0.125 ns 0.0 2.3 -0.6 2.1 
Øverland et al. (1999) Norway 1.050 ns 1.2 0.7 0.8 n/a 
Matthews et al. (2001) USA 0.250 ns -0.4 4.8 -1.1 -0.4 

Matthews et al. (2001) USA 
0.125 

BF2 
-1.5 -4.3 1.2 -3.0 

0.250 1.1 -18.2 5.2 0.7 
0.500 0.1 -12.6 -0.8 -5.6 

Lawrence et al. (2002), Exp 
1 USA 0.1255 ns 0.3 -0.4 0.6 1.5 

0.1255 ns 0.0 -0.4 -1.6 -0.4 
Lawrence et al. (2002), Exp 
2 USA 0.100 BF n/a -3.2 n/a -0.4 

Siljander-Rasi et al. (2003) Finland 
0.025 

ns2 
n/a -3.0 n/a n/a 

0.050 n/a 1.0 n/a n/a 
0.100 n/a -3.0 n/a n/a 

Feng et al. (2006) China 0.125 ns 0.6 -7.0 2.1 2.2 
Dunshea et al. (2009) Australia 0.150 ns n/a 4.5 0.9 n/a 

Huang et al. (2009) China 0.125 
BF, 

percentage 
lean 0.6 -10.3 5.2 n/a 

Nakev et al. (2009) Bulgaria 0.1006 ns ns 0.2 -6.3 2.4 
0.1006 ns ns 5.4 7.4 -4.8 

Van Heugten (2014), Exp 1 USA 0.200 ns -0.4 1.8 -0.2 0.7 

Van Heugten (2014), Exp 2 USA 
0.063 

LD2 
-0.5 -3.4 0.2 -1.5 

0.125 -0.3 -1.5 0.0 -1.5 
0.188 -0.1 -3.9 0.2 -3.9 

Madeira et al. (2015) USA 0.330 ns 0.2 -1.5 n/a n/a 
Wang et al. (2015) China 0.100 ns 3.4 0.8 n/a n/a 
Lothong et al. (2016) Thailand 0.125 BF n/a -18.6 n/a n/a 
Mendoza et al. (2017), Exp 
1 USA 0.200 ns 0.1 0.9 -0.1 0.2 

USA 0.063 ns2 -0.7 0.2 11.4 -2.1 



Mendoza et al. (2017), Exp 
2 

0.125 -0.4 0.2 11.6 -1.3 
0.188 -0.3 1.3 12.4 -0.6 

1Significant level at P ≤ 0.05. Difference is calculated as [(treatment value – control value) / control value] * 100%. 
2Polynomial contrasts were used for statistical analysis. 
3Significant level at 0.05 < P ≤ 0.10. 
5The top comparison used a solid form of betaine and the bottom comparison used a liquid form betaine. 
4Treament diets were fed from 82 to 106 kg in the top comparison and fed from 104 to 116 kg in the bottom 

comparison. 
6The top comparison represented male pigs and the bottom comparison represented female pigs. 



2.2.  Chromium (Cr) 

There were 50 research articles for Cr with 139 comparisons from 9 countries during the 

grow-finish or finishing period with added dietary levels of 25 to 1,000 µg/kg (1 experiment 

used 5,000 µg/kg Cr as an overdose trial). Of these, 139 comparisons reported growth 

performance data, and 133 comparisons reported carcass data. The sources of Cr were Cr 

picolinate, Cr propionate, Cr nicotinate, Cr methionine, Cr yeast, CrCl3, Cr nanocomposites, Cr 

sulfate, and Cr bis-glycinate-nicotinamide chelate. 

2.2.1.  Growth Performance - Cr 

Average daily gain significantly increased (P ≤ 0.05) in 14 comparisons (average of 8.9%), 

tended to increase (0.05 < P ≤ 0.10) in 4 comparisons (average of 4.6%), significantly decreased 

(P ≤ 0.05) in 7 comparisons (average of 7.2%), and tended to decrease (0.05 < P ≤ 0.10) in 5 

comparisons (average of 4.1%) compared to control pigs (Table S15). The greatest proportion 

of the comparisons found no evidence of difference (P > 0.10) in ADG (109 comparisons). Of 

these, ADG was numerically increased (P > 0.10) in 51 comparisons (average of 3.6%) and 

numerically decreased (P > 0.10) in 48 comparisons (average of 2.2%) compared to control pigs. 

Feed efficiency significantly increased (P ≤ 0.05) in 14 comparisons (average of 5.2%) and 

significantly decreased (P ≤ 0.05) in 7 comparisons (average of 4.3%) compared to control pigs. 

The greatest proportion of the comparisons found no evidence of difference (P > 0.10) in G:F 

(117 comparisons). Of these, G:F was numerically increased (P > 0.10) in 60 comparisons 



(average of 3.1%) and numerically decreased (P > 0.10) in 41 comparisons (average of 2.1%) 

compared to control pigs. These studies found no evidence of difference because Cr’s effects 

were not large enough and variation in performance was too great. Also, the basal diets might 

have provided enough Cr to meet the requirement; therefore, increasing the level of Cr did not 

have a significant effect on ADG and G:F [195-200]. Overall, the data suggest that Cr positively 

affected ADG and G:F, but the effects were small and inconsistent. The addition of 50 to 400 

µg/kg Cr in diets was most common and had better improvement on ADG and GF compared 

to the higher levels. However, there were not enough comparisons at greater Cr levels to fully 

determine the effect of high Cr levels. Moreover, toxicity of Cr at a high inclusion level (5,000 

µg/kg) was not observed [201]. Chromium chelated with methionine or in nanoparticle form 

may provide a more consistently positive effect on ADG; however, Cr form did not seem to 

affect the consistency of the G:F response. According to our database, Cr minorly improved 

ADG and G:F of pigs (approximately 1% improvement). This is in agreement with a meta-

analysis that analyzed data from 31 studies and found that grow-finish pigs fed 200 to 500 

µg/kg Cr had improved (P ≤ 0.05) ADG and G:F compared to the control pigs [202]. 

Table S15. Studies on the effects of dietary chromium on growth performance. 
   Inclusion, 

µg/kg Sig.1 
Difference, % 

Authors Country Source ADG G:F 

Page et al. (1993), 
Exp. 1 USA Picolinate 

25 
ADG2 

0.0 6.9 
50 4.1 4.5 
100 -5.9 -0.3 
200 7.8 5.5 

Page et al. (1993), 
Exp. 2 USA Picolinate 

100 
ADG2 

-1.2 2.1 
200 -0.7 -0.3 
400 -6.2 5.4 
800 -9.1 -0.9 



Page et al. (1993), 
Exp. 3 

USA CrCl3 2004 ns 6.0 6.4 
2004 ns 4.2 1.2 

USA Picolinate 100 and 200 ns 5.9 -2.7 
Smith et al. (1994) USA Nicotinate 200 ns 2.0 1.7 
Boleman et al. (1995) USA Picolinate 2005 ADG -6.4 0.0 

2005 ns -5.8 3.2 
Lindemann et al. 
(1995), Exp. 1 USA Picolinate 250 ns2 1.0 8.1 

500 -3.1 6.4 
Lindemann et al. 
(1995), Exp. 2 USA Picolinate 2004 ns -2.4 6.8 

2004 ns -1.2 -2.3 
Lindemann et al. 
(1995), Exp. 3 USA Picolinate 

100 
ns2 

1.2 -0.3 
500 1.2 -2.9 

1000 -2.4 -1.1 
Mooney and 
Cromwell (1995) USA Picolinate 200 ADG3 5.4 1.9 
Smith et al. (1996) USA Nicotinate 200 ns -1.7 -0.2 
Kornegay et al. 
(1997) USA Picolinate 200 ns 2.5 n/a 

Min et al. (1997) South 
Korea Picolinate 

100 ns -0.7 0.3 
200 ns -3.3 0.3 
400 ns -0.5 2.5 

Mooney and 
Cromwell (1997) USA Picolinate 200 ns 2.3 1.4 

CrCl3 5,000 ns -1.1 -1.4 

Ward et al. (1997) USA Picolinate 
4004 ns 1.9 5.7 
4004 ns -2.1 -5.4 
4004 ns 4.0 3.9 
4004 ns -1.7 -2.7 

Lien et al. (1998) Taiwan Picolinate 200 ns -1.9 10.3 

O'Quinn et al. (1998) USA Nicotinate 
50 

ADG2,3 
4.6 1.1 

100 -2.1 -0.9 
200 -3.6 -1.7 
400 -3.2 0.2 

Picolinate 200 ns -0.8 -1.6 

Lemme et al. (1999) USA Yeast 
200 ADG3, 

G:F 5.9 6.5 
400 ns 0.1 1.8 
800 ns -0.7 1.1 

Mooney and 
Cromwell (1999), 
Exp.1  

USA Picolinate 200 ns -0.6 -2.6 

Mooney and 
Cromwell (1999), 
Exp.2 

USA Picolinate 200 ns -1.2 1.1 

O'Quinn et al. (1999) USA Nicotinate 504 G:F 0.7 4.4 
504 G:F 4.7 6.8 

Hanczakowska et al. 
(1999) Poland 

Yeast (0.03%) G:F 2.2 -4.7 
Picolinate 2004 ns -0.5 -0.3 

2004 ns 0.0 0.0 
Matthews et al. 
(2001) USA Picolinate 200 ns 0.0 -1.4 

Propionate 200 ns -1.1 2.4 
Xi et al. (2001) USA Picolinate 200 ns 3.6 3.1 
Matthews et al. 
(2003) USA Propionate 200 ns -0.5 1.4 
Shelton et al. (2003), 
Exp. 1 USA Propionate 50 ns2 -2.5 3.3 

100 0.0 3.3 



200 -2.5 3.3 
2004 ns -2.5 3.3 
2004 ns -2.6 3.6 

Shelton et al. (2003), 
Exp. 2 USA Propionate 

100 
ns2 

1.0 -5.6 
200 -1.0 -2.8 
300 -1.0 -2.8 

Waylan et al. (2003) USA Nicotinate 50 G:F 2.9 5.4 

Groesbeck et al. 
(2004) USA 

Picolinate 100 ns2 -2.6 1.8 
200 -3.7 -1.5 

Propionate 100 ns2 0.0 0.3 
200 -1.6 -0.9 

Wang and Xu (2004) China Nano Cr 200 G:F 5.6 3.7 
Matthews et al. 
(2005) USA Propionate 200 ns 0.0 2.6 

Amoikon et al. (2006) USA Picolinate 
2004 ns 2.5 -3.4 
2004 ns -5.6 0.0 
2004 ns -2.3 0.0 

Khajarern et al. 
(2006) 

Thailan
d 

Bisglycinate-
nicotinamide 

chelate 
200 ns -0.1 0.3 
400 ns 1.1 1.4 

Bergstrom et al. 
(2008) USA Propionate 200 ns 1.0 1.2 

Lindemann et al. 
(2008) USA 

Picolinate 5,000 ns 6.0 0.6 
Propionate 5,000 ns 5.8 2.3 
Methionine 5,000 ns 0.3 -2.9 

Yeast 5,000 ADG 8.6 0.6 
Wang et al. (2008) China Picolinate 200 ADG 9.8 4.8 

Jackson et al. (2009) USA Propionate 
2004 ns -0.8 1.5 
2004 ns -2.8 -5.1 
2004 ns 6.2 1.4 

Park et al. (2009) South 
Korea 

CrCl3 200 ns 3.1 2.0 
Picolinate 200 ADG, G:F 7.8 6.2 

Methionine 100 ADG, G:F 4.7 3.2 
200 ADG, G:F 6.3 6.2 

Wang et al. (2009) China 
CrCl3 200 ns -0.3 -2.5 

Picolinate 200 ns 2.3 -2.0 
Nano CrCl3 200 ns 6.4 4.8 

Wang et al. (2009) China CrCl3 200 ns -0.3 0.9 
Nano Cr 200 ADG, G:F 6.3 9.5 

Li et al. (2013) China Methionine 
300 ADG2, 

G:F2 
4.1 -1.7 

600 16.0 -3.6 
900 20.5 -4.6 

Panaite et al. (2013) Romani
a Picolinate 200 ns -9.0 -3.3 

400 ADG, G:F -21.1 -10.3 
Hung et al. (2014) Australi

a 
Nano 

Picolinate 400 ADG3 5.3 -0.4 

Peres et al. (2014) Brazil Sulfate 200 ns -0.9 0.4 
Methionine 200 ADG, G:F 5.3 7.3 

Wang et al. (2014) China Cr chitosan 
nanoparticles 

100 
G:F2 

1.3 3.4 
200 -0.1 4.1 
400 -0.5 3.4 

Tian et al. (2015) China Methionine 
100 

ns2 
2.9 -1.2 

200 4.3 0.3 
400 1.4 -1.5 
800 1.4 0.0 



Li et al. (2017) Taiwan 

CrCl3 200 ns 13.6 0.0 
Picolinate 200 ns 13.6 3.6 

Nano CrCl3 200 ns 10.6 0.0 
Nano 

picolinate 200 ADG 21.2 3.6 

Marcolla et al. (2017) Brazil Yeast 4004 ns -4.0 -3.9 
4004 ns -4.0 0.0 

Xu et al. (2017) China Methionine 200 ns 1.4 4.4 
Jin et al. (2018) China Methionine 2004 ns -3.7 -1.0 

2004 ns -0.9 5.1 
Gebhardt et al. 
(2019), Exp. 1 USA Propionate 200 ns 0.6 -1.3 

Gebhardt et al. 
(2019), Exp. 2 USA Propionate 

2004 ns 0.0 2.8 
2004 ns 0.0 0.0 
2004 ns 2.3 0.0 

Gebhardt et al. 
(2019), Exp. 1 USA Propionate 

100 G:F2 1.1 2.5 
200 0.0 0.0 

100/200 ns 1.1 0.0 
200/100 ns 0.0 0.0 

Gebhardt et al. 
(2019), Exp. 2 USA Propionate 200/100 ns 1.1 0.0 

200 ADG 2.2 0.0 

Lien and Lan (2019) Taiwan 
Picolinate 200 ns 11.3 1.1 

Nano 
picolinate 200 ns 7.6 -3.7 

Mayorga et al. (2019) USA Propionate 200 ns 3.4 4.0 
da Silva et al. (2021) Brazil Yeast 800 ns 2.0 7.1 

Picolinate 480 ns -4.9 7.5 

Santos et al. (2021) USA Propionate 
2004 ADG3, 

G:F 
-1.0 -2.3 

2004 ADG3, 
G:F 

-3.2 -2.9 

Alencar et al. (2022) Brazil Yeast 8004 ns -3.9 -1.9 
8004 ns 2.0 -1.5 

1Significant level at P ≤ 0.05. Difference is calculated as [(treatment value – control value) / 
control value] * 100%. 

2Polynomial contrasts were used for statistical analysis. 

3Significant level at 0.05 < P ≤ 0.10. 
4For experiments using factorial treatment structures, if the interaction of factors of either 

interested variable was observed the effect of the feed additive within each level of the other 
factor is included within the database. 

5The comparison was the result of Cr fed in grow-finish phase and bottom comparison was 
the result of Cr fed in finish phase.  

2.2.2.  Carcass Characteristics - Cr 

Back-fat significantly increased (P ≤ 0.05) in 2 comparisons (average of 8.0%), tended to 

increase (0.05 < P ≤ 0.10) in 5 comparisons (average of 6.3%), significantly decreased (P ≤ 0.05) 



in 22 comparisons (average of 14.4%), and tended to decrease (0.05 < P ≤ 0.10) in 7 comparisons 

(average of 12.4%) compared to control pigs (Table S16). The greatest proportion of the 

comparisons found no evidence of difference (P > 0.10) in BF (97 comparisons). Of these, BF 

was numerically increased (P > 0.10) in 42 comparisons (average of 4.2%) and numerically 

decreased (P > 0.10) in 53 comparisons (average of 6.4%) compared to control pigs. Percentage 

lean significantly increased (P ≤ 0.05) in 20 comparisons (average of 6.6%), tended to increase 

(0.05 < P ≤ 0.10) in 1 comparison (5.0%), and significantly decreased (P ≤ 0.05) in 2 comparisons 

(average of 4.1%) compared to control pigs. The greatest proportion of the comparisons found 

no evidence of difference (P > 0.10) in percentage lean (82 comparisons). Of these, percentage 

lean was numerically increased (P > 0.10) in 43 comparisons (average of 1.9%) and numerically 

decreased (P > 0.10) in 36 comparisons (average of 1.2%) compared to control pigs. Loin 

muscle area/depth significantly increased (P ≤ 0.05) in 23 comparisons (average of 13.9%) and 

significantly decreased (P ≤ 0.05) in 1 comparison (11.6%) compared to control pigs. The 

greatest proportion of the comparisons found no evidence of difference (P > 0.10) in LMA/LD 

(101 comparisons). Of these, LMA/LD was numerically increased (P > 0.10) in 61 comparisons 

(average of 3.2%) and numerically decreased (P > 0.10) in 38 comparisons (average of 3.0%) 

compared to control pigs. According to the database, Cr decreased BF, and increased 

percentage lean, and LMA/LD of grow-finish pigs in more than 60% of the comparisons, and 

the effects were observed across all inclusion levels (25 to 5,000 µg/kg). Additionally, 



increasing the Cr level improved the carcass characteristics linearly within the 50 to 400 µg/kg 

inclusion (approximately 80% of all comparisons). Different Cr sources may not have the same 

effect on carcass characteristics. Contrary to the overall effects, Cr nicotinate increased BF by 

2.2% (13 comparisons), and CrCl3 decreased LMA/LD by 2.2% (6 comparisons). The meta-

analysis conducted by Sales and Jančík [202] also found Cr reduced (P < 0.001) 10th rib BF and 

increased (P < 0.001) percentage lean and LMA. 



Table S16. Studies on the effects of dietary chromium on carcass characteristics. 
   

Inclusion, 
µg/kg 

 Difference, %1 
Author Country Source Sig.1 Yield BF 

percent
age lean 

LMA/L
D 

Page et al. (1993), 
Exp. 1 USA Picolinate 

25 
ns2 

n/a -14.5 3.4 2.9 
50 n/a -17.7 3.0 1.1 
100 n/a -6.0 1.9 -2.0 
200 n/a -13.8 2.6 6.6 

Page et al. (1993), 
Exp. 2 USA Picolinate 

100 Yield2,3, BF2, 
percentage 
lean2, LMA2 

0.8 -25.7 8.5 18.8 
200 2.3 -16.5 5.8 17.4 
400 3.3 -30.2 11.0 22.6 
800 3.2 -21.9 8.7 18.5 

Page et al. (1993), 
Exp. 3 USA 

CrCl3 2004 ns 0.0 -5.5 0.0 -1.0 
2004 ns -1.1 5.4 -1.9 -3.5 

Picolinate 100 and 
200 

BF, 
percentage 
lean, LMA 

0.1 -19.7 5.6 21.4 

Smith et al. (1994) USA Nicotinate 200 BF n/a -8.8 4.1 3.3 
Lindemann et al. 
(1995) USA Picolinate 250 ns2 n/a 2.4 n/a 3.3 

500 n/a 9.0 n/a 3.8 

Lindemann et al. 
(1995) USA Picolinate 

2004 
BF, 

percentage 
lean, LMA 

n/a -17.3 8.9 15.9 

2004 
BF, 

percentage 
lean, LMA 

n/a -10.3 4.7 6.6 

Lindemann et al. 
(1995) USA Picolinate 

100 BF2, 
percentage 
lean2, LMA2 

n/a -5.5 1.8 3.3 
500 n/a 12.7 -7.4 -11.6 

1,000 n/a -13.9 5.8 5.3 
Mooney and 
Cromwell (1995) USA Picolinate 200 ns n/a -0.5 n/a -2.3 

Boleman et al. (1995) USA Picolinate 
2005 ns 0.1 7.6 -0.5 1.7 
2005 percentage 

lean3  0.1 -8.9 5.0 7.3 
Smith et al. (1996) USA Nicotinate 200 ns 0.0 2.1 0.5 -1.1 
Kornegay et al. 
(1997) USA Picolinate 200 ns -0.4 3.9 0.0 6.8 
Mooney and 
Cromwell (1997) USA Picolinate 200 LMA3 -0.5 0.3 2.1 6.3 

CrCl3 5000 LMA3 -0.4 -3.0 1.9 6.2 
Ward et al. (1997) USA Picolinate 4004 ns 0.5 -6.5 -0.2 -1.3 



4004 ns -0.4 0.0 -0.2 -4.3 
4004 ns -0.4 3.8 0.0 2.2 
4004 ns 0.1 15.0 -1.4 0.0 

Min et al. (1997) South 
Korea Picolinate 

100 ns 0.3 -4.9 n/a 1.8 
200 ns 0.4 -15.9 n/a 6.6 
400 ns -0.3 -11.4 n/a 3.1 

Lien et al. (1998) Taiwan Picolinate 200 BF, LMA n/a -9.4 n/a 12.1 

O'Quinn et al. (1998), 
Exp.1 (barrow) USA Nicotinate 

50 
ns2 

0.2 2.0 -1.3 -1.3 
100 -1.2 8.1 -2.3 -5.7 
200 0.0 2.0 -0.4 -4.9 
400 0.9 -1.0 0.2 0.6 

O'Quinn et al. (1998), 
Exp. 1 (gilt) USA Nicotinate 

50 
Yield2 

0.0 5.5 -2.0 -3.9 
100 0.9 6.6 -1.2 1.9 
200 1.5 6.6 -1.6 -2.5 
400 0.3 4.4 1.1 2.7 

O'Quinn et al. (1998), 
Exp. 212 USA Picolinate 200 ns 0.0 3.8 -1.1 -1.9 

Hanczakowska et al. 
(1999) Poland 

Yeast (0.03%) ns n/a 1.4 -0.3 2.0 
Picolinate 2004 ns n/a -1.8 1.9 4.9 

2004 ns n/a 4.7 -2.5 -5.1 
Mooney and 
Cromwell (1999), 
Exp. 1 

USA Picolinate 200 ns 0.2 -0.3 0.9 5.4 

Mooney and 
Cromwell (1999), 
Exp. 2 

USA Picolinate 200 ns -0.2 3.8 -1.6 -1.8 

O'Quinn et al. (1999) USA Nicotinate 504 ns 0.7 -0.5 0.1 2.3 
504 ns -0.7 1.0 0.5 2.6 

Lemme et al. (1999) USA Yeast 
200 Yield3 -1.6 5.0 n/a n/a 
400 ns 0.2 -1.1 n/a n/a 
800 ns 0.6 3.9 n/a n/a 

Matthews et al. 
(2001), Exp. 1 USA Picolinate 200 ns 0.4 -7.7 -2.8 0.7 

Propionate 200 ns -0.3 -7.7 -0.6 6.1 

Xi et al. (2001) USA Picolinate 200 
BF, 

percentage 
lean, LMA 

1.2 -10.9 7.6 15.6 

Matthews et al. 
(2003) USA Propionate 200 ns -0.2 0.6 -1.8 -1.0 
Shelton et al. (2003), 
Exp. 1 USA Propionate 50 ns2 0.3 -3.5 2.4 3.8 

100 0.1 2.0 -1.4 0.7 



200 0.1 -2.3 3.0 9.9 
2004 ns 0.1 -2.3 3.0 9.9 
2004 ns -1.5 -4.9 0.7 -6.1 

Shelton et al. (2003), 
Exp. 2 USA Propionate 

100 
ns2 

-0.1 7.8 -2.4 -2.6 
200 -0.2 3.7 0.1 2.3 
300 0.2 1.8 0.1 1.7 

Waylan et al. (2003) USA Nicotinate 50 ns 0.0 0.2 0.3 2.5 

Wang and Xu (2004) China Nano Cr 200 
BF, 

percentage 
lean, LMA 

1.2 -18.2 14.1 20.0 

Matthews et al. 
(2005) USA Propionate 200 ns -0.4 10.2 -0.6 -4.3 

Amoikon et al. (2006) USA Picolinate 
2004 ns -1.9 -2.3 -0.5 -0.9 
2004 ns -0.8 7.2 -3.5 -7.0 
2004 ns 1.9 -0.3 0.5 -1.1 

Khajarern et al. 
(2006) Thailand 

Bisglycinate-
nicotinamide 

chelate 

200 Yield2, BF2, 
LMA2 

0.0 -4.5 2.2 5.9 
400 0.9 -7.3 3.1 7.3 

Bergstrom et al. 
(2008) USA Propionate 200 ns 0.7 1.4 -0.7 -3.3 

Wang et al. (2008) China Picolinate 200 LMA 2.7 -10.3 n/a 17.3 

Lindemann et al. 
(2008) USA 

Tripicolinate 5,000 ns 0.6 -7.3 n/a 2.0 
Propionate 5,000 ns 1.1 -16.0 n/a 0.2 
Methionine 5,000 ns 0.9 -3.8 n/a -2.6 

Yeast 5,000 ns 0.3 -10.3 n/a 1.3 

Jackson et al. (2009) USA Propionate 
2004 BF3 0.5 -6.3 2.6 6.1 
2004 BF3 0.2 -9.1 -2.4 3.1 
2004 BF3 1.1 1.6 -1.5 3.2 

Park et al. (2009) South 
Korea 

CrCl3 200 ns -1.4 -12.6 1.6 -5.6 
Picolinate 200 ns 0.9 -13.7 3.2 1.6 

Methionine 
100 ns 1.2 -15.5 3.1 2.1 

200 
BF, 

percentage 
lean 

0.7 -31.4 8.8 2.5 

Wang et al. (2009) China 

CrCl3 200 ns 1.3 -2.7 3.5 -5.4 
Picolinate 200 LMA 3.1 -10.3 1.7 17.3 

Nano CrCl3 200 
BF, 

percentage 
lean, LMA 

1.5 -24.3 10.6 20.2 

Panaite et al. (2013) Romania Picolinate 200 ns n/a -3.9 0.9 n/a 



400 ns n/a -16.5 2.9 n/a 

Li et al. (2013) China Methionine 
300 

BF2,3, LMA2 
-1.0 -15.4 3.4 7.2 

600 0.3 -19.1 7.2 13.2 
900 -0.1 -22.8 7.3 13.1 

Hung et al. (2014) Australia Nano 
Tripicolinate 400 ns 0.0 0.0 n/a n/a 

Peres et al. (2014) Brazil Cr sulfate 200 ns -0.4 -0.6 n/a -0.4 
Methionine 200 ns -0.4 -3.8 n/a 0.1 

Wang et al. (2014) China Chitosan 
nanoparticles 

100 BF2, 
percentage 
lean2, LMA2 

1.1 -5.2 3.2 13.5 
200 1.1 -8.1 3.7 15.8 
400 1.0 -7.6 3.2 11.5 

Tian et al. (2015) China Methionine 
100 

BF2,3 
-1.5 7.4 -0.8 -1.4 

200 -1.2 14.5 1.9 16.3 
400 -0.8 -10.9 3.8 6.1 
800 -0.5 -3.3 2.1 6.8 

Li et al. (2017) Taiwan 
CrCl3 200 ns 1.2 -0.4 n/a -3.7 

Picolinate 200 BF 1.2 -9.6 n/a -3.7 
Nano CrCl3 200 ns 0.9 -0.9 n/a -3.3 

Nano Picolinate 200 BF 0.9 -9.6 n/a 0.2 
Marcolla et al. (2017) Brazil Yeast 4004 ns -0.1 -24.5 n/a -0.3 

4004 ns -0.3 10.2 n/a -6.4 
Xu et al. (2017) China Methionine 200 ns 1.1 -5.2 n/a 2.1 
Jin et al. (2018) China Methionine 2004 Yield 3.2 11.9 n/a n/a 

2004 ns 0.9 -8.2 n/a n/a 
Mayorga et al. (2019) USA Propionate 200 ns n/a -0.8 n/a 0.4 
Gebhardt et al. 
(2019), Exp. 1 USA Propionate 200 

BF, 
percentage 

lean 
0.6 3.3 -0.8 -1.0 

Gebhardt et al. 
(2019), Exp. 2 USA Propionate 

2004 ns -0.3 0.8 -0.1 0.0 
2004 ns 0.3 0.7 -0.1 0.1 
2004 ns -0.5 1.5 -0.5 -1.9 

Gebhardt et al. 
(2019), Exp. 1 USA Propionate 

100 ns2 0.1 0.3 0.1 1.3 
200 -0.5 -0.4 0.2 0.8 

100/200 ns -0.1 0.6 0.1 1.2 
200/100 ns -0.3 -0.2 0.2 1.3 

Gebhardt et al. 
(2019), Exp. 2 USA Propionate 200/100 ns 0.0 -2.2 0.6 1.2 

200/200 Yield -0.4 1.1 -0.2 0.5 
Lien and Lan (2019) Taiwan Picolinate 200 ns -1.5 -9.7 -0.7 0.0 

Nano Picolinate 200 ns -0.6 -11.1 -1.4 4.5 



da Silva et al. (2021) Brazil 
Yeast 800 percentage 

lean n/a 0.7 5.9 3.2 

Picolinate 480 percentage 
lean n/a -12.8 7.9 1.7 

Santos et al. (2021) USA Propionate 2004 BF3 0.4 6.1 -0.7 1.5 
2004 BF3 -0.3 1.9 -0.6 -1.4 

Alencar et al. (2022) Brazil Yeast 8004 ns 1.2 -1.4 -0.4 -2.5 
8004 ns -1.0 -1.5 0.2 -1.9 

1Significant level at P ≤ 0.05. Difference is calculated as [(treatment value – control value) / control value] * 100%. 
2Polynomial contrasts were used for statistical analysis. 

3Significant level at 0.05 < P ≤ 0.10. 
4For experiments using factorial treatment structures, if the interaction of factors of either interested variable was observed 

the effect of the feed additive within each level of the other factor is included within the database. 
5The 2 experimental diets with Cr were fed in grow-finish and finish phase respectively. 



2.3.  Conjugated Linoleic Acid (CLA) 

There were 46 research articles for CLA with 73 comparisons from 15 countries during the 

grow-finish or finishing period with added dietary levels of 0.07 to 2.72%. Of these, 55 

comparisons reported growth performance data, and 65 comparisons reported carcass data.  

2.3.1.  Growth Performance - CLA 

Average daily gain significantly increased (P ≤ 0.05) in 5 comparisons (average of 7.2%), 

tended to increase (0.05 < P ≤ 0.10) in 1 comparison (3.6%), and significantly decreased (P ≤ 

0.05) in 3 comparisons (average of 7.8%) compared to control pigs (Table S17). The greatest 

proportion of the comparisons found no evidence of difference (P > 0.10) in ADG (53 

comparisons). Of these, ADG was numerically increased (P > 0.10) in 34 comparisons (average 

of 3.7%) and numerically decreased (P > 0.10) in 17 comparisons (average of 4.1%) compared to 

control pigs. Feed efficiency significantly increased (P ≤ 0.05) in 13 comparisons (average of 

4.5%), tended to increase (0.05 < P ≤ 0.10) in 6 comparisons (average of 8.8%), and significantly 

decreased (P ≤ 0.05) in 1 comparison (2.8%) compared to control pigs. The greatest proportion 

of the comparisons found no evidence of difference (P > 0.10) in G:F (37 comparisons). Of 

these, G:F was numerically increased (P > 0.10) in 24 comparisons (average of 4.6%) and 

numerically decreased (P > 0.10) in 9 comparisons (average of 2.3%) compared to control pigs. 

Overall, the results suggest that CLA had positive effects on ADG and G:F (65 and 75% of all 

the comparisons); however, the effects of CLA were often not significant enough to statistically 



improve (P < 0.10) ADG (10% of all the comparisons). On the other hand, CLA improved (P < 

0.10) G:F in 33% of all the comparisons. Increasing CLA concentrations did not increasingly 

improve the ADG and G:F response. Contrary to what is concluded herein, in a meta-analysis 

by Wang et al. [245] found no evidence of difference (P > 0.05) in ADG, ADFI, and G:F when 

pigs were fed CLA or linseed supplementation; however, only seven research articles were 

included in their meta-analysis. Different basal diets may affect the response to CLA on ADG 

and G:F. Diets with wheat as the main ingredient (18 comparisons) had a greater percentage of 

improvement in ADG (3.7%) and G:F (5.4%) compared to diets with corn as the main 

ingredient [ADG decreased 0.1% (32 comparisons) and G:F increased 2.8% (28 comparisons)]. 

Table S17. Studies on the effects of dietary CLA on growth performance. 
  

Inclusion, % 
 Difference, %1 

Author Country Sig.1 ADG G:F 
Dugan et al. (1997) Canada 1.00 G:F3 0.0 6.2 

Ostrowska et al. (1999) Australia 

0.07 

ns2 

10.2 5.8 
0.14 6.3 6.7 
0.28 8.4 8.8 
0.41 1.4 3.0 
0.55 2.8 6.7 

O'Quinn et al. (2000) USA 0.30 ns -5.8 0.0 
Bee (2001) Switzerland 1.20 ns 7.5 6.8 
Eggert et al. (2001) USA 0.60 ADG -10.2 -7.4 

Dugan et al. (2001) Canada 
0.164 ns 1.5 4.0 
0.334 ns 4.0 2.1 
0.164 ns 5.0 0.3 
0.334 ns 0.7 2.0 

Thiel-Cooper et al. (2001) USA 
0.07 ns -1.3 4.3 
0.15 ns 1.2 6.0 
0.30 ns 3.4 5.1 
0.60 ADG, G:F 8.2 9.1 

Wiegand et al. (2001) USA 0.75 G:F 1.9 6.1 
Barowicz et al. (2002) Poland 1.20 ns 4.3 10.5 

1.20 ns 1.2 0.8 
Dunshea et al. (2002), 
Exp. 1 Australia 0.22 ns 1.4 4.1 
Dunshea et al. (2002), 
Exp. 2 Australia 0.22 ns -1.4 -0.7 
Tischendorf et al. (2002) Germany 1.08 ns 2.0 0.3 
Wiegand et al. (2002) USA 0.755 G:F2 0.5 2.7 



0.755 1.9 3.3 
0.755 -1.3 1.2 

Ostrowska et al. (2003) Australia 

0.07 

G:F2,3 

6.1 6.7 
0.14 5.8 10.0 
0.28 6.8 16.7 
0.41 -0.1 3.3 
0.55 -2.0 10.0 

Sun et al. (2004) China 1.36 ADG2, G:F2 7.7 3.9 
2.72 14.1 5.2 

Barowicz et al. (2005) Poland 1.20 ns 1.2 n/a 
Lauridsen et al. (2005) Denmark 0.30 ADG3, G:F 3.6 4.8 
Weber et al. (2006) USA 0.60 G:F 3.4 4.0 
Bee et al. (2008) Switzerland 0.60 ns 2.5 0.0 
Corino et al. (2008) Italy 0.38 ns 2.2 n/a 
Martin et al. (2008) Spain 0.56 ns 5.1 5.9 

1.12 ns 5.7 5.9 
White et al. (2009) USA 0.60 ns 5.4 -1.4 
Jiang et al. (2010) China 1.00 ADG2 -7.9 0.0 

2.00 -5.3 -1.6 

Han et al. (2011) China 
0.36 

ns2 
-6.6 n/a 

0.71 -14.5 n/a 
1.09 -9.2 n/a 

Lee et al. (2011) South Korea 0.59 ns 3.7 12.5 
Barnes et al. (2012) USA 0.60 G:F -3.2 -2.8 
Go et al. (2012) USA 0.80 ns -3.2 -2.7 
Martinez-Aispuro et al. 
(2012) Mexico 1.2/0.5/0.2 ns -9.4 -2.0 
Rickard et al. (2012) USA 0.36 G:F 1.6 5.8 
Pompeu et al. (2013) USA 0.604 ADG, G:F 1.6 2.2 

0.604 ADG, G:F 4.4 2.3 
Tous et al. (2013) Spain 2.51 ns 0.0 -2.5 
Martínez-Aispuro et al. 
(2014) Mexico 0.60 ns -1.9 -2.2 
Wang et al. (2015) China 0.60 ns 1.2 0.0 
Marcolla et al. (2017) Brazil 0.284 ns 5.0 3.9 

0.284 G:F 4.9 8.1 
Upadhaya et al. (2017) South Korea 0.28 ns -0.5 1.2 

0.56 ns -0.8 -0.3 
Panisson et al. (2020) Brazil 0.18 ns -3.4 2.0 

0.36 ns -5.5 2.0 
1Significant level at P ≤ 0.05. Difference is calculated as [(treatment value – control value) / 

control value] * 100%. 
2Polynomial contrasts were used for statistical analysis. 

3Significant level at 0.05 < P ≤ 0.10. 
4For experiments using factorial treatment structures, if the interaction of factors of either 

interested variable was observed the effect of the feed additive within each level of the other 
factor is included within the database. 

5CLA was fed in the 3 treatment diets during the last 29, 56, or 87 kg of BW gain before 
slaughter respectively. 

2.3.2.  Carcass Characteristics - CLA 



Back-fat significantly decreased (P ≤ 0.05) in 22 comparisons (average of 15.4%) and 

tended to decrease (0.05 < P ≤ 0.10) in 5 comparisons (average of 6.5%) compared to control 

pigs (Table S18). Approximately half of the studies found no evidence of difference (P > 0.10) 

in BF (32 comparisons). Of these, BF was numerically increased (P > 0.10) in 14 comparisons 

(average of 4.0%) and numerically decreased (P > 0.10) in 16 comparisons (average of 6.1%) 

compared to control pigs. Percentage lean significantly increased (P ≤ 0.05) in 14 comparisons 

(average of 4.9%) compared to control pigs. The greatest proportion of the comparisons found 

no evidence of difference (P > 0.10) in percentage lean (23 comparisons). Of these, percentage 

lean was numerically increased (P > 0.10) in 16 comparisons (average of 1.9%) and numerically 

decreased (P > 0.10) in 7 comparisons (average of 0.6%) compared to control pigs. Loin muscle 

area/depth significantly increased (P ≤ 0.05) in 6 comparisons (average of 7.6%), tended to 

increase (0.05 < P ≤ 0.10) in 1 comparison (3.7%), significantly decreased (P ≤ 0.05) in 1 

comparison (5.9%), and tended to decrease (0.05 < P ≤ 0.10) in 1 comparison (4.8%) compared 

to control pigs. The greatest proportion of the comparisons found no evidence of difference (P 

> 0.10) in LMA/LD (29 comparisons). Of these, LMA/LD was numerically increased (P > 0.10) 

in 14 comparisons (average of 3.0%) and numerically decreased (P > 0.10) in 15 comparisons 

(average of 3.0%) compared to control pigs. The results showed that CLA had significant 

effects on decreasing BF (73% of all the comparisons and all the significant comparisons) and 

increasing percentage lean (81% of all the comparisons and all the significant comparisons) of 



grow-finish pigs. Increasing CLA concentrations did not increasingly improve the carcass 

characteristics. Moreover, different basal diets may affect the response to CLA on BF and 

percentage lean. Diets with wheat as the main ingredient had a bigger percentage of reduction 

in BF (13.8%; 9 comparisons) and an improvement in percentage lean (3.7%; 11 comparisons) 

compared to diets with corn as the main ingredient [BF decrease 7.4% (37 comparisons) and 

percentage lean increased 2.3% (16 comparisons)]. These results suggest that CLA has the 

potential to reduce BF and increase percentage lean more consistently compared to other feed 

additives considered in this review. 



Table S18. Studies on the effects of dietary CLA on carcass characteristics. 
    Difference, %1 

Author Country Inclusion, % Sig.1 Yield BF percenta
ge lean 

LMA/L
D 

Dugan et al. (1997) Canada 1.00 percentage lean n/a n/a 2.3 n/a 

Ostrowska et al. (1999) Australia 

0.07 

percentage lean2 

n/a n/a 0.7 n/a 
0.14 n/a n/a 6.0 n/a 
0.28 n/a n/a 7.2 n/a 
0.41 n/a n/a 5.4 n/a 
0.55 n/a n/a 9.1 n/a 

O'Quinn et al. (2000) USA 0.30 ns -1.4 -5.2 0.4 -4.1 
Bee (2001) Switzerland 1.20 BF n/a -20.7 -0.4 1.4 

Dugan et al. (2001) Canada 
0.164 percentage lean n/a n/a 6.0 n/a 
0.334 percentage lean n/a n/a 4.4 n/a 
0.164 ns n/a n/a -0.3 n/a 
0.334 ns n/a n/a 1.8 n/a 

Eggert et al. (2001) USA 0.60 ns -0.1 -8.2 n/a -2.0 

Thiel-Cooper et al. (2001) USA 
0.07 BF n/a -18.2 n/a 6.4 
0.15 BF n/a -18.2 n/a 2.0 
0.30 ns n/a -8.7 n/a -2.8 
0.60 ns n/a -10.1 n/a -4.7 

Wiegand et al. (2001) USA 0.75 BF n/a -7.0 n/a 4.9 
Averette Gatlin et al. 
(2002) USA 0.60 ns n/a -2.6 -0.4 -2.9 

Barowicz et al. (2002) Poland 1.20 ns -0.9 18.0 5.4 n/a 
1.20 ns -0.1 -5.3 1.2 n/a 

Dunshea et al. (2002), 
Exp 1 Australia 0.22 BF 0.2 -8.0 n/a n/a 
Dunshea et al. (2002), 
Exp 2 Australia 0.22 ns 0.7 1.0 n/a n/a 
Tischendorf et al. (2002) Germany 1.08 percentage lean -0.4 -7.4 2.6 n/a 

Wiegand et al. (2002) USA 
0.755 BF2, percentage lean2, 

LMA2 
n/a -14.5 5.0 6.6 

0.755 n/a -14.5 6.4 11.0 
0.755 n/a -20.6 7.4 9.2 

Corino et al. (2003) Italy 0.16 BF3 0.0 -12.8 n/a n/a 
0.33 BF3 -0.1 -8.9 n/a n/a 

Ostrowska et al. (2003) Australia 
0.07 

ns2 
-1.3 n/a n/a n/a 

0.14 -0.6 n/a n/a n/a 
0.28 -0.3 n/a n/a n/a 
0.41 0.1 n/a n/a n/a 



0.55 -2.3 n/a n/a n/a 
Sun et al. (2004) China 1.36 BF2, LMA2 n/a -8.6 n/a 4.6 

2.72 n/a -10.4 n/a 5.7 
Barowicz et al. (2005) Poland 1.20 BF, LMA -1.0 -9.5 3.0 8.5 
Corino et al. (2005) Italy 0.38 ns -1.7 1.8 n/a n/a 
Lauridsen et al. (2005) Denmark 0.30 ns n/a 0.4 0.4 1.2 

Ostrowska et al. (2005) Australia 

0.07 

BF2 

-1.3 -7.1 n/a n/a 
0.14 -0.6 -17.8 n/a n/a 
0.28 -0.3 -17.4 n/a n/a 
0.41 0.1 -19.1 n/a n/a 
0.55 -2.3 -23.7 n/a n/a 

Rossi et al. (2005) Italy 0.38 ns 0.2 n/a 0.4 n/a 
Weber et al. (2006) USA 0.60 BF3, percentage lean, 

LMA3 -0.6 -7.0 1.8 3.7 
Bee et al. (2008) Switzerland 0.60 BF n/a -11.0 0.9 n/a 
Corino et al. (2008) Italy 0.38 ns -0.8 0.4 -0.4 -3.7 
Martin et al. (2008) Spain 0.56 ns -0.5 0.0 n/a n/a 

1.12 ns -0.2 5.2 n/a n/a 
Cechova et al. (2009) Czech 

Republic 
1.20 ns n/a 1.2 n/a -2.6 

Larsen et al. (2009) USA 0.45 ns n/a -6.1 n/a 4.4 
White et al. (2009) USA 0.60 ns n/a 3.6 2.4 -0.4 
Cechova et al. (2010) Czech 

Republic 
1.20 ns n/a n/a -0.6 n/a 

Cordero et al. (2010) Spain 0.60 ns -0.9 -2.7 n/a n/a 

Cordero et al. (2010) Spain 
0.30 

ns2 
-1.5 n/a n/a n/a 

0.60 -0.8 n/a n/a n/a 
1.20 0.1 n/a n/a n/a 

Jiang et al. (2010) China 1.00 BF, percentage lean -0.2 -26.8 4.7 9.3 
2.00 BF -0.5 -8.5 3.5 -2.0 

Han et al. (2011) China 
0.36 

Yield2,3 
3.0 n/a n/a n/a 

0.71 3.7 n/a n/a n/a 
1.09 2.3 n/a n/a n/a 

Lee et al. (2011) South Korea 0.59 ns -1.9 -2.7 n/a n/a 
Barnes et al. (2012) USA 0.60 BF, LMA n/a -16.0 1.8 -5.9 
Go et al. (2012) USA 0.80 ns 0.5 -1.5 n/a -0.5 
Martinez-Aispuro et al. 
(2012) Mexico -- ns n/a 1.6 -1.8 -7.5 
Rickard et al. (2012) USA 0.36 BF, LMA n/a -12.7 n/a -4.8 
Pompeu et al. (2013) USA 0.604 Yield, BF3 -1.0 -3.0 0.9 2.4 



0.604 Yield, BF3 -0.6 -0.9 0.2 0.1 
Tous et al. (2013) Spain 2.51 ns -0.6 -11.6 5.0 0.8 

Bothma et al. (2014) South Africa 
0.15 ns n/a -4.0 n/a n/a 
0.30 ns n/a -1.0 n/a n/a 
0.60 ns n/a -14.0 n/a n/a 

Martínez-Aispuro et al. 
(2014) Mexico 0.60 ns n/a -5.8 -0.3 -4.3 
Wang et al. (2015) China 0.60 ns 3.1 0.0 n/a 5.2 
Marcolla et al. (2017) Brazil 0.284 BF 0.0 -27.5 n/a 2.0 

0.284 ns -0.2 5.8 n/a -4.2 
Upadhaya et al. (2017) South Korea 0.28 ns n/a -2.3 1.0 0.9 

0.56 ns n/a -6.4 1.8 0.9 
Panisson et al. (2020) Brazil 0.18 ns n/a 4.8 n/a -0.3 

0.36 ns n/a 5.2 n/a -3.6 
1Significant level at P ≤ 0.05. Difference is calculated as [(treatment value – control value) / control value] * 100%. 
2Polynomial contrasts were used for statistical analysis. 
3Significant level at 0.05 < P ≤ 0.10. 
4For experiments using factorial treatment structures, if the interaction of factors of either interested variable was observed 

the effect of the feed additive within each level of the other factor is included within the database. 
5CLA was fed in the 3 treatment diets during the last 29, 56, or 87 kg of BW gain before slaughter respectively. 



2.4.  L-carnitine 

There were 12 research articles for L-carnitine with 29 comparisons from 4 countries 

during the grow-finish or finishing period with added dietary levels of 25 to 250 mg/kg, with 

most studies feeding 50 mg/kg. Of these, 24 comparisons reported growth performance data, 

and 22 comparisons reported carcass data.  

2.4.1.  Growth Performance – L-carnitine 

 Average daily gain significantly increased (P ≤ 0.05) in 2 comparisons (average of 

3.3%), tended to increase (0.05 < P ≤ 0.10) in 4 comparisons (average of 3.1%), and significantly 

decreased (P ≤ 0.05) in 1 comparison (4.8%) compared to control pigs (Table S19). The greatest 

proportion of the comparisons found no evidence of difference (P > 0.10) in ADG (17 

comparisons). Of these, ADG was numerically increased (P > 0.10) in 13 comparisons (average 

of 3.4%) and numerically decreased (P > 0.10) in 3 comparisons (average of 2.6%) compared to 

control pigs. Feed efficiency significantly increased (P ≤ 0.05) in 1 comparison (2.9%) and 

tended to increase (0.05 < P ≤ 0.10) in 3 comparisons (average of 3.7%) compared to control 

pigs. The greatest proportion of the comparisons found no evidence of difference (P > 0.10) in 

G:F (20 comparisons). Of these, G:F was numerically increased (P > 0.10) in 13 comparisons 

(average of 4.4%) and numerically decreased (P > 0.10) in 5 comparisons (average of 2%) 

compared to control pigs. Overall, the results suggest that L-carnitine has the potential to 

improve ADG and G:F (79 and 71% of all the comparisons) with relatively large improvement. 



Moreover, the beneficial effects of L-carnitine were significant (P < 0.10) for ADG and G:F in 25 

and 23% of all the comparisons, respectively. There were not enough data to support whether 

different inclusion levels or types of basal diets affected the response to L-carnitine for ADG 

and G:F. However, results might suggest that pigs fed L-carnitine were more likely to have 

improved ADG and G:F when fed in diets without DDGS [290-292], but further research is 

needed to confirm this. Additionally, environmental factors, such as temperature, humidity, 

and stress level, may affect L-carnitine response [293] due to the change in feed intake and 

physiological status. 



Table S19. Studies on the effects of dietary L-carnitine on growth performance. 
    Difference, %1 
Authors Country Inclusion, 

mg/kg Sig.1 ADG G:F 

Owen et al. (2001) USA 50 ns2 2.2 -3.1 
125 -1.1 0.0 

Owen et al. (2001) USA 

25 

ns2 

3.3 3.1 
50 2.2 6.3 
75 3.3 6.3 
100 6.5 6.3 
125 2.2 6.3 

Waylan et al. (2003) USA 50 ns 0.8 1.3 
Bertol et al. (2005) USA 150 ns -4.7 -3.6 
Han and Thacker (2006) South Korea 50 ns 5.0 7.1 
Chen et al. (2008) South Korea 250 ns 3.9 3.1 
Pietruszka et al. (2009) Poland 100 ns 1.4 1.2 
James et al. (2013) USA 50 ns 0.0 -0.4 
James et al. (2013), Exp. 1 USA 25 ADG2 -4.8 0.0 

50 0.6 -1.6 
James et al. (2013), Exp. 2 USA 25 G:F2,3 2.3 5.5 

50 -1.9 4.1 
James et al. (2013), Exp. 3 USA 50 ns 9.4 7.7 
James et al. (2013), Exp. 4 USA 50 ADG, G:F 6.0 2.9 

Ying et al. (2013) USA 
504 ADG2,3 4.9 3.5 

1004 3.7 0.6 
504 ADG2,3 2.4 -1.2 

1004 1.2 4.2 
Meng et al. (2018) USA 50 G:F3 1.8 1.5 

1Significant level at P ≤ 0.05. Difference is calculated as [(treatment value – control value) / control 
value] * 100%. 

2Polynomial contrasts were used for statistical analysis. 
3Significant level at 0.05 < P ≤ 0.10.  
4The basal diets were corn-SBM based in the top two comparisons. The basal diets were corn-

DDGS-SBM based in the bottom two comparisons. 



2.4.2.  Carcass Characteristics – L-carnitine 

Back-fat significantly increased (P ≤ 0.05) in 3 comparisons (average of 4%), tended to 

increase (0.05 < P ≤ 0.10) in 2 comparisons (average of 1.4%), significantly decreased (P ≤ 0.05) 

in 2 comparisons (average of 12.5%), and tended to decrease (0.05 < P ≤ 0.10) in 7 comparisons 

(average of 4.8%) compared to control pigs (Table S20). Eight comparisons found no evidence 

of difference (P > 0.10) in BF. Of these, BF was numerically increased (P > 0.10) in 1 comparison 

(1.9%) and numerically decreased (P > 0.10) in 6 comparisons (average of 5.7%) compared to 

control pigs. Percentage lean significantly increased (P ≤ 0.05) in 4 comparisons (average of 

3.8%), tended to increase (0.05 < P ≤ 0.10) in 2 comparisons (average of 1.5%), and significantly 

decreased (P ≤ 0.05) in 3 comparisons (average of 1.3%) compared to control pigs. Half of the 

studies found no evidence of difference (P > 0.10) in percentage lean (11 comparisons). Of 

these, percentage lean was numerically increased (P > 0.10) in 7 comparisons (average of 1.5%) 

and numerically decreased (P > 0.10) in 3 comparisons (average of 0.7%) compared to control 

pigs. Loin muscle area/depth significantly increased (P ≤ 0.05) in 1 comparison (6.3%) 

compared to control pigs. The greatest proportion of the comparisons found no evidence of 

difference (P > 0.10) in LMA/LD (20 comparisons). Of these, LMA/LD was numerically 

increased (P > 0.10) in 13 comparisons (average of 4.4%) and numerically decreased (P > 0.10) 

in 6 comparisons (average of 2.3%) compared to control pigs. There were not enough data to 

support whether different inclusion levels or types of basal diets affected the response to L-



carnitine for carcass characteristics. Overall, the results suggest that L-carnitine is a potential 

feed additive that had relatively large positive effects on BF, percentage lean, and LMA/LD 

(68, 65, and 67% of all the comparisons) compared to other feed additives in this review, with 

23, 30, and 5% of all the comparisons being significant (P < 0.10), respectively.



Table S20. Studies on the effects of dietary L-carnitine on carcass characteristics. 
    Difference, %1 

Authors Country 
Inclusion, 

mg/kg Sig.1 Yield BF 
percentag

e lean LMA/LD 

Owen et al. (2001) USA 
50 BF2,3, 

percentage 
lean2 

-1.3 -2.6 1.8 1.4 
125 -1.2 -4.3 4.1 9.2 

Owen et al. (2001) USA 

25 
BF2,3, 

percentage 
lean2 

0.9 0.6 -2.6 -6.4 
50 -0.4 -9.1 7.6 12.6 
75 -0.7 -5.0 1.9 0.2 

100 -0.1 -2.8 -0.3 -1.1 
125 1.0 2.2 -0.9 0.6 

Waylan et al. (2003) USA 50 ns 0.5 1.9 0.1 2.2 
Bertol et al. (2005) USA 150 ns n/a -3.8 n/a -2.2 
Han and Thacker (2006) South Korea 50 ns -0.1 -10.5 0.8 n/a 
Chen et al. (2008) South Korea 250 BF n/a -18.2 1.8 16.2 
Pietruszka et al. (2009) Poland 100 ns 2.7 -7.4 1.4 -3.4 
James et al. (2013), Exp.1  USA 25 ns2 -0.6 -3.1 2.2 1.8 

50 -0.7 -2.2 1.7 0.2 

James et al. (2013), Exp.2 USA 
25 BF2,3, 

percentage 
lean 2,3 

3.0 -2.0 1.2 7.5 
50 0.6 -7.6 1.7 2.0 

James et al. (2013), Exp.3 USA 50 LMA n/a -7.1 2.4 6.3 

Ying et al. (2013)7 USA 
504 Yield2,3, BF2 1.6 4.8 -0.7 0.5 

1004 0.4 3.0 -0.5 -0.3 
504 Yield2,3, BF2 0.3 4.2 -0.7 -0.3 

1004 0.1 0.0 0.0 0.0 
Meng et al. (2018) USA 50 BF -0.2 -6.7 n/a 3.3 

1Significant level at P ≤ 0.05. Difference is calculated as [(treatment value – control value) / control value] * 100%. 
2Polynomial contrasts were used for statistical analysis. 
3Significant level at 0.05 < P ≤ 0.10.  
4The basal diets were corn-SBM based in the top two comparisons. The basal diets were corn-DDGS-SBM based in the 

bottom two comparisons. 



3. Feed Additives – Enzymes 

This section discusses dietary enzymes used as feed additives in classes of carbohydrases, 

proteases, phytases, and combination of different types of enzymes (multi-enzymes). There 

were 86 research articles for enzymes with 165 comparisons from 13 countries during the 

grow-finish or finishing period which met the requirements for inclusion. Of these, 163 

comparisons reported growth performance data, and 107 comparisons reported carcass data. 

For phytases, its effect in low P diets has been well established, thus, only experiments that 

utilized diets at/above P requirement were included to discuss the other potential benefits of 

adding phytases. 

3.1.  Growth performance - Carbohydrases 

Average daily gain significantly increased (P ≤ 0.05) in 15 comparisons (average of 5.3%), 

tended to increase (0.05 < P ≤ 0.10) in 5 comparisons (average of 4%), and significantly 

decreased (P ≤ 0.05) in 4 comparisons (average of 2.7%) compared to control pigs (Table S21). 

The greatest proportion of the comparisons found no evidence of difference (P > 0.10) in ADG 

(63 comparisons). Of these, ADG was numerically increased (P > 0.10) in 35 comparisons 

(average of 2.9%) and numerically decreased (P > 0.10) in 24 comparisons (average of 3.3%) 

compared to control pigs. Feed efficiency significantly increased (P ≤ 0.05) in 8 comparisons 

(average of 8.5%) and tended to increase (0.05 < P ≤ 0.10) in 2 comparisons (average of 5.9%) 

compared to control pigs. The greatest proportion of the comparisons found no evidence of 



difference (P > 0.10) in G:F (74 comparisons). Of these, G:F was numerically increased (P > 0.10) 

in 46 comparisons (average of 2.9%) and numerically decreased (P > 0.10) in 19 comparisons 

(average of 3.8%) compared to control pigs. Overall, the results suggest that carbohydrases 

had positive effects on ADG and G:F (63 and 67% of all the comparisons), but the magnitude 

was small, and most comparisons had no statistical differences. Additionally, in a meta-

analysis conducted by Aranda-Aguirre et al. [302], the authors found that β-mannanase and 

xylanase had no effects (P > 0.10) on growth performance of finishing pigs. However, in 

another meta-analysis by Kiarie et al. [303], the authors found β-mannanase improved (P < 

0.0001) ADG and G:F of grow-finish pigs. Dietary composition and differences in primary 

ingredients utilized may affect the effect of carbohydrases on ADG and G:F. Corn diets (32 

comparisons) had 2.6% improvement in ADG and 2.2% increase in G:F; Barley diet had 0.4% 

improvement in ADG (23 comparisons) and 1.7% improvement in G:F (21 comparisons); and 

wheat diet had 0.9% decrease in ADG (16 comparisons) and 0.2% improvement in G:F (15 

comparisons). Moreover, with the limited data, carbohydrases appeared to improve ADG and 

G:F in some trials with diets that were low in energy and/or AAs, which suggest 

carbohydrases may be beneficial for the economic efficiency in diets formulated below 

requirements. Moreover, carbohydrases showed no benefit or negative effects in diets with 

high level of DDGS (above 15%). Because the production of DDGS utilizes carbohydrases 



during the fermentation stage to release the nutrients (starch), there may not be enough 

available substrates for dietary carbohydrases to be beneficial. 

Table S21. Studies on the effects of enzymes on growth performance. 
    Difference, %1 
Author Country Enzyme Sig.1 ADG G:F 
Thacker et al. (1988) Canada Carbohydrases ns 2.7 0.6 
Thacker et al. (1992) Canada Carbohydrases5 ns 1.2 1.6 

ns -8.1 -3.7 

Baas and Thacker (1996) Canada 
Carbohydrasesa ns 0.0 2.4 
Carbohydrasesb ns -3.5 2.9 
Carbohydrasesc ns -1.2 1.6 
Carbohydrasesd ns -3.5 0.8 

Kim et al. (1998) USA Carbohydrases ns 3.2 -0.4 
Flis et al. (1998) Poland Carbohydrases5 ns 3.1 3.3 

ns 4.4 4.7 
O'Doherty and Forde (1999) Ireland Carbohydrases ns -2.6 0.3 
Thacker and Campbell (1999) Canada Carbohydrases5 ns 0.0 0.0 

ns -2.1 2.4 
Mavromichalis et al. (2000), 
Exp. 1 USA Carbohydrases ns -1.7 3.5 
Mavromichalis et al. (2000), 
Exp. 2 USA Carbohydrases ns 2.2 0.0 
Grandhi (2001) Canada Carbohydrases G:F 1.2 4.2 
Pettey et al. (2002) USA Carbohydrases ADG, G:F3 3.6 4.2 
Park et al. (2003), Exp. 1 USA Carbohydrases ns 2.2 2.7 

Park et al. (2003), Exp. 2 USA Carbohydrases4 ADG2,3 
4.4 2.8 
3.3 2.8 
6.7 5.6 

Park et al. (2003), Exp. 3 USA Carbohydrases4 ns2 
0.0 0.0 
1.1 3.1 
1.1 0.0 

Park et al. (2003) USA Carbohydrases5 

ns 2.2 5.9 
ns -5.4 -4.7 
ns -5.8 -5.4 
ns 1.6 1.0 
ns -2.9 -0.5 

Flis and Sobotka (2005) Poland Carbohydrases ns 2.6 3.2 
Thacker (2005), Exp. 1 Canada Carbohydrases ns 0.0 1.1 
Thacker (2005), Exp. 2 Canada Carbohydrases ns -1.9 0.0 

Thacker and Rossnagel (2005) Canada Carbohydrases5 
ns 3.9 3.1 
ns -1.9 -3.7 
ns -1.9 0.0 

Thacker and Rossnagel (2005) Canada Carbohydrases5 
ns 1.9 1.6 
ns 1.8 2.9 
ns 1.8 0.4 

Kim et al. (2006) USA Carbohydrases6 G:F3 14.8 7.7 
G:F3 0.8 0.0 

Roșu and Falcă (2007) Romania Carbohydrases ns 6.5 9.4 
Świątkiewicz and 
Hanczakowska (2008) Poland Carbohydrases5 ns 1.7 n/a 

ns 4.6 n/a 
Wang et al. (2009) Carbohydrasesa ADG, G:F 9.6 14.3 



South 
Korea Carbohydrasesb ADG, G:F 8.4 16.5 

Widyaratne et al. (2009) Canada Carbohydrases5 ns -2.9 2.8 
ns -1.1 -9.7 

Jacela et al. (2010), Exp. 1 USA Carbohydrases ns 0.5 -0.6 
Jacela et al. (2010), Exp. 4 USA Carbohydrases ns -1.0 0.0 

Yoon et al. (2010), Exp. 14 South 
Korea Carbohydrases ADG2 

0.4 1.1 
4.7 5.2 
2.6 2.1 

Yoon et al. (2010), Exp. 2 South 
Korea Carbohydrases5 ADG 4.1 8.5 

ADG 2.5 1.5 

Barnes et al. (2011) USA Carbohydrases5 
ADG -0.9 1.7 
ADG -1.4 -1.4 
ADG -1.3 -1.0 

Hanczakowska et al. (2012) Poland Carbohydrases4 
ns 1.5 1.9 

ADG 4.2 3.2 
ADG, G:F 6.2 10.6 

Jo et al. (2012), Exp. 1 South 
Korea 

Carbohydrasesa ns 1.5 1.5 
Carbohydrasesb ADG 2.8 3.0 

McAlpine et al. (2012) Ireland Carbohydrases ADG -7.2 n/a 
Cho and Kim (2013) South 

Korea 
Carbohydrasesa ns 9.9 2.4 
Carbohydrasesb ADG, G:F 14.7 11.9 

Kerr et al. (2013) USA 

Carbohydrasesa ns 5.2 -2.4 
Carbohydrasesb ns -6.6 -12.3 
Carbohydrasesc ns -2.0 -4.5 
Carbohydrasesd ns -9.3 -9.3 
Carbohydrasese ns -2.4 -3.6 

Kim et al. (2013) South 
Korea 

Carbohydrasesa ADG 10.3 8.2 
Carbohydrasesb ns 3.8 1.9 

Lipiński et al. (2013) Poland Carbohydrases4 ADG 2.6 2.1 
ADG 3.0 2.9 

O'Shea et al. (2014) Ireland Carbohydrases ns -7.3 -4.9 
Villca et al. (2016) Switzerland Carbohydrases ns 1.5 2.5 
Lindemann (2016) USA Carbohydrases ns 1.0 2.3 
Nguyen et al. (2018) South 

Korea Carbohydrases ADG3, G:F 3.4 2.7 
Torres-Pitarch et al. (2018) Ireland Carbohydrases ns 0.3 0.0 
Smit et al. (2019) Canada Carbohydrases ADG3 2.0 2.4 
Jang et al. (2020) South 

Korea Carbohydrases ns 3.2 6.8 

Jang et al. (2020) South 
Korea Carbohydrases ns 1.7 -0.3 

Torres-Pitarch et al. (2020) Ireland Carbohydrases5 G:F 3.1 5.2 
G:F -1.2 2.3 

Torres-Pitarch et al. (2020) Ireland Carbohydrases5 ns -1.9 0.4 
ns 2.3 -1.1 

Kpogo et al. (2021) Canada Carbohydrases ns -0.9 -2.6 
O'Doherty and Forde (1999) Ireland Proteases ns 0.5 2.4 
Thacker (2005), Exp. 2 Canada Proteases ns -3.9 -0.4 

Reyna et al. (2006)4 Mexico Proteases 
ns -8.2 -4.3 
ns -4.2 -4.3 
ns -1.5 -2.0 

McAlpine et al. (2012) Ireland Proteases ADG -5.4 n/a 
O'Shea et al. (2014) Ireland Proteases ADG -9.8 0.8 



Stephenson et al. (2014) USA Proteases ADG3 1.7 -0.7 
Upadhaya et al. (2016) South 

Korea Proteases G:F 3.2 2.6 

Choe et al. (2017) South 
Korea Proteases ADG, G:F 6.0 15.1 

Lei et al. (2017) South 
Korea Proteases G:F 2.2 6.5 

Nguyen et al. (2018) South 
Korea 

Proteasesa ns 2.4 2.9 
Proteasesb ns 1.7 2.1 

Figueroa et al. (2019) Mexico Proteases ns 2.9 -2.2 

Liu et al. (2019)4 South 
Korea Proteases ADG2,3, 

G:F2 
1.8 1.0 
5.5 3.1 
3.9 1.5 

Min et al. (2019) South 
Korea Proteases ADG 5.2 2.8 

Lee et al. (2020) South 
Korea Proteases G:F3 4.3 7.6 

Kim et al. (2021) South 
Korea 

Proteasesa ns 1.3 0.0 
Proteasesb ADG, G:F 4.4 4.9 

Perez-Palencia et al. (2021) USA Proteases ns -0.7 -0.2 
Cromwell et al. (1993), Exp. 1 USA Phytases ns 4.6 6.0 
Cromwell et al. (1993), Exp. 2 USA Phytases ns 1.1 -0.3 
Cromwell et al. (1995) USA Phytases ns 1.6 -2.1 
Helander and Partanen (1997) Finland Phytases ns -1.7 -4.5 
O'Doherty et al. (1999) Ireland Phytases4 ns 1.3 0.0 

ns 1.8 2.0 
Gebert et al. (1999) Switzerland Phytases ADG, G:F 10.6 8.2 
Gagné et al. (2002) Canada Phytases ns -4.6 1.9 
Brady et al. (2002) Ireland Phytases ns 5.6 1.5 
Thacker and Rossnagel (2006) Canada Phytases ns 2.5 -3.2 
Thacker et al. (2006) Canada Phytases ns 5.2 3.3 
Varley et al. (2010), Exp. 1 Ireland Phytases ns 4.2 1.6 
Varley et al. (2010), Exp. 2 Ireland Phytases ns -3.0 0.0 
Kerr et al. (2013) USA Phytases ns -3.8 -6.6 

Langbein et al. (2013) USA 
Phytases a ns -3.3 0.3 
Phytases b ns -2.3 -0.3 
Phytases c ns -2.3 -0.3 

Patience (2015) USA Phytases4 
ns 1.6 0.0 
ns 0.0 0.0 
ns 1.6 0.0 

Pérez Alvarado et al. (2015) Mexico Phytases a ns 0.0 6.9 
Phytases b ns -3.0 2.3 

Lindemann (2016) USA Phytases4 ADG2, 
G:F2,3 

7.5 2.9 
8.8 5.0 
5.5 5.9 

Holloway et al. (2019) USA Phytases4 
ns 1.5 0.9 
ns 0.1 1.2 
ns 1.3 1.2 

Dang and Kim (2021) South 
Korea Phytases ADG, G:F 5.7 3.3 

Dang and Kim (2021) South 
Korea Phytases ADG, G:F3 4.1 2.9 

Baas and Thacker (1996) Canada Multi-enzymes ns -2.3 2.4 
Thacker (2005), Exp. 2 Canada Multi-enzymes ns -2.9 0.4 
Domaćinović et al. (2006) Croatia Multi-enzymes5 ns 0.7 0.3 



ns 1.6 1.3 
Feoli et al. (2008) USA  Multi-enzymes ns -0.3 -2.1 
Benz et al. (2009) USA  Multi-enzymes ns 0.5 1.9 
Thacker (2009) Canada Multi-enzymes ns 5.7 2.8 
Thacker and Haq (2009) Canada Multi-enzymes ns -1.2 0.7 
Jacela et al. (2010), Exp. 2 USA  Multi-enzymes ns -0.1 -0.8 
Jacela et al. (2010), Exp. 3 USA  Multi-enzymesa ns 1.7 0.0 

 Multi-enzymesb ns 0.1 0.0 
Ao et al. (2011) South 

Korea  Multi-enzymes4 ADG2, G:F2 6.3 2.8 
7.6 5.6 

Lee et al. (2011) South 
Korea  Multi-enzymes G:F 2.3 9.2 

Jo et al. (2012), Exp. 1 South 
Korea 

 Multi-enzymesa ADG 3.2 3.4 
 Multi-enzymesb ADG, G:F 5.0 4.9 

Jo et al. (2012), Exp. 2 South 
Korea  Multi-enzymes ADG, G:F 2.9 3.6 

Kerr et al. (2013) USA  Multi-enzymes ns -1.6 -6.6 

Sitanaka et al. (2018) Brazil  Multi-enzymes 
ns 8.3 0.8 

ADG, G:F 24.9 11.2 
ns 0.8 3.8 
ns 7.2 1.3 

Lawlor et al. (2019) Ireland Multi-enzymes ADG, G:F 11.3 2.6 
Balasubramanian et al. (2020) South 

Korea Multi-enzymes ADG, G:F 8.5 16.9 

Coelho et al. (2020) Portugal  Multi-enzymesa ns -6.5 -5.5 
 Multi-enzymesb ns -3.7 -1.5 

Jerez-Bogota et al. (2020) USA Multi-enzymes5 G:F 0.0 30.8 
ADG 5.6 2.4 

Huang et al. (2021) China  Multi-enzymes G:F 4.0 2.6 
1Significant level at P ≤ 0.05. Difference is calculated as [(treatment value – control value) / 

control value] * 100%. 
2Polynomial contrasts were used for statistical analysis. 
3Significant level at 0.05 < P ≤ 0.10.  
4Same enzyme of each experiment was used with different inclusion levels. The inclusion level 

of each comparison increases from top to bottom. 
5For experiments using factorial treatment structures, if the interaction of factors of either 

interested variable 
 was observed the effect of the feed additive within each level of the other factor is included 

within the database. 
6The top comparison was the result of barrow and the bottom comparison was the results of 

gilts. 
a,b,c,d Enzyme compositions within an experiment with different superscripts differ. 

3.2.  Carcass Characteristics - Carbohydrases 

Back-fat significantly increased (P ≤ 0.05) in 2 comparisons (average of 4.1%) and tended 

to increase (0.05 < P ≤ 0.10) in 1 comparison (4.8%) compared to control pigs (Table S22). The 



greatest proportion of the comparisons found no evidence of difference (P > 0.10) in BF (54 

comparisons). Of these, BF was numerically increased (P > 0.10) in 18 comparisons (average of 

4.0%) and numerically decreased (P > 0.10) in 29 comparisons (average of 3.7%) compared to 

control pigs. Percentage lean significantly increased (P ≤ 0.05) in 1 comparison (5.6%) and 

significantly decreased (P ≤ 0.05) in 2 comparisons (average of 0.7%) compared to control pigs. 

The greatest proportion of the comparisons found no evidence of difference (P > 0.10) in 

percentage lean (52 comparisons). Of these, percentage lean was numerically increased (P > 

0.10) in 28 comparisons (average of 1.1%) and numerically decreased (P > 0.10) in 20 

comparisons (average of 0.8%) compared to control pigs. All studies found no evidence of 

difference (P > 0.10) in LMA/LD (38 comparisons). Of these, LMA/LD was numerically 

increased (P > 0.10) in 20 comparisons (average of 3.3%) and numerically decreased (P > 0.10) 

in 17 comparisons (average of 1.5%) compared to control pigs. 



Table S22. Studies on the effects of enzymes on carcass characteristics. 
    Difference, %1 
Author Country Enzyme Sig.1 Yield BF percentag

e lean LMA/LD 

Thacker et al. (1992) Canada Carbohydras
es5 

ns 0.9 n/a -1.0 n/a 
ns -0.3 n/a -0.2 n/a 

Kim et al. (1998) USA Carbohydras
es 

ns 0.6 -3.1 0.9 n/a 

O'Doherty and Forde (1999) Ireland Carbohydras
es ns -0.6 2.7 -0.5 0.1 

Thacker and Campbell 
(1999) Canada Carbohydras

es5 
ns 1.7 0.5 0.2 -0.7 
ns -0.4 -1.4 0.0 -2.7 

Mavromichalis et al. (2000), 
Exp.1  USA Carbohydras

es ns 0.1 -2.2 0.2 n/a 
Mavromichalis et al. (2000), 
Exp.2 USA Carbohydras

es ns -0.1 -1.2 0.1 n/a 

Grandhi (2001) Canada Carbohydras
es ns 0.1 -0.7 n/a n/a 

Pettey et al. (2002) USA Carbohydras
es ns n/a -4.9 1.9 5.9 

Park et al. (2003), Exp.1  USA Carbohydras
es ns -0.3 0.4 -0.4 n/a 

Park et al. (2003), Exp.2 USA Carbohydras
es4 ns2 

2.6 -5.1 1.5 n/a 
0.4 -1.6 0.4 n/a 
0.7 -3.5 0.9 n/a 

Park et al. (2003), Exp.3 USA Carbohydras
es4 ns2 

-0.5 -1.6 0.2 n/a 
-2.9 -4.4 0.6 n/a 
0.0 -2.7 0.6 n/a 

Park et al. (2003) USA Carbohydras
es5 

ns -1.2 2.1 -0.2 n/a 
ns -0.1 -6.9 1.6 n/a 
ns -0.1 -7.6 2.0 n/a 
ns -0.3 2.8 -0.4 n/a 
ns -1.2 0.0 0.0 n/a 

Flis and Sobotka (2005) Poland Carbohydras
es 

ns n/a n/a -0.1 n/a 

Thacker (2005), Exp. 2 Canada Carbohydras
es 

ns 0.0 -5.3 0.7 -3.1 

Thacker and Rossnagel 
(2005) Canada Carbohydras

es5 
ns 0.9 0.0 -0.3 -3.5 
ns 0.9 -1.6 0.3 3.1 
ns -0.1 -2.1 0.0 1.6 



Thacker and Rossnagel 
(2005) Canada Carbohydras

es5 
ns 0.5 -1.2 0.0 1.0 
ns 0.1 -5.9 0.8 3.2 
ns 0.9 -1.8 -0.2 -2.8 

Świątkiewicz and 
Hanczakowska (2008) Poland Carbohydras

es5 
ns 8.1 -2.5 0.9 n/a 
ns 8.3 -1.9 -0.7 n/a 

Wang et al. (2009) South 
Korea 

Carbohydras
esa ns n/a 0.8 0.7 6.5 

Carbohydras
esb ns n/a 2.5 1.1 9.8 

Yoon et al. (2010), Exp. 14 South 
Korea 

Carbohydras
es ns2 

1.0 -0.6 0.8 1.1 
0.2 -2.5 1.8 2.3 
0.3 -1.9 1.2 1.4 

Yoon et al. (2010), Exp. 2 South 
Korea 

Carbohydras
es5 

ns 4.0 16.1 -4.8 -2.6 
ns 1.8 6.7 8.1 12.7 

Barnes et al. (2011) USA Carbohydras
es5 

ns 0.8 0.0 0.2 0.0 
ns -1.5 -1.2 -0.4 -3.0 
ns 0.0 0.0 0.8 2.6 

Pauly et al. (2011) Ireland Carbohydras
es5 

ns -1.8 6.0 -1.0 n/a 
percentage 

lean 
5.1 -17.0 5.6 n/a 

Hanczakowska et al. (2012) Poland Carbohydras
es4 

ns -0.2 -6.0 -0.4 -0.3 
ns -0.3 0.0 -0.7 -0.3 
ns 0.2 0.5 0.6 0.1 

Cho and Kim (2013) South 
Korea 

Carbohydras
esa ns n/a 2.1 n/a 4.1 

Carbohydras
esb ns n/a 3.4 n/a 5.1 

O'Shea et al. (2014) Ireland Carbohydras
es ns -0.4 -6.3 1.5 n/a 

Lindemann (2016) USA Carbohydras
es ns n/a 0.1 -0.1 -1.1 

Villca et al. (2016) Switzerland Carbohydras
es ns -0.1 -0.7 -0.2 -0.9 

Nguyen et al. (2018) South 
Korea 

Carbohydras
es ns n/a n/a n/a 0.1 

Torres-Pitarch et al. (2018) Ireland Carbohydras
es ns 0.0 0.0 0.5 -0.2 

Smit et al. (2019) Canada Carbohydras
es ns 0.3 0.0 0.2 0.8 



Jang et al. (2020) South 
Korea 

Carbohydras
es ns -0.2 -5.5 n/a n/a 

Torres-Pitarch et al. (2020) Ireland Carbohydras
es5 

ns -0.5 6.2 -0.5 3.2 
ns 0.4 1.7 -0.3 -0.6 

Torres-Pitarch et al. (2020) Ireland Carbohydras
es5 

BF, 
percentage 

lean 

0.3 1.6 -0.2 -1.2 

BF, 
percentage 

lean 

0.0 6.6 -1.2 -0.8 

Kpogo et al. (2021) Canada Carbohydras
es BF3 0.2 4.8 n/a -1.0 

O'Doherty and Forde (1999) Ireland Proteases ns 0.2 10.8 -2.1 -4.0 
Thacker (2005), Exp. 2 Canada Proteases ns 0.4 -8.3 1.5 5.4 

Reyna et al. (2006) Mexico Proteases4 
ns n/a n/a -1.2 -6.1 
ns n/a n/a -1.1 -5.6 
ns n/a n/a -1.9 -6.5 

O'Shea et al. (2014) Ireland Proteases ns -0.4 -4.0 0.4 n/a 
Stephenson et al. (2014) USA Proteases Yield -1.2 0.0 0.0 0.8 
Choe et al. (2017) South 

Korea Proteases Yield3 0.2 -2.7 -0.2 n/a 
Torres-Pitarch et al. (2018) Ireland Proteases ns -0.7 0.8 -0.3 -2.0 
Figueroa et al. (2019) Mexico Proteases ns n/a 1.9 n/a -0.7 

Liu et al. (2019) South 
Korea Proteases4 BF2,3 

n/a 1.1 0.7 n/a 
n/a 6.2 2.4 n/a 
n/a 3.7 0.9 n/a 

Min et al. (2019) South 
Korea Proteases ns -0.4 -5.4 n/a n/a 

Lee et al. (2020) South 
Korea Proteases ns -0.1 -4.2 n/a n/a 

Perez-Palencia et al. (2021) USA Proteases ns n/a -1.7 0.4 1.1 
Helander and Partanen 
(1997) Finland Phytases ns -1.7 n/a n/a n/a 

O'Doherty et al. (1999)4 Ireland Phytases4 ns 1.1 -6.5 1.3 0.9 
ns 3.1 0.0 -0.2 3.5 

Brady et al. (2002) Ireland Phytases Yield -1.0 2.0 -0.6 n/a 
Thacker et al. (2006) Canada Phytases ns 0.0 -6.7 0.0 -11.6 
Thacker and Rossnagel 
(2006) Canada Phytases ns -0.1 2.7 -0.8 -11.3 

Varley et al. (2010), Exp. 1 Ireland Phytases ns 0.7 -0.8 -0.2 n/a 



Varley et al. (2010), Exp. 2 Ireland Phytases ns -0.7 1.6 -0.5 n/a 

Langbein et al. (2013) USA 
Phytases a ns 0.5 1.3 0.5 3.3 
Phytases b ns 0.3 0.0 0.3 2.1 
Phytases c ns 0.3 1.3 0.1 1.7 

Pérez Alvarado et al. (2015) Mexico Phytases a ns n/a -2.6 n/a -1.8 
Phytases b ns n/a -4.4 n/a -3.0 

Lindemann (2016) USA Phytases4 
BF2,3, 

percentage 
lean2 

n/a -6.1 1.4 2.3 
n/a -13.4 2.9 4.0 
n/a -10.8 2.8 6.4 

Holloway et al. (2019) USA Phytases4 
ns 0.3 n/a n/a n/a 
ns 0.0 n/a n/a n/a 
ns -0.4 n/a n/a n/a 

Dang and Kim (2021) South 
Korea Phytases BF n/a 8.3 n/a 0.4 

Dang and Kim (2021) South 
Korea Phytases ns n/a 1.2 n/a 0.3 

Thacker (2005), Exp. 2 Canada Multi-
enzymes 

ns 0.8 -1.0 0.2 -1.4 

Domaćinović et al. (2006) Croatia Multi-
enzymes5 

ns n/a n/a 1.1 n/a 
percentage 

lean 
n/a n/a 4.4 n/a 

Feoli et al. (2008) USA  Multi-
enzymes ns 0.1 -1.6 0.0 -1.1 

Benz et al. (2009) USA  Multi-
enzymes ns -0.4 -0.5 -0.4 -2.2 

Thacker (2009) Canada Multi-
enzymes ns -1.9 -3.9 0.2 -3.2 

Thacker and Haq (2009) Canada Multi-
enzymes ns 0.1 11.3 -1.3 3.5 

Lee et al. (2011) South 
Korea 

 Multi-
enzymes ns 0.2 -12.3 n/a n/a 

Ao et al. (2011) South 
Korea 

 Multi-
enzymes4 ns2 n/a 1.9 0.7 0.3 

n/a 1.4 1.2 1.7 
Balasubramanian et al. 
(2020) 

South 
Korea 

Multi-
enzymes 

BF n/a -10.2 n/a -6.0 

Coelho et al. (2020) Portugal 
 Multi-

enzymesa ns -0.3 29.4 n/a n/a 
 Multi-

enzymesb ns -0.4 15.5 n/a n/a 



Huang et al. (2021) China  Multi-
enzymes LMA 1.7 3.1 n/a 11.3 

1Significant level at P ≤ 0.05. Difference is calculated as [(treatment value – control value) / control value] * 100%. 
2Polynomial contrasts were used for statistical analysis. 
3Significant level at 0.05 < P ≤ 0.10.  
4Same enzyme of each experiment was used with different inclusion levels. The inclusion level of each comparison 

increases from top to bottom. 
5For experiments using factorial treatment structures, if the interaction of factors of either interested variable was observed 

the effect of the feed additive within each level of the other factor is included within the database. 
a,b,c Enzyme compositions within an experiment with different superscripts differ. 



3.3.  Growth performance - Proteases 

Average daily gain significantly increased (P ≤ 0.05) in 3 comparisons (average of 5.2%), 

tended to increase (0.05 < P ≤ 0.10) in 4 comparisons (average of 3.2%), and significantly 

decreased (P ≤ 0.05) in 2 comparisons (average of 7.6%) compared to control pigs (Table S21). 

The greatest proportion of the comparisons found no evidence of difference (P > 0.10) in ADG 

(14 comparisons). Of these, ADG was numerically increased (P > 0.10) in 9 comparisons 

(average of 2.1%) and numerically decreased (P > 0.10) in 5 comparisons (average of 3.7%) 

compared to control pigs. Feed efficiency significantly increased (P ≤ 0.05) in 7 comparisons 

(average of 4.9%) and tended to increase (0.05 < P ≤ 0.10) in 1 comparison (7.6%) compared to 

control pigs. The greatest proportion of the comparisons found no evidence of difference (P > 

0.10) in G:F (14 comparisons). Of these, G:F was numerically increased (P > 0.10) in 5 

comparisons (average of 2.2%) and numerically decreased (P > 0.10) in 7 comparisons (average 

of 2%) compared to control pigs. Overall, the results suggest that proteases had positive effects 

on ADG and G:F (70 and 59% of all the comparisons), but the effects were small for ADG. 

Moreover, in a meta-analysis conducted by Aranda-Aguirre et al. [302], the authors found that 

proteases had no effects (P > 0.10) on growth performance of finishing pigs. There were not 

enough data to support whether different basal diets affected the response to proteases for 

ADG and G:F. The lack of substantial positive effects of exogenous proteases may be due to 

the high digestibility of dietary protein with the endogenous proteases of the mature grow-



finish pig. Even though the digestibility of CP or N was improved (P ≤ 0.05) in some studies 

[332, 345, 352, 372], the improvements may not be large enough to improve growth 

performance.  

3.4.  Carcass Characteristics - Proteases 

Back-fat tended to increase (0.05 < P ≤ 0.10) in 3 comparisons (average of 3.7%) compared 

to control pigs (Table S22). The greatest proportion of the comparisons found no evidence of 

difference (P > 0.10) in BF (10 comparisons). Of these, BF was numerically increased (P > 0.10) 

in 3 comparisons (average of 4.5%) and numerically decreased (P > 0.10) in 6 comparisons 

(average of 4.4%) compared to control pigs. All the comparisons found no evidence of 

difference (P > 0.10) in percentage lean. Of these, percentage lean was numerically increased (P 

> 0.10) in 6 comparisons (average of 1.1%) and numerically decreased (P > 0.10) in 6 

comparisons (average of 1.1%) compared to control pigs. All the comparisons found no 

evidence of difference (P > 0.10) in LMA/LD. Of these, LMA/LD was numerically increased (P 

> 0.10) in 3 comparisons (average of 2.4%) and numerically decreased (P > 0.10) in 6 

comparisons (average of 4.1%) compared to control pigs.  

3.5.  Growth performance - Phytases 

Average daily gain significantly increased (P ≤ 0.05) in 3 comparisons (average of 6.8%) 

compared to control pigs (Table S21). The greatest proportion of the comparisons found no 

evidence of difference (P > 0.10) in ADG (21 comparisons). Of these, ADG was numerically 



increased (P > 0.10) in 12 comparisons (average of 2.6%) and numerically decreased (P > 0.10) 

in 8 comparisons (average of 3.0%) compared to control pigs. Feed efficiency significantly 

increased (P ≤ 0.05) in 2 comparisons (average of 5.7%) and tended to increase (0.05 < P ≤ 0.10) 

in 1 comparison (2.9%) compared to control pigs. The greatest proportion of the comparisons 

found no evidence of difference (P > 0.10) in G:F (21 comparisons). Of these, G:F was 

numerically increased (P > 0.10) in 13 comparisons (average of 2.3%) and numerically 

decreased (P > 0.10) in 7 comparisons (average of 2.5%) compared to control pigs. Overall, the 

results suggest that phytases had positive effects on ADG (63% of all comparisons) and G:F 

(67% of all comparisons), but most comparisons were not statistically significant (88% of all 

comparisons). Moreover, in a meta-analysis conducted by Aranda-Aguirre et al. [302], the 

authors found that phytases had no effects (P > 0.10) on growth performance of finishing pigs. 

There was not enough data to support whether different phytase inclusion levels and basal 

diets affected the response to phytases for ADG and G:F in grow-finish pig diets with 

adequate P levels.  

3.6.  Carcass Characteristics - Phytases 

Back-fat significantly increased (P ≤ 0.05) in 1 comparison (8.3%) compared to control pigs 

(Table S22). The greatest proportion of the comparisons found no evidence of difference (P > 

0.10) in BF (13 comparisons). Of these, BF was numerically increased (P > 0.10) in 6 

comparisons (average of 1.7%) and numerically decreased (P > 0.10) in 5 comparisons (average 



of 4.2%) compared to control pigs. All the comparisons found no evidence of difference (P > 

0.10) in percentage lean. Of these, percentage lean was numerically increased (P > 0.10) in 4 

comparisons (average of 0.6%) and numerically decreased (P > 0.10) in 5 comparisons (average 

of 0.5%) compared to control pigs. All the comparisons found no evidence of difference (P > 

0.10) in LMA/LD. Of these, LMA/LD was numerically increased (P > 0.10) in 7 comparisons 

(average of 1.7%) and numerically decreased (P > 0.10) in 4 comparisons (average of 6.9%) 

compared to control pigs.  

3.7.  Growth performance - Multi-enzymes 

Average daily gain significantly increased (P ≤ 0.05) in 10 comparisons (average of 7.9%) 

compared to control pigs (Table S21). The greatest proportion of the comparisons found no 

evidence of difference (P > 0.10) in ADG (19 comparisons). Of these, ADG was numerically 

increased (P > 0.10) in 10 comparisons (average of 2.9%) and numerically decreased (P > 0.10) 

in 8 comparisons (average of 2.3%) compared to control pigs. Feed efficiency significantly 

increased (P ≤ 0.05) in 10 comparisons (average of 9.0%) compared to control pigs. The greatest 

proportion of the comparisons found no evidence of difference (P > 0.10) in G:F (19 

comparisons). Of these, G:F was numerically increased (P > 0.10) in 12 comparisons (average of 

1.8%) and numerically decreased (P > 0.10) in 5 comparisons (average of 3.3%) compared to 

control pigs. Overall, the results suggest that multi-enzymes have positive effects on ADG and 

G:F (69 and 76% of all the comparisons), and multi-enzymes significantly improved (P ≤ 0.05) 



ADG and G:F in 34% of all the comparisons. Moreover, the combination of multiple enzymes 

provided greater improvement than adding any single type of enzyme (carbohydrase, 

protease, and phytase) alone, which suggests that different types of enzymes may have a 

synergetic effect. However, most comparisons showed little or negative effects in US-based 

research; therefore, the utilization of multi-enzymes in US-based diets should be evaluated 

further. There are not enough data to support whether different basal diets affected the 

response to multi-enzymes for ADG or G:F. Nevertheless, similar to the results with 

carbohydrases, multi-enzymes improved pig performance when diets were marginal in 

nutrient concentrations. In summary, there was a low chance of negative effects by feeding 

multi-enzymes and they can potentially improve growth performance (approximately 3% 

improvement for ADG and G:F).  

3.8.  Carcass Characteristics - Multi-enzymes  

Back-fat significantly decreased (P ≤ 0.05) in 1 comparison (10.2%) compared to control 

pigs (Table S22). The greatest proportion of the comparisons found no evidence of difference 

(P > 0.10) in BF (11 comparisons). Of these, BF was numerically increased (P > 0.10) in 6 

comparisons (average of 10.4%) and numerically decreased (P > 0.10) in 5 comparisons 

(average of 3.8%) compared to control pigs. Percentage lean significantly increased (P ≤ 0.05) in 

1 comparison (4.4%) compared to control pigs. The greatest proportion of the comparisons 

found no evidence of difference (P > 0.10) in percentage lean (8 comparisons). Of these, 



percentage lean was numerically increased (P > 0.10) in 6 comparisons (average of 0.6%) and 

numerically decreased (P > 0.10) in 2 comparisons (average of 0.9%) compared to control pigs. 

Loin muscle area/depth significantly increased (P ≤ 0.05) in 1 comparison (11.3%) compared to 

control pigs. The greatest proportion of the comparisons found no evidence of difference (P > 

0.10) in LMA/LD (7 comparisons). Of these, LMA/LD was numerically increased (P > 0.10) in 3 

comparisons (average of 1.8%) and numerically decreased (P > 0.10) in 5 comparisons (average 

of 2.8%) compared to control pigs.  

4. Conclusion 

In conclusion, this literature review collected available research on finishing pig feed 

additives to provide a descriptive analysis of the effects on growth and carcass performance 

and provides a database that can be further analyzed with advanced statistical methods, such 

as meta-analysis, in the hope of better understanding the effect of feed additives to improve 

the efficiency of swine production. 
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