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Simple Summary: Various measurements can be obtained on an animal. These measurements can
provide valuable information on animal welfare. Sensors and smart algorithms can automatically
perform those measurements and aid in achieving more automated meat inspection and welfare
assessment at the slaughterhouse. This study provides an overview of animal welfare measurements
at the slaughterhouse and gives examples of the available technologies to record and use these
measurements. There are several technologies available, either applied in research, on farm or at the
slaughterhouse. However, according to current European Union (EU) law the meat inspection must
be performed by a veterinarian. Therefore, sensor technology cannot yet replace a human during the
meat inspection, but it has potential to play an important role in the future. Currently it can already
add value to the inspections and provide better insight into animal welfare issues than by human
inspections alone.

Abstract: Animal-based measures (ABMs) are the preferred way to assess animal welfare. However,
manual scoring of ABMs is very time-consuming during the meat inspection. Automatic scoring by
using sensor technology and artificial intelligence (AI) may bring a solution. Based on review papers
an overview was made of ABMs recorded at the slaughterhouse for poultry, pigs and cattle and
applications of sensor technology to measure the identified ABMs. Also, relevant legislation and work
instructions of the Dutch Regulatory Authority (RA) were scanned on applied ABMs. Applications
of sensor technology in a research setting, on farm or at the slaughterhouse were reported for 10 of
the 37 ABMs identified for poultry, 4 of 32 for cattle and 13 of 41 for pigs. Several applications are
related to aspects of meat inspection. However, by European law meat inspection must be performed
by an official veterinarian, although there are exceptions for the post mortem inspection of poultry.
The examples in this study show that there are opportunities for using sensor technology by the RA
to support the inspection and to give more insight into animal welfare risks. The lack of external
validation for multiple commercially available systems is a point of attention.

Keywords: animal welfare; meat inspection; camera surveillance; sensors; abattoir; machine learning;
precision livestock farming; innovation

1. Introduction
1.1. Animal Welfare Inspections at the Slaughterhouse

Very high numbers of animals are slaughtered each year. In the Netherlands in 2021
alone more than 500 million broilers, over 17 million pigs and half a million cattle were
slaughtered [1]. The slaughter rate is high and can exceed more than 500 pigs, 150 veal
calves, 50 cows or 13,000 broilers per hour in large slaughterhouses [2,3]. The high speed
and high number of animals make it difficult for humans to assess animal welfare in the
slaughterhouse. Furthermore, Regulatory Authorities (RA) and European public media
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report issues in slaughterhouses with a negative impact on animal welfare several times a
year [4–7]. Despite existing animal welfare legislation and various initiatives by the meat
industry and research to reduce animal suffering, animal welfare consequences (i.e., animal
welfare problems) still occur on farm, during transport and in the slaughterhouse [8–14].

The slaughterhouse is primarily responsible for the animal welfare at the slaughter-
house and this is monitored by the RA. This monitoring is conducted by visual inspection
based on the applicable legislation. European Union (EU) regulation 2017/625 states that
inspections on animal health and welfare must be performed at the slaughterhouse, as well
as inspections related to meat production such as ante-mortem (AM) and post-mortem
(PM) inspection. Historically, food safety has been the main driver for this meat inspection
and still is the prime focus at the present [15–18]. Upon arrival at the slaughterhouse,
all animals (individually or at herd/flock level) must receive an AM inspection from an
official veterinarian (OV) or under the supervision of the OV (allowed for poultry). The PM
inspection is carried out by the OV or an external inspector supervised by the OV [19]. Key
components of the AM inspection are related to the handling of the animals, the killing pro-
cess and the condition of the animals (e.g., clinical signs of disease). The prime focus of the
PM inspection is a visual inspection of the carcasses on abnormalities and condemnation.
In addition palpation and incisions can be performed and further laboratory analysis can
be applied [15–17].

The slaughterhouse is a sentinel point in the animal production chain from which
animal welfare can be efficiently measured during slaughter as well as retrospectively
during earlier phases in the production chain (during transport and on farm) [20–22]. Some
indicators of animal welfare on farm are easier to measure at the slaughterhouse than
on the farm itself. These indicators, for example, only will become visible during a PM
inspection, such as stomach lesions or pulmonary disorders in pigs or veal calves or breast
blisters in broilers [17,23,24]. Furthermore, the welfare of animals from multiple farms can
be assessed at a single location, since animals are brought to the slaughterhouse in large
numbers from multiple farms and assembly centres [23,25]. It should however be noted
that the number of recorded indicators at the slaughterhouse might be an underestimation
of the actual prevalence of the welfare issues on farm level, since on-farm mortality or full
recovery after illness are not taken into account [18,26].

1.2. Use of Animal-Based Measures to Asses Animal Welfare

The welfare consequence experienced by an animal due to a certain situation and the
reaction of the animal to the situation, can best be measured directly on the animal itself
by using animal-based measures (ABMs) [22,27–29]. As stated by Bracke et al.,: “Animal
welfare is the quality of life as it is experienced by the animal itself” [30]. Hence ABMs
are the preferred approach for measuring animal welfare in a reliable and objective way
at a slaughterhouse. Resource- and management-based measures such as type of floor
or handling procedures are indirect welfare measures [29]. ABMs may be physiological
parameters such as hormone levels, heart rate or blood values; morphometric parameters
such as injuries or body weight; or related to behaviour such as vocalisations or move-
ments [31]. An ABM may be the result of one specific event, such as an injury, or the
cumulative effect of multiple events over a prolonged time, such as decline in the physical
condition of the animal or the development of abnormal behaviour [22,32]. ABMs can
therefore provide the RA important information about the preceding production stages.

However, while ABMs give valuable information on animal welfare, manual scoring
of these ABMs is time-consuming and labour-intensive. These properties conflict with the
high speed of the slaughter process. Particularly extreme is the case of broilers, where more
than 3 chickens per second are presented on the slaughter line for PM inspection [15,33].
Protocols are available for the manual scoring of ABMs at the slaughterhouse, e.g., the
Welfare Quality (WQ) protocol for broilers and pigs [34,35]. WQ is an internationally
recognised science-based approach for executing a complete animal welfare assessment
on farm and at the slaughterhouse. However, the assessment has been shown to be very
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time consuming; the WQ protocol for the assessment of pig welfare at the slaughterhouse
requires an estimated 5.5 to 8 h of human labour per slaughterhouse for a complete
assessment of the slaughterhouse [8,20]. But just the scoring of carcass abnormalities alone
is already estimated to require one hour for the WQ protocol [35]. As a consequence,
unless legally required, manual scoring of additional ABMs will not easily be adopted in
the regular meat inspection performed by the OV. Manual scoring is also subject to non-
uniformity, inter-observer non-repeatability: different observers can assess significantly
different scores [21]. The option of automatic scoring of these ABMs might reduce the need
for assessments performed by humans and would alleviate the administrative burden for
the RA when additional animal welfare indicators are to be scored.

1.3. Sensor Technology and Artificial Intelligence

In recent years, more data on livestock farming has been generated by a number
of promising techniques such as sensors e.g., cameras, microphones, speedometers and
thermometers [36–40]. The sensor measures an aspect of the environment or of the animal
itself. The sensor may be attached to the animal, such as an ear tag, or be placed in
the animal’s environment, such as a camera. The data produced can subsequently be
processed and analysed using computers and self-learning algorithms. Before we dive into
the applications of artificial intelligence (AI) in this context, we would like to give a brief
summary of what it entails.

AI refers to the development of computer systems that can perform “intelligent” tasks.
It involves creating algorithms and models that enable machines to perceive, reason, learn
and make decisions based on input data. Commonly used AI methods include Machine
Learning (ML), Deep Learning (DL), Natural Language Processing (NLP), computer vision
(CV) and robotics. Machine Learning involves training algorithms with large amounts
of data to enable them to learn patterns, make predictions without being explicitly pro-
grammed. This can be done in several ways [41]:

1. Supervised Learning uses labelled data with which the algorithm is trained to learn
to “classify” categories;

2. Unsupervised Learning is done with unlabelled data, where the algorithms searches
for “similarities” to cluster data together in subsets;

3. Semi-supervised Learning uses a small amount of labelled data with a much larger
amount of unlabelled data to train a predictive model.

Deep Learning is a subset of Machine Learning (See Figure 1) that uses artificial neural
networks with many layers to process and analyse complex data. This can be supervised,
semi-supervised or unsupervised learning. Applications include computer vision, speech
recognition, natural language processing, medical image analysis, with results comparable
to or surpassing human expert performance [41,42].

There are many examples of sensor and AI use in precision livestock farming (PLF).
The main steps of this process are [36–40,42,43]:

1. Collecting data about the health and welfare of the animals from sensors;
2. Labelling of the data by experts or by “smart” sensors;
3. Training the algorithm to classify a wanted or an unwanted event with a certain

threshold;
4. Testing the trained algorithm with new data to make sure it works as intended (the

more training/testing the better);
5. Using the trained and tested algorithm in real-life situation for flagging certain events;
6. Maintaining/adjusting the algorithm to ensure proper performance.
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Figure 1. Schematic representation of deep learning and machine learning as part of artificial
intelligence. Modified from Shimizu, H. and K. I. Nakayama [42].

1.4. State of Play on Use of Sensor Technology and AI at the Slaughterhouse and Animal Welfare

Various (systematic) reviews have been published on the use of PLF on farms to assess
animal welfare [37,39,44–54] or on the use of ABMs at the slaughterhouse to manually
assess animal welfare [9,11–13,23,31,55]. The recent opinions from the European Food
Safety Authority (EFSA) highlight the use of ABMs collected in the slaughterhouse to
assess on farm welfare and possibilities for automation [18,26,56,57]. Furthermore, a
systematic review on the application of computer vision systems at the slaughterhouse has
been published by Sandberg et al. [58]. However, the focus of this latter review was on
meat safety and not on animal welfare. To the best of our knowledge no recent complete
overview exists on the use of sensor technology to automatically assess animal welfare at
the slaughterhouse from the viewpoint of an RA. The goal of this narrative review is to
provide an overview of the initiatives, opportunities and barriers for regulatory purposes
to measure ABMs at the slaughterhouse using sensor technology and AI. The focus of this
review is welfare of the most slaughtered animal species in the Netherlands.

The topics in this narrative review are as follows. First, it summarizes current literature
on these subjects: (1) ABMs for assessment of welfare in the slaughterhouse for broilers,
laying hens, pigs and cattle; (2) the current use of ABMs by the RA; and (3) the use of
sensor technology and AI to assess the ABMs. In addition the review lists commercially
available systems to measure these ABMs with sensor technology. Finally, it discusses the
opportunities and barriers for the use of sensor technology to assess animal welfare at the
slaughterhouse in the nearby future and in particular for the RA.

2. Methods
2.1. Literature Search

The literature search for this narrative review consisted of two parts: (1a) identification
of ABMs which can be recorded at the slaughterhouse, (1b) identification of ABMs already
part of the current meat inspection and (2) identification of applications where sensor
technology and AI were used to measure these ABMs.

The search for part one was done in September 2022 using PubMed with the terms
“welfare” AND (abattoir OR slaughterhouse) AND ((measure) OR (indicator) OR (param-
eter) OR (outcome)) in all fields. No limitation on publication year. The search string by
Brscic et al. [59] was used as an example for selecting the terms. As a second step filters
were set on full text available, language in English and review or systematic review as type
of document. The filter for (systematic) review was selected out of efficiency reasons, as the



Animals 2023, 13, 3028 5 of 32

goal of this research was to give insight in the opportunities on the use of sensor technology
and AI by the RA and not to give an exhaustive overview of all ABMs used in research.
The abstract and title of the retrieved papers were manually screened on relevance (related
to animal welfare, broilers, laying hens, pigs, veal calves, dairy or beef cows). Relevant
literature on ABMs by EFSA and WQ was added in June 2023. The flow chart in Figure 2
describes the search protocol. The EU legislation related to animal welfare during the
meat inspection (Regulations (EU) 1/2005, 1099/2009 and 2019/627) [60–62] and work
instructions [63–66] for the OV of the Netherlands Food and Product Safety Authority
(NVWA) were added to the literature as well.
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For part two PubMed was searched in February 2023 using the terms “welfare” AND
((measure) OR (indicator) OR (parameter) OR (outcome)) AND ((precision livestock farm-
ing) OR (sensor)) in all fields. No limitation on publication year. Full text available,
language in English and review or systematic review as type of document were set as filters.
The filter for (systematic) review was selected out of efficiency reasons, as the goal of this
research was to give insight in the opportunities on the use of sensor technology and AI
by the RA and not to give an exhaustive overview of forms of sensor technology used
in research. Title and abstract of papers were manually screened on relevance (related to
animal welfare or animal farming and sensor technology and broilers, laying hens, pigs,
veal calves, dairy or beef cows). The flow chart in Figure 3 describes the search protocol.

2.2. Analysis of the Literature

Based on part one of the literature search an overview was made of the ABMs recorded
at the slaughterhouse for broilers, laying hens, pigs and cattle, either as an indicator for
welfare on the farm, during transport or at the slaughterhouse. Only morphometric and
behavioural parameters were taken into account. Physiological parameters or biomarkers
were not a part of this review. Similar ABMs were grouped when possible, for instance
abnormalities of lungs, heart and other organs were grouped as abnormalities of the
organs and different forms of skin damage like lesions, scratches etcetera were grouped
as bruises and skin damage. The welfare consequences measured by these ABMs were
categorized according to the WQ principles: Good feeding, Good housing, Good health
and Appropriate behaviour [67]. The validation of the identified ABM’s was no part of
this study.

The relevant legislation and work instructions of the NVWA were scanned on the use
of ABMs for animal welfare assessment during the meat inspection at the slaughterhouse
in the Netherlands.

The literature retrieved in steps one and two was analysed on applications where sen-
sor technology and AI were used to measure the identified ABMs. Newly identified review
papers in the retrieved literature were scanned for applications as well. For feasibility at
the slaughterhouse only applications of technologies that were non-invasive or required no
physical handling nor separation of the animals for the assessment were considered in this
review. Procedures like attaching a sensor to the animal, placing a sensor inside an animal
or separating animals from the group are not practically feasible at the slaughterhouse. As
a consequence, technologies like force plates or accelerometers were not considered in this
study. A distinction was made between applications with the use of sensor technology and
AI, and merely sensors without the use of smart algorithms.

The analysis also contributed to identify commercially available applications of the
use of sensor technology and AI at the slaughterhouse and systems currently used by
the RA. In addition, 5 experts, scientific researchers, with peer-reviewed publications in
the field of sensor technology and animal welfare in the Netherlands were consulted to
check for possible missing applications of the use of sensor technology and AI at the
slaughterhouse. Furthermore, the webpages of the mentioned European meat processing
and slaughter line selling companies identified from the literature and by the experts
were visited. Subsequently, applications mentioned during presentations, conferences and
webinars attended by the authors were included as well.

The identified applications were categorized according to the phase of development of
the technology: only applied under research settings, in research under practical conditions
at the farm or slaughterhouse or commercially available.
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3. Recording Animal-Based Measures at the Slaughterhouse
3.1. Animal-Based Measures at the Slaughterhouse

ABMs which can be recorded at the slaughterhouse were identified from the 34
retrieved papers in the literature search. For broilers and laying hens 37 ABMs were identi-
fied, 32 ABMs for cattle and 41 ABMs for pigs. An overview of the ABMs is presented in
Tables 1–3. The identified ABMs can roughly be classified into three categories: (1) still



Animals 2023, 13, 3028 8 of 32

image, e.g., pathology or bruising, (2) moving image of the animal, e.g., lameness, falling
down or movement after stunning and (3) sounds, such as vocalisations. Examples of retro-
spective ABMs related to the welfare status on farm or during transport are ABMs based
on various pathological abnormalities such as breast blisters, hock burns or abnormalities
in the lungs.

Table 1. The ABMs identified in literature and assessed at the slaughterhouse in broilers and laying
hens are categorised according to the WQ principles. The ABMS are assigned to the scenarios to which
the welfare assessments carried out at the slaughterhouse relate (farm, transport and slaughterhouse).
In brackets are the publications which refer to the combination of Welfare Quality principle, welfare
consequence, ABM and relevant scenario.

Broilers and
Laying Hens

Relevant Scenarios for Welfare Assessment at the
Slaughterhouse

Welfare Quality
Principle

Welfare
Consequence ABM Farm Transport Slaughterhouse

Good feeding
Prolonged hunger

Presence
bile/urates/orange

discharge at
bottom containers

[11] [11]

Emaciated animals,
body weight [26,34,56,68]

Dehydration Dehydrated
animals [34,68]

Good housing

Heat stress Panting [11] [11]

Cold stress

Huddling [11] [11]

Piloerection [11] [11]

Shivering [11] [11]

Limited movement
Pilling up

(overcrowding in
container)

[11] [11]

Proper housing Dirty animals [69]

Good health

Injuries (pain)

Breast blisters [26,34,68,69]

Hock burn [34,68,69]

Footpad lesions [26,34,56,68,69]

Plumage damage [26]

Keel bone fracture [26] [26] [26]

Wing injuries
(bone fractures) [11,68,69]

Bruises and skin
damage [56,68] [11,56,68,69] [11,56,68,69]

Disease

Ascites [26,34,68]

Arthritis [26,56]

Septicaemia [26,34,56,68]

Hepatitis [26,34,56,68]

Pericarditis [26,34,56,68]

Abscesses [26,34,56]

Parasites [68]
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Table 1. Cont.

Broilers and
Laying Hens

Relevant Scenarios for Welfare Assessment at the
Slaughterhouse

Welfare Quality
Principle

Welfare
Consequence ABM Farm Transport Slaughterhouse

Good health

Death Dead on arrival
(DOA) [11,69]

Respiratory stress
during stunning

Deep breathing [11]

Hyperventilation [11]

Pain during
stunning/killing

Muscle spasms [11,70]

Withdrawal reflex [11]

Consciousness
during killing

process

Eye blinking [69]

Corneal reflex [70]

Attempt to regain
posture [11]

Maintenance of
posture [11]

Appropriate
behaviour

Fear
Bunching [11]

Wing flapping [11,69,70]

Fear and pain

Escape attempts [11]

Head shaking [11,69]

Vocalisations [11,69]

Table 2. The ABMs identified in literature and assessed at the slaughterhouse in cattle are categorised
according to the WQ principles. The ABMS are assigned to the scenarios to which the welfare
assessments carried out at the slaughterhouse relate (farm, transport and slaughterhouse). In brackets
are the publications which refer to the combination of Welfare Quality principle, welfare consequence,
ABM and relevant scenario.

Cattle Relevant Scenarios for Welfare Assessment at the
Slaughterhouse

Welfare Quality
Principle

Welfare
Consequence ABM Farm Transport Slaughterhouse

Good feeding

Prolonged hunger Body condition
score [18,31,69,71]

Prolonged thirst
Increased

aggression at
drinking trough

[13] [13]

Good housing

Heat stress Panting [13]

Cold stress Shivering [13]

Restricted
movement

Slipping [13,27,31,72–74]

Falling [13,27,31,69,72,74]

Comfortable
resting

Swollen hocks or
bursa [18,69]

Dirty animals [69]
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Table 2. Cont.

Cattle Relevant Scenarios for Welfare Assessment at the
Slaughterhouse

Welfare Quality
Principle

Welfare
Consequence ABM Farm Transport Slaughterhouse

Good health

Injuries (pain)
Bruises and skin

damage [13,27,69,72]

Broken bones [13]

Lameness (pain) Lameness [71] [13,27,69,72] [13,69,72,73]

Anaemia Carcass colour [18]

Disease

Abnormalities
organs (lung,
rumen, heart,

liver, intestine,
udder)

[18,31,75]

Fatigue
Exhaustion [13,69] [13,73]

Rapid breathing
(tachypnoea) [13]

Consciousness
during stunning

and killing process

Remaining
posture [13,27,31,69,70,72,73,76–78]

Body movement [13,31,70,72,73,76]

Breathing [13,27,31,69,70,72,73,76,77]

Tonic and clonic
seizure [13,27,78]

Cornea and/or
palpebral reflex [13,27,31,70,72,73,76]

Spontaneous
blinking [13,27,31,69,70,72,73,76,77]

Eye movements [13,27,31,70,72,73,77]

Muscle tone [13,31]

Response to nose
prick [77]

Appropriate
behaviour

Social stress

Aggressive
behaviour [13,31]

Mounting [13]

Fear

Escape attempts [13,31,78]

Turning around
or moving
backwards

[13,27,31,72,78]

Struggling in the
stunning box

(kicking)
[27,31,72]

Jumping in the
stunning box [27,31,72]

Fear and pain

Reluctance to
move, freezing [13,27,31,72,78]

Vocalisations [13,27,31,69,70,72–74,76–78]
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Table 3. The ABMs identified in literature and assessed at the slaughterhouse in pigs are categorised
according to the WQ principles. The ABMS are assigned to the scenarios to which the welfare
assessments carried out at the slaughterhouse relate (farm, transport and slaughterhouse). In brackets
are the publications which refer to the combination of Welfare Quality principle, welfare consequence,
ABM and relevant scenario.

Pigs Relevant Scenarios for Welfare Assessment at the
Slaughterhouse

Welfare Quality
Principle

Welfare
Consequence ABM Farm Transport Slaughterhouse

Good feeding

Prolonged hunger Body condition [57]

Prolonged thirst
Increased

aggression at
drinking trough

[12] [12]

Good housing

Heat stress

Panting [9,12,27,35] [9,12,27,35,55]

Discolouration of
the skin [12] [12]

Cold stress
Shivering [12,27,35] [12,27,35]

Huddling [9,12,27,35] [9,12,27,35]

Restricted
movement

Slipping [9,12,27,35,55]

Falling [9,12,27,35,55,69]

Proper housing
Bursitis [23,57]

Dirty animals [69]

Good health

Injuries (pain)

Bruises and skin
damage [23,27,57,69] [12,23,27,32,35,69] [9,12,27,32,35,69,79]

Broken bones [12] [12]

Ear injuries [32,57]

Tail injuries [23,32,57]

Vulva lesions [57]

Lameness (pain) Lameness [57] [12,27,35,57,69] [12,27,35,57,69]

Fatigue

Exhaustion [9,12,69] [9,12]

Shortness of breath
and open mouth

breathing
(dyspnoea)

[12] [12]

Muscle tremors [12] [12]

Disease

Abnormalities
organs (lung,

stomach, heart,
liver, pleura)

[23,27,32,35,57]

Abscesses [57]

Sick animals [27,35] [27,35]

Death Dead animals [9,27,35,69] [9,27,35]

Respiratory stress
during CO2

stunning

Gasping for air [12,70,76]

Hyperventilation [12]

Head shaking [12]



Animals 2023, 13, 3028 12 of 32

Table 3. Cont.

Pigs Relevant Scenarios for Welfare Assessment at the
Slaughterhouse

Welfare Quality
Principle

Welfare
Consequence ABM Farm Transport Slaughterhouse

Good health
Consciousness

during stunning
and killing process

Remaining posture [12,27,35,55,69,70,76]

Body movement [12,70,76]

Breathing [9,12,27,35,55,69,70,76]

Tonic and clonic
seizures (muscle

tone)
[12,27,70]

Cornea and/or
palpebral reflex [9,12,35,55,70,76]

Spontaneous
blinking [9,12,27,69,70,76]

Eye movements [12,70]

Response to nose
prick or ear pinch [12,55,69]

Bleeding rate [55]

Appropriate
behaviour

Social stress

Aggressive
behaviour [12]

Mounting [12]

Fear

Reluctance to
move, freezing [9,12,27,35]

Turning or walking
backwards [9,12,27,35]

Fear and pain
High-pitched
vocalisations [9,12,27,35,69,70,76]

Escape attempts [12]

3.2. Animal-Based Measures at the Slaughterhouse Recorded by the RA

We examined the relevant work instructions and legislation on the use of ABMs by
the Dutch RA at the slaughterhouse. There is a distinction in the procedures at the red
meat slaughterhouses (e.g., pig and cattle) and poultry slaughterhouses, especially for the
PM inspection.

At a red meat slaughterhouse the OV assesses the fitness for transport of the animals
at arrival at the slaughterhouse. Weak, wounded or sick animals are considered not fit for
transport. This mainly involves animals that are unable to move painlessly on their own or
to walk without assistance, animals with serious open wounds or a prolapse, animals in
the last 90% of the gestation period, one week after parturition, or recently born animals
without a fully healed navel [62,66]. During the AM inspection the OV determines whether
an animal is fit for slaughter. The animal is assessed on the risk of cross contamination
during slaughter (animal health and presence of any local clinical abnormalities, cleanliness
(dirty animals)), the presence of animal diseases (zoonoses, infectious animal diseases or
notifiable animal diseases) and animal welfare. Animal welfare issues alone are not a reason
to deny access to slaughter if there is no risk for food safety [61,64]. The work instructions
of the NVWA and/or legislation specifically mention some ABMs as attention points such
as falling, slipping, vocalisations and signs of consciousness during stunning and the killing
process [60,66]. However registration of the observed ABMs during the AM inspection
is not legally required and they are not actively registered in the Netherlands. For pigs
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and cattle the OV only notes down the externally observable pathological abnormality(s)
relevant for food safety. This is done on a form in an open text box and passed on for the
PM inspection. The way of passing this information on depends on the slaughterhouse
location; this can be on paper, by phone or digital system [61,64]. During the PM inspection
the carcass and different organs (e.g., heart, liver, lungs, gastrointestinal tract and pleura)
are visually inspected on potential risks for human and animal health or animal welfare
and abnormalities are noted down [61].

In the case of poultry, more ABMs are registered at the slaughterhouse compared to
pigs and cattle. In line with EU Regulation 2019/627, the carcasses of broilers are inspected
on abnormalities. This is primarily done for food hygiene and safety reasons, but also gives
relevant information on animal welfare [26]. During this inspection on flock level carcasses
and organs are inspected and scored for five minutes, e.g., on hepatitis and pericarditis.
This is done at least once per flock. The results of this inspection are noted down in
a digital system (Pladmin) [65]. Footpad lesions are recorded as well. Broiler farmers
with a stocking density in category 3 (39 kg/m2–42 kg/m2) must maintain records of
footpad lesion scores as required by the Dutch Animal Keepers Decree (“Besluit houders van
dieren”) [80]. A certified inspector (per flock, 100 feet per housing unit) or a camera system
performs the scoring of the footpad lesions at the slaughterhouse [81]. The requirements of
this camera system are imposed in the Animal Keepers Regulation (“Regeling houders van
dieren”) [82]. The OV also assesses all thinned poultry (earlier removed birds from the flock)
on possible poor welfare conditions; two times 50 animals are assessed on footpad lesions
and other forms of contact dermatitis (breast blisters and hock burn) [63]. In addition the
OV performs some inspections on catching- and transport related injuries on a periodic
basis or if there are identified reasons to do so. Examples of these injuries are dark red to
purple haemorrhages, sometimes in combination with broken wings or other broken bones.
During this inspection the OV counts on at least two occasions to get a clear picture of the
whole flock. Each count takes at least two minutes. The percentage of catching-related
injuries is calculated by taking the average of the two counts [63].

3.3. The Use of Sensor Technology and AI to Record Animal-Based Measures

Various technologies are studied in a research setting or under practical circumstances
like on farm, during transport or at the slaughterhouse. Several technologies are commer-
cially available. Tables 4–6 present an overview of the ABMs that can be recorded at the
slaughterhouse using sensor technology (and AI).

Of the 37 identified ABMs for broilers and laying hens in total 10 applications of
sensor technology applied in a research setting, on farm or at the slaughterhouse were
reported. Six (16%) were used in research on sensor technology, including a number of
studies performed under commercial settings at the slaughterhouse [83–88]. For 6 ABMs
commercially systems are already available [89–98]. These systems are designed to address
meat quality but can also give valuable information on animal welfare such as prevalence
of breast blisters, hock burns or broken wings.



Animals 2023, 13, 3028 14 of 32

Table 4. Development phase for measuring ABMs in broilers and laying hens at the slaughterhouse
with sensor technology and AI categorized according to the WQ principles. In brackets are the
publications which refer to the combination of Welfare Quality principle, welfare consequence, ABM
and system of sensor technology.

Broilers and
Laying Hens Development Phase

Welfare Quality
Principle

Welfare
Consequence ABM Research Research at

Slaughterhouse
Commercially

Available

Good feeding Prolonged hunger Emaciated animals,
body weight

ChickSort 3.0 [89]
TrueWeigher 707 [90]

SmartWeigher [91]

Good health
Injuries (pain)

Breast blisters Meyn [92]
ChickenCheck [93]

Hock burn
ClassifEYE® [94]
ChickSort 3.0 [89]

ChickenCheck [93]

Footpad lesions [83–86] Meyn * [95]
ChickenCheck * [93]

Plumage damage [99–101] † [87]

Wing injuries
(bone fractures)

Meyn [92]
ClassifEYE® [94]
ChickSort 3.0 [89]

IRIS [96–98]

Bruises and skin
damage [88]

Meyn [92]
ClassifEYE® [94]
ChickSort 3.0 [89]

IRIS [96–98]
ChickenCheck [93]

Disease
Ascites [88]

Hepatitis [88]

Appropriate
behaviour Fear and pain Vocalisations [102–105] †

* are externally validated, † only sensors, no AI.

Out of the 32 identified ABMs in cattle only technologies for measuring body con-
dition score (BCS), lameness and aggressive behaviour were reported using sensor tech-
nology and AI [106–137]. Carcass colour as an ABM for anaemia can be measured with a
sensor [138,139], but no automatic system with the use of AI is yet developed. Those four
applications represent 12.5% of the identified ABMs.
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Table 5. Development phase for measuring ABMs in cattle at the slaughterhouse with sensor
technology and AI categorized according to the WQ principles. In brackets are the publications
which refer to the combination of Welfare Quality principle, welfare consequence, ABM and system
of sensor technology.

Cattle Development Phase

Welfare
Quality

Principle

Welfare
Consequence ABM Research

Research at
Slaughter-

house

Commercially
Available
Slaughter-

house

Commercially
Available on Farm

Good feeding Prolonged
hunger

Body condition
score [106–126,140] DeLaval * [141]

4DRT-Alpha [142]

Good health

Lameness (pain) Lameness [122,127–136]

Anaemia Carcass colour [138,139] †
Chromameter †

(e.g., Minolta
CR400) [143]

Appropriate
behaviour Social stress Aggressive

behaviour [137]

* are externally validated, † only sensors, no AI.

Of the 41 identified ABMs for pigs, 13 (32%) were reported in applications using
sensor technology and AI. Measuring body weight and/or size in pigs using a camera
has been studied extensively [144–162]. Automatic recording of vocalisations as a sign
of fear, pain and stress as well [163–175]. Although, this are studies in an experimental
setting and not on automatic recording of vocalisations at the slaughterhouse. Also there
are no commercially available systems yet. However, there is a patent for the STREMODO
technology [174].

Several systems have already been applied in European pig slaughterhouses; systems
to record ear- and tail injuries, lung abnormalities, reluctance to move when driving up the
pigs, movement after stunning and bleeding rate [176–183]. The commercially available
systems of Argus, Genba Solutions and AI4Animals are not only trained on ABMs, but also
trained to detect resource- and management-based measures like the noise level, human
interaction and the use of prods and stunning devices [179–181].

Table 6. Development phase for measuring ABMs in pigs at the slaughterhouse with sensor technol-
ogy and AI categorized according to the WQ principles. In brackets are the publications which refer
to the combination of Welfare Quality principle, welfare consequence, ABM and system of sensor
technology.

Pigs Development phase

Welfare
Quality

Principle

Welfare
Consequence ABM Research

Research at
Slaughter-

house

Commercially
Available at

Slaughterhouse

Commercially
Available on

Farm

Good feeding Prolonged
hunger Body condition [144–162]

PigWei [184]
OptiScan [185]
WUGGL [186]
GroStat [187]
Fancom [188]

Good housing
Cold stress Huddling [189–191]

Restricted
movement Slipping [192]
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Table 6. Cont.

Pigs Development phase

Welfare
Quality

Principle

Welfare
Consequence ABM Research

Research at
Slaughter-

house

Commercially
Available at

Slaughterhouse

Commercially
Available on

Farm

Good health

Injuries (pain)
Ear injuries [193] CLK GmbH * [176]

Tail injuries [193–195] CLK GmbH * [176]

Lameness
(pain) Lameness [196]

Disease

Abnormalities
organs (lung,

stomach, heart,
liver, pleura)

[25,197,198] Lung: F4TLaB [177]

Consciousness
during

stunning and
killing process

Body
movement

Argus [179]
Genba Solutions

GmbH [180]
AI4Animals [181]

Bleeding rate [199] VisStick * [183]
CLK GmbH [182]

Appropriate
behaviour

Social stress
Aggressive
behaviour [200–206] †

Mounting [207–212]

Fear Reluctance to
move, freezing [213] [192,214] AI4Animals [178]

Fear and pain High-pitched
vocalisations [163–175]

* are externally validated. † only sensors, no AI.

3.4. Validation

In order to be able to rely on the findings of sensor technology combined with AI,
it is important that the AI system is properly validated. There are several statistical
methods available to determine the quality of a system. However, to date there are no
fixed agreements or accepted methods within the scientific community or determined by
EFSA or national RA’s to validate these systems (e.g., no agreements on a sufficient level of
accuracy) [36]. There are two forms of validation: external validation, in which the system
is evaluated using a completely independent dataset that uses data from animals that was
not used in the development of the system, and internal validation, where the system is
evaluated using partially the same dataset that was used to build the technology [44,45].
External validation of a system is preferred to prevent overfitting and to handle varying
external circumstances [43].

The external validation of the commercially available systems is a point of attention.
Of the 20 different commercially available systems only 5 (20%) externally validation stud-
ies have been published: the Meyn Footpad Inspection System [83,85], ChickenCheck [84],
DeLaval body condition scoring system [107], the system for tail and ear injuries of CLK
GmbH [193] and the VisStick system for bleeding rate [199]. Furthermore, the body condi-
tion scoring system BodyMat F is validated [104], but this system is no longer commercially
available. Although an external validation percentage of 20% for systems in a slaugh-
terhouse setting seems low, it can be considered high compared with the commercially
available PLF systems on farm. Gómez et al. [44] found that only 7% of the commercially
available and validated PLF systems for pigs were externally validated. In addition, only
14% of the PLF systems for dairy cattle performed external validation [45].
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4. The Use of Sensor Technology and AI to record Animal-Based Measures by the
Regulatory Authorities
4.1. Existing Technologies and AM and PM Inspection

In general all examples of technologies mentioned in the previous paragraph are
relevant for the RA as the OV can use ABMs for an animal welfare assessment at the slaugh-
terhouse. Although there is a distinction between ABMs that serve as attention points for
the OV and ABMs that are actively noted down by the OV or inspector. Attention points are
for instance lameness, falling or slipping animals, vocalisations and signs of consciousness
after stunning. Externally observable pathological abnormalities, organ abnormalities and
other issues relevant for food safety are actively noted down. Additionally, in the case
of poultry, the number of footpad lesions, breast blisters, hock burn and catching related
injuries (bruises and broken wings) are recorded. Tables 4–6 show that there are applica-
tions of sensor technology and AI for both the ABMs serving as attention points as for the
ABMs that are actively noted down. Some systems are already commercially available
for application at the slaughterhouse such as systems to record breast blisters, hock burn,
footpad lesions, wing injuries, bruises for poultry [89,92–98] or lung abnormalities, body
movement after stunning and bleeding rate for pigs [177,179–183]. Furthermore, ascites
and hepatitis for poultry and milk spots in the liver and pericarditis in pigs are studied in a
slaughterhouse setting but not yet commercially available [88,197].

VetInSpector (IHFood, Denmark) is an example of potential use of sensor technology
and AI by the RA during the PM inspection. This camera- and imaging-analysis system has
been developed in Denmark. An existing commercial available system on carcass quality
was tested and adapted for the application as part of the PM inspection for broilers. The
developed system took pictures of all lesions on the list of the Danish PM inspection, such
as hepatitis, ascites and dermatitis. Next, to train the AI model, OVs graded the carcasses on
approval for human consumption by using the pictures [88]. The system has been further
developed and is accepted in September 2021 as a supporting tool for the PM inspection in
Denmark [58].

4.2. Current Use of Sensor Technology by the RA

The findings of our study show that certain elements of AM and PM inspections on
animal welfare can also be performed by a sensor technology system instead of a human.
However, despite the existing commercial systems and development in research, meat
is still inspected by humans on the basis of vision, palpation and incision [215,216]. At
this moment the Dutch RA uses no sensor and AI technologies apart from video-imaging
systems for assessing footpad lesions on broilers at the slaughter line. In Germany and the
Netherlands those latter systems have already been applied in some of the larger poultry
slaughterhouses [83,84]. Camera surveillance systems (CCTV) are used as well by the RA
in several countries, among others in the Netherlands and the United Kingdom. Processes
with live animals at the slaughterhouse are recorded, the camera footage can be reviewed
by the RA on site and used to support enforcement [217,218].

4.3. Legal Framework and Use of Sensor Technology by the RA

EU Regulation 2019/627 states that official controls must be either performed by an
OV or take place under the supervision of the OV. For this reason an assessment solely
by sensor technology is not accepted as official control and the deviations established by
the system should be confirmed by an OV. However, there are some exceptions in the
regulation. According to EU Regulation 2019/627 only a representative sample of poultry
from each flock must receive a PM inspection if: “food business operators have a system
in place to the satisfaction of the official veterinarian, that allows the detection and the
separation of birds with abnormalities, contamination or defects;”. Although criteria for
a satisfactory system (e.g., required level of accuracy) are not set in the legislation. An
example of such a system is the video-imaging system for the assessment of footpad lesions
on broilers at the slaughter line applied in some German and Dutch slaughterhouses [83,84].
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Furthermore, on the long term there are opportunities for other inspections or animal
species as well. EU Regulations 2017/625 and 2019/627 give room for scientific and
technological development. However, this procedure is more complex as approval by
the European Commission and other European Member states is necessary: “For the
purpose of developing new control methods and techniques in relation to official controls
on meat production, competent authorities should be allowed to adopt national measures
to implement pilot projects that are limited in time and scope. Such measures should
ensure that competent authorities verify that operators comply with all the fundamental
provisions applicable to meat production, including the requirement that meat is safe and
fit for human consumption. In order to ensure that the Commission and the Member
States have the possibility to assess the impact of such national measures and express their
opinion before they are adopted, and take therefore the most appropriate action, those
measures should be notified to the Commission [..]” and “The Member States shall inform
the Commission and other Member States on scientific and technological developments,
[..] for consideration and further action as appropriate”.

5. Discussion

To the best of our knowledge, the current study is the first to provide an overview
on the use of sensor technology to automatically assess animal welfare indicators at the
slaughterhouse from the viewpoint of an RA. Many ABMs for broilers, laying hens, pigs
and cattle can be recorded at the slaughterhouse. Some of these ABMs can be measured
with the use of sensor technology and AI. This provides opportunities for the use of several
of these technologies as part of the meat inspection by the RA.

5.1. Research on Sensor Technology to Record Animal-Based Measures

An interesting finding of our study is the notable discrepancy in the number of identi-
fied ABMs at the slaughterhouse and applications reported on the use of sensor technology
and AI to record these ABMs in a research setting, on farm or at the slaughterhouse. Ap-
plications of sensor technology were reported for 10 of the 37 ABMs (27%) identified for
poultry, 4 of 32 for cattle (12.5%) and 13 of 41 (32%) for pigs. These results are in line with
the findings of Sandberg and colleagues [58]. They found very few publications in their
systematic review on the use of camera-vision systems for meat safety assurance. Possible
reasons may be the constraints by legislation and insufficient return on investment [58].

Although relatively few ABMs have been reported in the examples using sensor
technology and AI, numerous studies have explored the use of sensor technology and AI
to assess these ABMs in a research or farm setting. However, limited research is available
on the use of these technologies at the slaughterhouse. An example is the automatic
recording of body condition score and weight of pigs. This is extensively studied in
research settings and on farm [144–162] and commercial systems for use on farm are
available as well [184–188]. Non-uniformity of pig size and weight in a batch from a farm at
the slaughterhouse is a relevant indicator of feeding related welfare issues on farm. Maisano
et al., showed that pigs that weighed more than 30 kg less than the Italian standard for
heavy pigs of 160–170 kg were shown to have had poor growth [28]. However, despite the
relevance of recording this ABM at the slaughterhouse, no research was conducted at the
slaughterhouse yet. Similar findings apply to cattle; automatic scoring of body condition
is extensively studied in research settings on farm [106–126,140], multiple systems are
commercially available to automatically assess BCS on farm [141,142,219], but research at
the slaughterhouse is missing. Another relevant on farm commercial available technology
might be the coughing detection system Soundtalks [220]. The detection of coughing pigs
at the slaughterhouse might be a useful tool for detecting sick animals.

Further research is needed to validate on farm systems for their use in a slaughterhouse,
as the situation differs from the farm setting. In the example of the body condition scoring
system for cattle, the system is integrated in the milking system. The cow individually
enters the milking parlour and stands still. In contrast to the moving cows in groups at
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the slaughterhouse. Grouping of animals is a familiar problem in the application of sensor
technology under a commercial setting. Attempts to implement a computer vision system
for assessing lameness on a commercial dairy farm brought up some issues and the images
could not be analysed. In the experimental setting, the animals walked in front of the
camera calmly one by one. While at the dairy farm the main problems were the rapid flow
of animals, not capturing only one cow per image and cows stopping or running [127,133].

5.2. Observations by a System Versus Human Observation

Implementing the use of a system with sensor technology and AI in the work of the
OV could have a significant impact on the inspection work by the OV. It is important to
gain insight in the impact of this implementation by comparing observations by the OV
with observations with sensor technology and AI. However, scientific studies comparing
the applied systems at the slaughterhouse with real time observations at the slaughterhouse
are limited. Van Harn and de Jong mentioned that it was not possible to make this
comparison due to the speed of the slaughter line [83]. Often a comparison is made
between pictures scored by the video-imaging system and pictures scored by a trained
observer [25,83,84,86–88,194,195,197,198]. The scoring based on a picture by an observer
is not equal to scoring in a real time slaughterhouse setting. In the development of the
TailCam a comparison was made on a small scale between on the real time observation
of tail lesions at the slaughterhouse and visual observation based on pictures. For 188
out of 218 tails (86%) there was agreement between the assessment based on pictures and
at the slaughterhouse [195]. Blömke et al., compared the agreement between the system
and human observation both based on pictures as on real-time observations at conveyor
belt at the slaughterhouse. The agreement (Krippendorff’s alpha (α)) between the skilled
veterinary observer based on pictures and on direct assessment at the slaughterhouse was
0.89 for ear lesions and 0.71 for tail lesions respectively [193]. Those two studies might
indicate that a comparison between picture based scoring and the camera-based system
seems acceptable, but more research is needed to confirm this.

Both Jung et al., and Blömke et al., compared the observations of a camera-based
system with human observations at the slaughterhouse. The prevalence-adjusted, bias-
adjusted Kappa (PABAK) of automatic assessment of keel bone damage in laying hens
compared to human assessment at the slaughter line was 0.72, indicating a substantial
reliability [87]. However the slaughter line speed did not exceed one carcass per 2 s, while
under commercial practices this can be 0.4 s per carcass [33,87]. The agreement (Krip-
pendorff’s alpha (α)) between the skilled veterinary observer based on direct assessment
at the slaughterhouse was 0.62 for ear lesions and 0.55 for tail lesions compared to the
camera-based system. This is lower as the α between the skilled veterinary observer based
on pictures and the system, 0.64 for ear lesions and 0.75 for tail lesions, respectively. The
authors suggest that these lower values on the agreement for the direct assessment might
be the result of the limited time to assess the carcass at the conveyor belt (8 s) and the
position of the carcass compared to the observer; the ears of the carcass are easier to observe
as the tail [193]. In both studies the prevalence scored by the camera-based system differed
from the prevalence score by the real time human observations. In the research on tail- and
ear lesions the prevalence based on the system was higher, while in the research on keel
bone damage the prevalence scored by the system was lower [87,193]. This is an important
factor to take into account when these scores are used for enforcement by the RA. Therefore,
not only the comparison of scoring based on pictures and the system should be part of
the validation study, but a comparison with real time observations by a human observer
as well.

5.3. Commercial Application

A second discrepancy found as a result of our study is the discrepancy between appli-
cations in research and commercially available technologies. For many of the commercial
available systems there is no scientific research directly related to the applied system. For
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example, the technologies to detect carcass abnormalities in poultry or body movement
after stunning in pigs. These results are also in line with the findings of Sandberg and
colleagues. They argue that companies might keep their knowledge confidential until the
system is fully implemented and validated [58]. In addition most of the commercially
available systems at the slaughterhouse were designed for meat quality and not assess-
ment of animal welfare or official controls. The development and implementation of these
systems is economically driven and not hindered by legislation. The same applies to the
implementation of PLF systems on farm. Return of investment is an important driver. The
most successful commercially available systems are related to increased production and
convenience for the farmer, not animal welfare. For instance the system on estrus detection
in cattle [43].

5.4. Legal Barriers

Currently there are limited options for the RA to use sensor technology and AI as
part of the meat inspection at the slaughterhouse. The present EU legislation is the most
prominent barrier as official controls must be either performed by an OV or take place
under the supervision of the OV. As a result sensor technology cannot yet (fully) legally
replace the OV. Our results regarding animal welfare are in line with the review studies
of Nagel-Alne et al., and Blagojevic et al., on meat safety legislation and the constraints
for innovation; the multiple normative demands (“how it should be done”) instead of the
functional demand (“what needs to be achieved”) of the EU legislation on meat safety
may hinder the development of innovative systems [221,222]. There are some exceptions
for the post mortem inspection of poultry as a system to detect and separate birds with
abnormalities is allowed to replace a full PM inspection by a representative sample if the
system is approved by the OV. For other animal species a new control system needs to be
approved by the EU Commission and member states. This legislation should be adapted to
the same legislation as applicable to poultry to simplify this procedure and to stimulate
innovation [58].

A second legal barrier are the many qualitative goal-oriented standards, also referred
to as open standards, in the animal welfare legislation [223]. When developing sensor
technologies combined with AI, thresholds must be established in order to be able to create
a classification with a target value. In the case of open standards, generally accepted
target values have often not been established and enforcement cannot take place solely
based on an observed value. For example, there is no legal standard on the maximum
number of vocalisations as sign of pain or distress and when this number of vocalisations
reaches the threshold of avoidable form of pain, distress or suffering. Similarly, there are no
legal standards for the maximum number of cases of pneumonia in pigs. The OV and/or
inspector must provide reasons substantiating why in this specific situation, based on the
established facts, the open standard was violated.

The quantitative goal-oriented standards in animal welfare legislation offer more
opportunities for the use of sensor technology and AI by the RA. Since a closed standard
such as a limit value is set out in the law. The previous mentioned video-imaging systems
for assessing footpad lesions on broilers at the slaughter line is for instance related to a
defined score in the Dutch Animal Keepers Decree. Another example is the standard that
animals may only be killed when they are unconscious and insensitive (with the exception
of ritual slaughter) (Council Regulation (EC) No 1099/2009). No signs of awareness,
consciousness or sensitivity must be present between the end of the stunning process and
the animal’s death. Relevant technologies for enforcement of this standard are the various
systems that detect body movement or measure bleeding rate in stunned pigs [179–183].

5.5. Opportunities on the Use of Sensortechonology and AI by the RA

Despite the legal limitations sensor technology and AI can already contribute to the
animal welfare inspections of the RA at the slaughterhouse. The retrieved data from the
systems at the slaughterhouse can give the RA some valuable (extra) information. Firstly,
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the data on the prevalence of the welfare consequences and exposure to hazards can be
used for the purpose of risk assessment and help to improve and facilitate the supervision
and inspections by the RA. Data from the already commercially available and present
systems in the slaughterhouses could be used (anonymously) to represent the prevalence
of various welfare consequences such as broken wings, bruises and skin lesions in poultry.
This data can not only provide the RA with relevant information about welfare issues at
the slaughterhouse, but also valuable information about the welfare on farm. Secondly, the
data can help the OV with enforcement by substantiating a welfare issue and deviation or
in the identifying of farms with welfare issues for the risk-based inspections. As a third
option, slaughterhouses can develop and implement systems as part of a quality system.
The owner of the quality system must itself submit the application for acceptance to the RA.
The RA will then test whether the quality system satisfies the conditions and criteria and
the system safeguards animal welfare [224,225]. Summarizing these three options: systems
of sensor technology and AI can be part of an integrated risk-based meat safety assurance
system (RB-MSAS) in the future [58,222].

A prerequisite for the use of this data is access to the various data sources by the
RA. However, at this moment the data obtained by the applied systems is owned by the
slaughterhouse and not freely available for the RA. As a result the RA is dependent on
the collaboration of the slaughterhouse for use of the data and issues on data ownership
and privacy play a role. An example is the registration of carcass colour in veal calves.
Carcass colour is an ABM for anaemia. This data is registered at the slaughterhouse, but
not directly accessible for a welfare assessment by the OV [18].

Besides the collection of data, there are more advantages for the RA for the use
of sensor technology and AI. At first, cameras are capable of capturing images at high
speed, which can be analysed at a later stage. Due to the high processing speed at the
slaughterhouse, it is difficult for assessors to visually inspect individual animals: for
example, for poultry less than one second is available to identify abnormalities in each
carcass [15,33,226,227]. Theoretically all events at the slaughter process can be recorded
24/7 using sensor technology, which can subsequently provide more information on the
welfare of animals following analysis compared to intermittent supervision by a human
inspector. Using sensors and AI, data can be captured in a continuous and standardised
manner compared to manual scoring by observers, which is very time consuming and
may also lead to variation in scores between observers [25,58]. Especially borderline cases
can lead to different scores and conclusions [58]. Sandberg and colleagues observed for
instance 30% disagreement between the OV’s in grading and rating of pictures from poultry
carcasses on lesion severity and acceptance for human consumption in the development of
the VetInspector system (IHFood, Denmark) is [88]. An automatic system allows for more
uniform scoring [197]. Secondly, no contact with animals or carcass is required. A camera
or a microphone can easily be installed within a space and will not cause any additional
distraction, fear or stress to the animal, in contrast to presence of humans [214,227]. Due
to the fact that any cameras or microphones would be installed within a given space
and would not be connected to an individual animal, this allows for assessment of the
welfare of several animals at once instead of only one animal at a time [51,52]. Automatic
measurement of indicators does not require direct contact with the animals and likewise
allows the welfare of smaller animals, such as poultry, to be measured [38,228]. The various
technologies also have potential in the area of PM inspections by reducing the risk of
cross-contamination [197].

Despite these numerous advantages, sensor technology combined with AI is insuf-
ficient to fully replace humans at present. Many systems that have been developed only
measure a single type of anomaly, i.e., the one for which the system has been trained.
Several technological systems are required in order to detect multiple aspects. Humans
are able to detect and identify multiple anomalies at the same time and will also identify
less common welfare consequences [15,43,229]. In a similar manner is one system of sensor
technology not able not perform a full welfare assessment and to provide information on
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the actual welfare status of the animal; the animal welfare status is a combination of many
factors, not the absence of one welfare consequence.

5.6. Limitations of This Study

This narrative review gives an extended overview of studies on the possible use of
sensor technology and AI to assess ABMs at the slaughterhouse. Nonetheless, recently
published relevant papers might be missing, as our study is not a systematic review.
The findings of this review paper are primarily based on other systematic review papers.
However, the goal of this research was to give insight in the opportunities on the use
of sensor technology and AI by the RA and not to give an exhaustive overview of all
technologies currently available. In this light, the authors feel this approach was justifiable
for the research goal.

Another source of uncertainty is the validation of the identified ABMs. A prerequisite
of a reliable system of sensor technology and AI is not merely a validated algorithm, but
firstly also a validated ABM [43,84]. The ABM used as gold standard must be able to
identify a specific welfare consequence and must be repeatable and reliable [22,32,230,231].
Validation of the identified ABMs was not the focus of this study, but is an very important
point when developing a system and in validation of the system for use by the RA. Never-
theless, we used scientific literature to identify the ABMs and most ABMs are identified
in multiple literature sources. We used these identified ABMs as input for the search on
applications of sensor technology. With this approach we expect the used ABMs in the
applications of sensor technology to be reliable ABMs.

5.7. Future Research

Recent years have seen many developments in the use of sensor technology and AI to
measure animal welfare. However, the current study identified several research gaps: there
is no research on the use of sensor technology and AI by the RA at the slaughterhouse,
no research on the use of sensor technology and AI to assess ABMs for cattle at the
slaughterhouse and validation studies lack for many of the commercial available systems.

The various studies and commercial applications among the different animal categories
show the potential of these applications for other animal categories as well. For instance re-
search on detection of carcass abnormalities is available for pigs and poultry [25,88,197,198]
and commercial systems are available as well [89,92–94,96–98,177]. These applications
could be translated for use in cattle slaughterhouses. Also commercial systems of detection
of movement or bleeding after stunning in pigs [179–183] raise opportunities for other
animal species.

Before the RA can use sensor technology some hurdles need to be overcome: (1) sys-
tems should be developed to assess ABMs at the slaughterhouse, (2) these systems should
be externally validated, (3) comparison to human observation at the slaughterhouse should
be part of the validation, (4) guidelines or agreements on criteria for validation should be
formed by the RA (when is a system “satisfactory”?) (5) the data should be available for the
RA and (6) the RA should legally be allowed to use these systems. The EU legislation gives
room for pilot studies, which can contribute to updating the legislation [222]. To achieve
this more research at the slaughterhouse is needed with special focus on the development
of systems at the slaughterhouse for cattle, external validation of developed systems (in-
cluding comparison to human observations) and the use of sensor technology and AI for
assessing animal welfare as part of meat inspection. Setting guidelines for validation and
giving incentives for the development of these systems at an European level could help to
overcome these hurdles.

6. Conclusions

The main goal of the current study was to provide an overview of the initiatives,
opportunities and barriers for regulatory purposes to measure ABMs at the slaughterhouse
using sensor technology and AI. This study has identified ABMs for broilers, laying hens,
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pigs and cattle that can be recorded at the slaughterhouse. An ABM measured at the
slaughterhouse can provide valuable information regarding the welfare of the animal at
the time of slaughter as well retrospectively during its stay on farm and during transport.
Part of these ABMs can measured with the use of sensor technology and AI as is shown in
studies in a research or farm setting. In contrast, limited research is available on the use of
these technologies at the slaughterhouse, but several commercial systems are available to
record ABMs at the slaughterhouse.

On the level of individual animals, sensor technology combined with AI mostly
gives opportunities for measurements carried out on the carcass such as detection of
abnormalities. Regarding ABMs of live animals at the slaughterhouse the opportunities
lie primarily in monitoring groups of animals. For instance, behavioural abnormalities as
aggressive behaviour in the waiting pen or slipping or freezing animals during unloading.
These observations can be combined with audio analyses to detect vocalisations as signs
of stress.

The findings of our study show that aspects of AM and PM inspections on animal
welfare can also be performed by a system of sensor technology in cases such as abnormal-
ities on carcasses like broken wings, bruises or pericarditis. However, most systems are
only trained to measure one anomaly and legal barriers exist because EU Regulation states
that the AM and PM inspection must be performed by an OV or under the supervision
of the OV. Also external validation of available systems and comparison with human
observations at the slaughterhouse are a points of attention. Therefore at this moment
sensor technology and AI cannot yet fully replace a human to assess animal welfare at
the slaughterhouse. Although it does provide many opportunities for the RA to support
a welfare assessment and gives more insight in existing animal welfare risks. Therefore
systems of sensor technology and AI at the slaughterhouse can improve inspections and
supervision performed by the RA in the future [232].
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