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Simple Summary: The tropical and subtropical paddy frog, Fejervarya kawamurai (Anura: Dicroglos-
sidae), is a common and widespread species in Asia. Amphibians can adapt to small changes in
climate, but extreme temperature changes can lead to metabolic abnormalities affecting numerous
cell functions. Damage or disruption of mitochondrial respiratory chain complexes can be lethal. The
present study characterizes the mitochondrial genome of F. kawamurai to evaluate its evolutionary
relationship within Dicroglossidae and to analyze the effects of extreme temperature change on
mitochondrial gene expression of proteins involved in oxidative phosphorylation.

Abstract: Unusual climates can lead to extreme temperatures. Fejervarya kawamurai, one of the most
prevalent anurans in the paddy fields of tropical and subtropical regions in Asia, is sensitive to
climate change. The present study focuses primarily on a single question: how do the 13 mitochon-
drial protein-coding genes (PCGs) respond to extreme temperature change compared with 25 ◦C
controls? Thirty-eight genes including an extra tRNA-Met gene were identified and sequenced from
the mitochondrial genome of F. kawamurai. Evolutionary relationships were assessed within the
Dicroglossidae and showed that Dicroglossinae is monophyletic and F. kawamurai is a sister group to
the clade of (F. multistriata + F. limnocharis). Transcript levels of mitochondrial genes in liver were also
evaluated to assess responses to 24 h exposure to low (2 ◦C and 4 ◦C) or high (40 ◦C) temperatures.
Under 2 ◦C, seven genes showed significant changes in liver transcript levels, among which tran-
script levels of ATP8, ND1, ND2, ND3, ND4, and Cytb increased, respectively, and ND5 decreased.
However, exposure to 4 ◦C for 24 h was very different in that the expressions of ten mitochondrial
protein-coding genes, except ND1, ND3, and Cytb, were significantly downregulated. Among them,
the transcript level of ND5 was most significantly downregulated, decreasing by 0.28-fold. Exposure
to a hot environment at 40 ◦C for 24 h resulted in a marked difference in transcript responses with
strong upregulation of eight genes, ranging from a 1.52-fold increase in ND4L to a 2.18-fold rise in
Cytb transcript levels, although COI and ND5 were reduced to 0.56 and 0.67, respectively, compared
with the controls. Overall, these results suggest that at 4 ◦C, F. kawamurai appears to have entered
a hypometabolic state of hibernation, whereas its mitochondrial oxidative phosphorylation was
affected at both 2 ◦C and 40 ◦C. The majority of mitochondrial PCGs exhibited substantial changes at
all three temperatures, indicating that frogs such as F. kawamurai that inhabit tropical or subtropical
regions are susceptible to ambient temperature changes and can quickly employ compensating
adjustments to proteins involved in the mitochondrial electron transport chain.

Keywords: Fejervarya kawamurai; mitochondrial genome; phylogeny; mitochondrial gene transcript level;
low- and high-temperature stress
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1. Introduction

As one of numerous pervasive environmental factors, temperature change greatly
affects the physiology of vertebrate species, including amphibians [1]. Amphibians are
vulnerable to a wide range of temperature variations since their lifecycle often involves
both aquatic and terrestrial settings [2]. Adverse ambient temperatures can cause animals
to retreat into states such as dormancy, aestivation, or hibernation [3]. Many species that
can survive under extreme ambient temperatures for long periods need to greatly slow
down their metabolism and enter a state of hypometabolism [4–8]. Hibernating animals in
low-oxygen environments benefit from strong metabolic rate suppression that effectively
extends the time that their endogenous fuel reserves (e.g., carbohydrates and lipids) can
support viability [9]. At the genetic level, hypometabolism can manifest as the gene
transcription level changes. Also, the overproduction of reactive oxygen species (ROS)
under the influence of extreme temperatures can harm important biological molecules
including proteins, DNA, and lipids, impairing cellular functions and leading to oxidative
stress [7,10–12]. To better adapt to a temperature that is not conducive to active life
and survive as long as possible under adverse environments, vertebrates can adjust their
metabolism and adopt specific behaviors, such as dormancy, enzyme activities, and internal
environment regulation. One example of a significant triggering factor for hibernation is
temperature [13,14]. Hibernation is an important aspect of amphibian life history because it
serves as a protective mechanism against frigid temperatures [15]. For some frost-resistant
amphibians, lowering their metabolic rate can help them survive longer in a dormant state.
With freeze–thaw episodes, however, freeze-tolerant amphibians may experience somewhat
higher energy needs in the subnivium [16]. Moreover, in winter, freeze-tolerant organisms
typically amass cryoprotective osmolytes [17]. For example, freezing temperatures trigger
wood frogs (Rana sylvatica) to synthesize ice-nucleating proteins (INPs) and greatly increase
glucose and urea concentrations to act as cryoprotectants [18–20]. Other species, such
as gray treefrogs (Dryophytes versicolor), accumulate glycerol instead [21,22], which is
the cryoprotectant of choice for most invertebrate species. Similar metabolic behaviors
can be observed in other amphibians that inhabit comparable natural habitats, but the
carbohydrate protectant varies from species to species.

Amphibians are equipped with a special set of biochemical and physiological mecha-
nisms to adapt to variations in ambient temperature [23]. For example, they can generate
chemicals that enhance stress resistance and modify mitochondrial transcript levels of
protein-coding genes (PCGs) to adapt to varying ambient temperatures [24,25]. During
oxidative phosphorylation (OXPHOS), mitochondria perform a major role in producing
ATP [26,27]. Amphibian mitochondria are also essential for adaption to ambient tem-
perature change [28]. In harsh environments, animals reduce their metabolic rate by
diminishing their ATP demand and endogenous fuel consumption [29–36]. The metabolic
rate of ectotherms is temperature-dependent, with a sharp drop occurring at colder tem-
peratures [37]. Numerous studies have shown that temperature variations can affect how
PCGs are expressed in mitochondrial respiratory chain complexes [38–45] in order to facili-
tate the reorganization of metabolism under shifting ambient temperatures [40]. However,
the level of gene expression varies from species to species. For instance, after 24 h in a
cryogenic (frozen) state, transcript levels of mitochondrial genes 16S RNA, ATP6/8, and
ND4 of Rana sylvatica were dramatically upregulated [46]. Conversely, relative transcrip-
tion of the COI gene in Dryophytes versicolor mitochondria was reduced following freezing
stress [47]. The preponderance of mitochondrial PCGs in diverse organs of the tiger frog
(Hoplobatrachus rugulosus) were all downregulated under low-temperature stress [39]. This
sensitivity of gene expression to temperature or climate can affect the amphibian life cycle
and the metabolism of ROS [48,49]. Regardless of the changes in expression levels, such
changes indicate that mitochondria action is closely integrated into biological cold and/or
freeze tolerance.
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Over the past century, the Earth’s average atmospheric temperature has warmed by
0.6 ◦C [50,51] and is expected to climb 1.8–4.0 ◦C before the century is out [52,53]. Even
though there is no conclusive evidence that the rate of global warming is necessarily increas-
ing, it is undeniable that extreme climate events caused by global warming will lead to the
extinction of multiple species [54–56]. Due to global warming, amphibians could become
the most endangered animals on the planet [57], especially those species in tropical and
subtropical areas [58]. Extreme high temperatures can lead to dysregulation of metabolic
pathways, damage to cell structures, and even death when temperatures exceed the critical
maximum for each species [9,59]. To prolong survival in extreme heat, cells will take special
metabolic actions to eliminate harmful substances induced by high temperatures. An
overexpression of ROS might stimulate the upregulation of HSP gene expression [60–62].
Production of heat shock proteins (HSPs) can protect protein structure and prevent aggrega-
tion of denatured proteins in their capacity as molecular chaperones [63,64]. Not just heat,
heavy metal ions, oxidative stress, and arsenite are also some of the stressors that trigger
the production of heat shock proteins [65–67]. Heat can induce oxidative stress and trigger
the production of antioxidant enzymes [68,69]. Additionally, high temperatures are associ-
ated with enhanced oxygen consumption. For instance, elevated temperatures enhanced
resting oxygen consumption in Thamnophis elegans [70], but Python regius did not plateau at
temperatures approaching critical thermal maximum (CTMAX) [71]. Although few studies
have directly elucidated the effects of high-temperature stress on mitochondrial genome
expression levels, as an essential component of cellular metabolism, mitochondria should
play a crucial role in this process. Indeed, the heart of rainbow trout (Oncorhynchus mykiss)
held at high temperatures showed a drop in phosphorylation and uncoupled respiration
ratios, and phosphorylation gradually decreased as the temperature increased, whereas
mitochondria proton permeability increased, meaning more proton leakiness [72]. The
study also found that when approaching the thermal limit temperature, complex I (NADH
dehydrogenase) activity decreased [72].

The current research on amphibian responses to temperature change is limited. Few
studies have focused on amphibians that live in subtropical and tropical regions and
hibernate. The rice frog, Fejervarya kawamurai, a common species of paddy frog, belongs to
the anuran family Dicroglossidae [73,74]. The complete mitochondrial genome sequence
and phylogenetic relationship of F. kawamurai from Guizhou province, China, have been
published by Cheng et al. [75]. It is a member of the Fejervarya limnocharis complex with F.
kawamurai living mainly on the Japanese mainland, the central Ryukyu islands of Japan, and
southern China [74]. Thus, F. kawamurai is a good representative for studying subtropical
and tropical amphibian responses to extreme cold or heat stress.

The frequency of exceptionally hot or cold days may rise as a result of human in-
tervention, which is anticipated to have a particularly significant effect on ectothermic
species [76,77]. The present study investigated the phylogenetic relationship of F. kawamurai
within Dicroglossidae and the relative expression of mitochondrial PCGs in response to
cold or heat exposure using the mitochondrial genome. The major goal of the study was
to determine how the 13 PCGs differ in expression patterns with temperature change by
comparing frogs held at 2 ◦C, 4 ◦C, 25 ◦C, or 40 ◦C.

2. Materials and Methods
2.1. Animal Treatments

Twenty-four similar-sized adult frogs (Fejervarya kawamurai) were collected on
5 September 2021 from a paddy field in Guangzhou, Guangdong Province, China
(113◦20′39′ ′ E, 23◦3′52′ ′ N). Upon arrival in the lab, all animals were bathed in a tetra-
cycline solution and then held and fed in a plastic incubator for a week at 25 ◦C. The frogs
were then randomly distributed into four groups of six samples. The frogs in the control
group were kept in a plastic box with a moist towel for 24 h at 25 ◦C. Two groups were
exposed to low-temperature stress for 24 h at 2 ◦C or 4 ◦C. The fourth group was exposed
to high-temperature stress at 40 ◦C for 24 h. Subsequently, all frogs were euthanized by
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pithing, followed by quick liver dissection and freezing in liquid nitrogen. Organ samples
were then held at −80 ◦C until use.

2.2. DNA Extraction, PCR, and Sequencing

Using a Column Animal Genomic DNA Purification Kit (Sangon Biotech Company,
Shanghai, China), total genomic DNA from F. kawamurai was retrieved from a clipped toe.
Fourteen pairs of common primers were modified using the techniques of Yu et al. [78],
Liu et al. [79], and Huang et al. [80] referring to the published sequence [75] in the NCBI and
common frog primers devised by Zhang et al. [81,82]. PCR and LA-PCR were amplified
using the methods described by Zhang et al. [83]. Sangon Biotech Company (Shanghai,
China) sequenced all PCR products utilizing the bi-directional primer-walking method.

2.3. Sequence Assembly and Analysis

DNASTAR Package v.6.0 [84] was used to manually evaluate and assemble all se-
quences. MITOS2 (http://mitos2.bioinf.uni-leipzig.de/index.py, accessed on 11 May
2022) [85] detected all genes. Mega 7.0 [86] was used to compare the position of all genes
to those of closely related species using sequences downloaded from GenBank. All tRNA
genes were further evaluated by their cloverleaf secondary structure utilizing tRNA-scan
SE 2.0 (http://lowelab.ucsc.edu/tRNAscan-SE/, accessed on 11 May 2022) [87] or by
comparing their sequences to those of other species. The CG View online server v.1.0
(https://cgview.ca/, accessed on 15 May 2022) [88] generated complete mitochondrial
genome maps of F. kawamurai. PhyloSuite v.1.2.2 [89] calculated the CG and AT skews.
Adobe Illustrator 2020 was used to illustrate the relative synonymous codon usage (RSCU)
of PCGs.

2.4. Molecular Phylogenetic Analyses

To investigate the phylogenetic relationship among Dicroglossidae, a dataset including
the complete mitochondrial genomes from other anuran groups (Limnonectes, Fejervarya,
Hoplobatrachus, Phrynoderma, Nanorana, and Quasipaa) [38,75,79,90–103] as well as an out-
group species belonging to Occidozyga [104] was created (Table 1). Since Hoplobatrachus
rugulosus contains two distinct ND5 genes [78,93], ND5 was not used to construct the phylo-
genetic trees. Finally, phylogenetic analyses were conducted using concatenated sequences
of the 12 PCGs of complete mitochondrial genomes. DAMBE v.4.2 [105] was used to test
substitution saturation using the 12 PCGs nucleotide sequences dataset. Since the first,
second, and third codon positions were not saturated, the first, second, and third codons of
the 12 PCGs (the PCG123 dataset) were used for phylogenetic analyses. MAFFT v.7 [106]
was used to align the 13 PCG nucleotide sequences and Gblock 0.91b [107] was used to
detect the conservative region using the default configuration. PhyloSuite v.1.2.2 [89] was
used to concatenate the resulting alignments and Geneious v.8.1.6 [108] was used to con-
vert it. PartitionFinder v.2.2.1 [109] was employed to select the best substitution model of
the PCG123 dataset for Bayesian inference (BI) and maximum likelihood (ML) analyses.
The PCG123 dataset yielded a total of nine partitions, the results of which are displayed
in Table S1. The phylogenetic analysis employed the GTR + I + G model. In MrBayes
v.3.2 [110], BI analysis was conducted for 10,000,000 generations until the average standard
deviation of Bayesian split frequencies fell below 0.01. RaxML v.8.2 software [111] was used
to perform ML analysis with rapid inference evaluation for each node under 1000 ultrafast
replications. The first 25% of the generations were burned-in to improve phylogenetic
analysis. When the value of the average standard deviation of the split frequency was
stable and the balance was less than 0.01, the tree was extracted.

http://mitos2.bioinf.uni-leipzig.de/index.py
http://lowelab.ucsc.edu/tRNAscan-SE/
https://cgview.ca/


Animals 2023, 13, 3015 5 of 19

Table 1. Information about the samples used in this study and the NCBI GenBank accession numbers.

Family Subfamily Genus Species Genome Length GenBank No. References

Dicroglossidae
Dicroglossinae

Limnonectes
Limnonectes bannaensis 16,867 bp AY899242 [38]
Limnonectes fujianensis 18,154 bp MF678821 [90]

Limnonectes fragilis 16,640 bp AY899241 Unpublished

Fejervarya

Fejervarya cancrivora 17,843 bp EU652694 [91]
Fejervarya kawamurai_GDGZ 17,866 bp OQ633008 This study

Fejervarya kawamurai 17,650 bp MH087466 [75]
Fejervarya limnocharis 17,717 bp AY158705 [79]
Fejervarya multistriata 17,759 bp MN987553 [92]

Hoplobatrachus Hoplobatrachus rugulosus 20,926 bp JX181763 [93]
Hoplobatrachus tigerinus 20,462 bp AP011543 [94]

Phrynoderma Phrynoderma hexadactylum 20,280 bp AP011544 [94]

Nanorana

Nanorana parkeri 17,837 bp KP317482 [95]
Nanorana pleskei 17,660 bp HQ324232 [96]

Nanorana ventripunctata 18,373 bp KY594708 [97]
Nanorana taihangnica 17,412 bp KJ569109 [98]
Nanorana yunnanensis 23,685 bp KF199150 [99]

Quasipaa

Quasipaa boulengeri 17,741 bp KC686711 [100]
Quasipaa verrucospinosa 15,063 bp KF199147 [99]

Quasipaa exilispinosa 17,046 bp MT561179 [101]
Quasipaa spinosa 18,012 bp FJ432700 [102]

Quasipaa jiulongensis 15,072 bp KF199149 [99]
Quasipaa shini 14,943 bp KF199148 [99]
Quasipaa yei 17,072 bp KJ842105 [103]

Occidozyginae Occidozyga Occidozyga martensii 18,321 bp GU177877 [104]

2.5. RNA Extraction and cDNA Synthesis

Total RNA of F. kawamurai was extracted from frozen liver samples of the control
(25 ◦C), 24 h low-temperature (2 ◦C and 4 ◦C), and 24 h high-temperature (40 ◦C) conditions
using a TaKaRa MiniBEST Universal RNA Extraction Kit (Takara, Japan). After 15 min of
electrophoresis on a 1% agarose gel at 135 V and 120 mA, the samples were stained with
Goldview. Sharp bands for 28 S and 18 S ribosomal RNA confirmed RNA integrity [112].
RNA was stored at−80 ◦C until usage. Take3 apparatus (BioTek Instruments Inc., Winooski,
VT, USA) was used to assess RNA content and quality at 260 nm and 280 nm. Following
the instructions of a PrimeScript™ RT Master Mix kit (Takara, Japan), 500 ng of RNA-
containing sample volumes were gently mixed for reverse transcription. Reactions were
carried out under the following conditions: reverse transcription at 37 ◦C for 15 min and
then inactivation of the reverse transcriptase at 85 ◦C for 5 s.

2.6. RT-qPCR Primer Design

According to the mitochondrial gene sequence of F. kawamurai, MegAlign (DNASTAR)
and Primer Premier 6.0 software (Premier Biosoft International, Palo Alto, CA, USA) were
used to build reverse transcription–quantitative polymerase chain reaction (RT-qPCR)
primers. β-actin served as the reference gene [113,114]. PCR primers for β-actin were
taken from Jin et al. [39]. Table 2 lists the RT-qPCR primers synthesized by Shanghai
Biotechnology Company (Shanghai, China). The length of amplicons varied from 120 to
150 bp, melting temperatures were designed between 50 ◦C and 55 ◦C, and primer lengths
were between 18 and 22 bp.
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Table 2. RT-qPCR Primer of the 13 mitochondrial protein-coding genes in this study.

Gene Name Forward Primers (5′-3′) Reverse Primers (5′-3′)

COI GDCC-COI-J
TTGTTCACTGATTCCCACTTT

GDCC-COI-N
GAGGTATCCCCGCTAAACCA

COII GDCC-COII-J
ATGGACGAGTTAGGTGCC

GDCC-COII-N
AAGGTCATTTGTGGGGAT

COIII GDCC-COIII-J
GGCATCTACGGAACCACA

GDCC-COIII-N
AAGCCGAAGTGGTGTTGA

ATP8 GDCC-ATP8-J
ATGCCTCAATTACTACCT

GDCC-ATP8-N
GCTTCAGGTTACAGAGTT

ATP6 GDCC-ATP6-J
AATAAGTATTAACCTTCTCGG

GDCC-ATP6-N
TACGGAGGCCGATAAGGACTG

ND1 GDCC-ND1-J
CTTGCGGTAGCATTCCTCA

GDCC-ND1-N
AGGATTTGCGAGGAGGTTG

ND2 GDCC-ND2-J
TCAGGAGAATGGTCCATCG

GDCC-ND2-N
ATGTTGAGAGGATTAGTCCA

ND3 GDCC-ND3-J
CTCATTGCCTCTGCCCTA

GDCC-ND3-N
GGAAGAAGCGTATGGAAT

ND4 GDCC-ND4-J
GGCACTATTTTCCAACCC

GDCC-ND4-N
AAGCAAGTAAAGAGGGAGTT

ND4L GDCC-ND4L-J
GGCCTATCTTTCCACCGTAT

GDCC-ND4L-N
AAGGGGGATAGGACAAAAGA

ND5 GDCC-ND5-J
TGCTGTGAAACACAACGACA

GDCC-ND5-N
TGATTATTCCCGAGATTATGA

ND6 GDCC-ND6-J
TTCTAATCCGTCACCATACT

GDCC-ND6-N
TCCCACCTAAATACACTAGC

Cytb GDCC-CYTB-J
TCATCTAATCCAACAGGGCT

GDCC-CYTB-N
GTGAAGTTATCTGGGTCTCC

β-actin GDCC-Actin-J
GTGCGTGACATCAAGGAG

GDCC-Actin-N
GGCTTCTGGACATCTGAAC

2.7. Relative mRNA Quantification

A StepOnePlus™ Real-Time PCR System (Life Technologies, Carlsbad, CA, USA) was
used to quantify transcript levels of the 13 PCGs. Standard curves and gene quantification
primers were tested using serial dilutions of the control group of pooled cDNA. Each
sample was mixed with 10 µL SYBR Premix Ex Taq II (2×), 0.4 µL ROX Reference Dye
(50×), 0.8 µL forward and reverse primers (10 µM), 6 µL ddH2O, and 2 µL RT reactants
(cDNA) for RT-qPCR. Primers and genes were used for three technical replicates with
conditions of 95 ◦C for 30 s for denaturation followed by 40 cycles of 95 ◦C for 5 s and 55 ◦C
for 30 s. Relative mRNA quantification was calculated by dividing the first target gene
quantity by the starting gene amount for each sample.

2.8. Data Analysis

Each experimental condition involved four unique biological replicates for each gene,
and data were reported as mean expression ± SE. The relative levels of mRNA transcripts
were determined using the 2−∆∆Ct method and standardized to the β-actin gene. All
data were analyzed using Statistical Program for Social Sciences 22.0 software (SPSS, Inc.,
Chicago, IL, USA). Grubbs (Extreme Studentized Deviate Test) eliminates outliers and has
95% credibility. Student’s t-test was used to compare gene transcript levels in livers from the
control and experimental groups, with p < 0.05 considered as a significant difference [115].
Data were graphically presented Using Origin 2021 software (Origin Lab).
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3. Results
3.1. General Features of the F. kawamurai Mitogenome

The F. kawamurai mitochondrial genome was 17,866 bp and is available in GenBank
with accession number OQ633008. The circular mitogenome encoded 13 PCGs, 23 tRNAs
(including an extra tRNA-Met), 2 rRNA genes (12S rRNA and 16S rRNA), and a D-loop
between Cytb and ND5 (Figures 1 and S1). The L strand encodes ND6 and 8 tRNAs, whereas
the H strand encodes the remaining genes. Table 3 shows the features of all genes in the
mitochondrial DNA. The AT skew, GC skew, and A + T content of the whole genome, PCGs,
rRNAs, and tRNAs were calculated (Table 4). Moreover, mitochondrial DNA is extraordinarily
compact and parsimonious [116]. Two pairs of H-strand genes, ATP8-ATP6 and ND4L-ND4,
had open reading frame (ORF) overlaps. Some PCGs share nucleotides with nearby tRNA
genes. Using Tandem Repeats Finder v.4.09 [117], the tandem repeats between tRNA-Ser
and ND6 included the tRNA-Ser downstream sequence and the ND6 upstream sequence,
and a gap between them was found. Figure 2 displays the Relative Synonymous Codon
Usage (RSCU) of the 13 mitochondrial PCGs from F. kawamurai. Excluding stop codons, the
mitochondrial genome of F. kawamurai encoded 3742 amino acids.
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Figure 1. Circular visualization maps of the complete mitochondrial genome of F. kawamurai. The
circles from the outside to the inside show the gene map (PCGs, rRNAs, tRNAs, and the AT-rich
region), the GC content, and the GC skew, respectively. Among them, the genes outside the map are
coded on the majority strand (J-strand), whereas the genes inside the map are coded on the minority
strand (N-strand).
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Table 3. Location of features in the mtDNA of F. kawamurai.

Feature Start
Position

Stop
Position

Intergenic
Nucleotide

Length
(bp)

Start
Codon

Stop
Codon Anticodon Strand

tRNAThr 1 72 −1 72 TGT H
tRNAPro 72 140 17 69 TAG H

tRNALeu(CUN) 158 229 33 72 TGG L
tRNAPhe 263 330 68 GAA H
12S rRNA 331 1264 −1 934 H
tRNAVal 1264 1335 72 TAC H

16S rRNA 1336 2927 −1 1592 H
tRNALeu(UUR) 2927 2999 73 TAA H

ND1 3000 3957 958 ATG T H
tRNAIle 3958 4028 71 GAT H
tRNAGln 4029 4099 −1 71 TTG L
tRNAMet 4099 4169 3 71 CAT H
tRNAMet 4173 4241 69 CAT H

ND2 4242 5276 −2 1035 ATT TAG H
tRNATrp 5275 5343 69 TCA H
tRNAAla 5344 5412 2 69 TGC L
tRNAAsn 5415 5487 2 73 GTT L
tRNACys 5525 5590 66 GCA L
tRNATyr 5591 5657 4 67 GTA L

COI 5662 7192 11 1531 ATA T H
tRNASer(UCN) 7204 7274 71 TGA L

tRNAAsp 7275 7342 2 68 GTC H
COII 7345 8026 682 ATG T H

tRNALys 8027 8094 1 70 TTT H
ATPase8 8096 8257 −7 162 ATG TAA H
ATPase6 8251 8932 682 ATG T H

COIII 8933 9716 784 ATG T H
tRNAGly 9717 9785 69 TCC H

ND3 9786 10,130 4 345 GTG TAA H
tRNAArg 10,135 10,203 1 69 TCG H

ND4L 10,205 10,483 −7 279 ATG TAA H
ND4 10,477 11,829 3 1353 ATG TAA H

tRNAHis 11,833 11,901 69 GTG H
tRNASer(AGY) 11,902 11,969 259 68 GCT H

ND6 12,229 12,717 5 489 ATG AGG L
tRNAGlu 12,723 12,790 5 68 TTC L

Cytb 12,796 13,932 1137 ATG TAA H
D-loop 13,933 16,039 2107 H
ND5 16,040 17,857 1818 GTA TAA H

Notes: “H” means gene encoded by the H-strand; “L” means gene encoded by the L-strand. Intergenic nucleotide
represents a noncoding base between genes; a negative number (−) denotes a gene overlapping.

Table 4. The base composition of the mitochondrial genomes of F. kawamurai.

Region A (%) T (%) C (%) G (%) A + T (%) C + G (%) AT Skew GC Skew

Mito (H strand) 27.8 29.4 27.5 15.4 57.2 42.9 −0.028 −0.282

PCGs
J 25.3 31.2 28.7 14.7 56.5 43.4 −0.104 −0.322
N 17.2 34.8 12.1 36.0 52.0 48.1 −0.339 0.498

tRNAs (H strand) 29.3 27.1 23.4 20.2 56.4 43.6 0.039 −0.072
rRNAs (H strand) 33.3 24.4 23.7 18.6 57.7 42.3 0.154 −0.119
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3.2. Phylogenetic Relationships of F. kawamurai

BI and ML trees based on entire mitogenome sequences had identical topologies and
bootstrap and posterior probabilities were well supported internal nodes (Figure 3). In
both BI and ML trees, Occidozyga martensii was used as the outgroup. In the subfamily
Dicroglossinae, F. kawamurai was a sister clade to the clade of (F. multistriata + F. limnocharis),
then F. cancrivora was a sister clade of ((F. multistriata + F. limnocharis) + F. kawamurai).
P. hexadactylum was a sister clade of (H. rugulosus + H. tigerinus) and then clustered in a
clade with (F. cancrivora + ((F. multistriata + F. limnocharis) + F. kawamurai)), later clustered in
a clade with (Quasipaa + Nanorana), and finally clustered in a clade with (Limnonectes fragilis
+ (Limnonectes bannaensis + Limnonectes fujianensis)).
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Figure 3. Phylogenetic relationships among 23 species (24 sequences) of Dicroglossidae based on the
nucleotide dataset of the 12 mitochondrial protein-coding genes. Occidozyga martensii was used as
the outgroup. The numbers above the branches specify bootstrap percentages from ML (left) and
posterior probabilities as determined from BI (right). The GenBank accession numbers of all species
are shown in the figure. Different colors represent different genera.
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3.3. Transcript Levels of Protein-Coding Mitochondrial Genes

RT-qPCR was used to compare hepatic transcript levels of the 13 PCGs in F. kawamurai
under control (25 ◦C), low-temperature (2 ◦C and 4 ◦C), and high-temperature settings.
Gene v mean values were standardized to 1.0 ± SEM in the control group and values for
other groups were expressed relative to the control group (Figure 4).
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Figure 4. The steady-state transcript levels of 13 protein-coding genes of F. kawamurai in response to
different temperature stresses. The x-axis shows gene name and the y-axis shows gene steady-state
transcript levels. Black columns show controls (25 ◦C) standardized to 1.0; the hatched columns show
the corresponding experimental group ((A): 2 ◦C; (B): 4 ◦C; (C): 40 ◦C). Asterisks indicate significantly
different expression: (*, p < 0.05) and (**, p < 0.01).

Compared with the control group (25 ◦C), liver mitochondrial gene transcript lev-
els of ATP8, ND1, ND2, ND3, ND4, and Cytb increased by 1.32 ± 0.07, 1.44 ± 0.01,
1.96 ± 0.10, 1.48 ± 0.12, 1.76 ± 0.19, and 1.46 ± 0.08 fold, respectively, when assessed
at 2 ◦C. Only ND5 gene expression decreased to a value of 0.40 ± 0.05 compared with the
control. The expression levels of the remaining 6 PCGs were not significantly different
between the control and low-temperature states (Figure 4A). After 4 ◦C low-temperature
stress, mitochondrial gene transcripts of COI, COII, COIII, ATP6, ATP8, ND2, ND4, ND4L,
ND5, and ND6 were markedly lower, decreasing to values 0.30 ± 0.08, 0.56 ± 0.15,
0.37 ± 0.12, 0.32 ± 0.05, 0.44 ± 0.14, 0.64 ± 0.13, 0.68 ± 0.12, 0.45 ± 0.06, 0.28 ± 0.08,
and 0.35 ± 0.11 fold compared with the control group. However, ND1, ND3, and Cytb tran-
scripts showed no significant differences between the control and 4 ◦C groups (Figure 4B).
Compared with the low-temperature stress groups, the 40 ◦C group showed transcript
levels of COIII, ND1, ND2, ND3, ND4, ND4L, ND6, and Cytb that were significantly elevated
by 1.65 ± 0.10, 1.06 ± 0.04, 1.72 ± 0.18, 2.00 ± 0.44, 1.86 ± 0.37, 1.51 ± 0.21, 1.54 ± 0.10,
and 2.18 ± 0.30 fold, respectively. However, COI and ND5 transcript levels were lowered
to 0.56 ± 0.11 and 0.67 ± 0.13, respectively, compared with the control group (Figure 4C).
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4. Discussion
4.1. Phylogenetic Relationships

Most of the phylogenetic results were similar to previous studies [75,82,118]. Accord-
ing to the results, the evolutionary position of F. kawamurai in Dicroglossidae was again
clarified. In phylogenetic trees, Occidozygini (Occidozyginae) was observed to be a basal
clade to Dicroglossinae, which is basically consistent with previous reports [99]. In the
subfamily Dicroglossinae, Fejervarya is a sister clade to (Hoplobatrachus + Phrynoderma).
However, this study found that Limnonectes was a sister clade of ((Quasipaa + Nanorana) +
(Fejervarya + (Hoplobatrachus + Phrynoderma))), which was inconsistent with the results of
Cheng et al. [75], Zhang et al. [82], and Yu et al. [99]. This discrepancy was due to the fact
that different datasets were used to reconstruct the evolutionary relationship. Furthermore,
due to the diversity of species having morphological variation, the classification of Fejer-
varya was controversial in early studies [119]. In particular, Fejervarya limnocharis is now
considered to be a complex species, with four species currently in it: Fejervarya kawamurai,
Fejervarya sakishimensis, Fejervarya multistriata, and a monophyletic group from southeastern
and eastern Taiwan (Fejervarya sp.) [74,120]. Therefore, the phylogenetic relationship of
Fejervarya still needs to be further investigated.

4.2. Mitochondrial Transcript Level Analyses at Low Temperature

To investigate the metabolic activities of organisms, it is impossible to completely
isolate them from their native habitat’s natural environment. For instance, Drosophila
melanogaster inhabiting tropical regions exhibits greater tolerance to elevated temperatures
compared with those residing in higher latitudes. These variations in temperature toler-
ance are believed to be associated with dissimilarities in the mitochondrial genome [41].
Similarly, amphibians living in subtropical areas are much less tolerant to low temperatures
than those living in higher latitudes, and this seems to be reflected at the mitochondrial
genome level. How does the F. kawamurai species, if captured in Guangzhou where winter
temperatures rarely drop below freezing, cope with the uninhabitable extreme cold? This
low-temperature experiment was designed at a lower temperature than 4 ◦C, and the result
found that there was a difference between them. At 4 ◦C, transcript levels of 10 PCGs from
F. kawamurai were reduced significantly compared with the 25 ◦C controls. Nevertheless, at
2 ◦C, the expression of 6 PCGs increased. Compared with the 25 ◦C control group, ND5
transcription was reduced considerably at 2 ◦C and 4 ◦C. This might suggest a rate-limiting
role for the ND5 protein in mediating mitochondrial activity at cold temperatures.

Indeed, physiological adaptation for cold hardiness could depend substantially on
temperature-induced changes in gene expression [121], particularly at the mitochondrial
level [37]. Proteins encoded by mitochondrial DNA participate in the respiratory chain
complexes I, III, IV, and V. Complex I, type I NADH dehydrogenase, is essential to cel-
lular metabolism. The tricarboxylic acid cycle and other physiological functions require
reducing equivalents from NADH oxidation to NAD+ [122]. Cytochrome b with two
membrane-side quinone-binding sites, is a subunit of complex III encoded by mitochon-
dria [123]. ATPase (complex V) is closely related to ATP production during oxidative
phosphorylation. All of these complexes are associated with proton transfer and oxidative
phosphorylation. Ectotherms can often survive extreme settings, particularly cold tempera-
tures, by allowing their metabolic rate to decrease in proportion to declining environmental
temperatures [4–8,33–36,124].

It has been demonstrated that poikilotherms can increase their duration of survival
under stressful conditions by slowing their metabolic rate and thereby lowering the drain on
endogenous fuel supplies caused by a need to generate ATP [33–36,124]. This low metabolic
state can effectively help amphibians survive the long winter. For this purpose, amphibians
must reduce oxygen usage by altering mitochondrial metabolism and affinity, membrane
permeability, and cellular electrochemical gradients [125]. The declining expression level of
electron transport chain subunits is evidence of hypometabolism. For example, exposure to
chilling decreased COI transcript levels in gray treefrogs, D. versicolor [47]. The majority
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of mitochondrial genes in various organs of H. rugulosus were downregulated under low-
temperature conditions [39]. In addition, low ambient temperature affects amphibian
activity and foraging [126]. When subjected to cold exposure, a lower resting metabolic rate
in Bufo marinus by hypometabolism was found [37]. Therefore, it is reasonable to speculate
that the significant downregulation of some mitochondrial gene transcription levels in
F. kawamurai at 4 ◦C indicates that it has entered a low metabolic dormant state.

However, at 2 ◦C, the transcript levels of 6 PCGs were significantly increased, affecting
mitochondrial respiratory chain complexes I, III, and V. This phenomenon might be related
to hepatocyte glycogen breakdown and gene expression for cryoprotectant or antifreeze
production [16,24]. The conversion of glycogen into the carbohydrate protectant required
by the organism requires a certain amount of ATP to supply energy, and the original
production capacity in the low metabolic state is not enough to ensure this additional energy
demand. Moreover, ROS, including hydroxyl radicals, superoxide, and peroxyl radicals,
could increase in concentration in a frigid environment [11] and, in excess, oxidative stress
can harm vital biological molecules [127–130], including subunits of mitochondria. The
respiratory chain is oxidized by ROS [131], leading to a decrease in electron flow and ATP
synthesis [132]. These markedly upregulated genes are associated with proton transport
and ATP production. Therefore, maintaining essential metabolism in the face of oxidative
damage caused by ROS might be responsible for the increased level of mitochondrial PCG
expression at very low temperatures.

4.3. Mitochondrial Transcript Level Analyses at High Temperature

Mitochondrial dysfunction at high temperatures may be the cause of an animal’s upper
thermal limitations. Most liver mitochondrial PCGs were upregulated by high-temperature
stress. Indeed, at 40 ◦C, transcript levels of 7 PCGs increased significantly in F. kawamurai
liver. However, COI and ND5 gene transcript levels were significantly reduced.

The thermal limit of an organism is correlated with the normal function of the mito-
chondrial respiratory chain. Mitochondrial proton leakage at higher temperatures appears
to be larger than usual, implying that inefficient proton circulation rises, lowering the
effective P/O ratio [72,133]. At elevated temperatures, this will inevitably pose a challenge
to the energy supply of cells. Heat-induced increases in ROS can damage organelle mem-
branes [68,69] and heat can also inactivate complexes I, III, and IV of the electron transport
chain and destroy them by causing mitochondrial oxidative injury [134]. Such injury can
interfere with the normal coupling of the respiratory chain response, rendering mitochon-
dria incapable of producing sufficient energy. In addition, according to the oxygen- and
capacity-limited thermal tolerance (OCLTT) theory, the oxygen supply capacity of the
organism at thermal limits is insufficient to meet the needs of aerobic respiration [135–138].
Collectively, the significantly increased expression levels of a number of mitochondrial
genes may serve to compensate for the insufficient energy provided by the mitochondrial
respiratory chain in response to high-temperature duress. OCLTT also integrates protective
mechanisms, including chaperones, anaerobic metabolism, and antioxidative defenses.
Therefore, SOD, CAT, GPx, and some non-enzymatic antioxidants produced in heat condi-
tions may be connected to the expression of mitochondria genes [62,139,140]. In addition,
the change trend of transcription levels of COI and COIII, which belong to complex IV [141],
is different. Consequently, high ambient temperature can affect steady-state transcript
levels of electron transport chain PCGs differently. Taken together, the variation in mito-
chondrial gene transcript level induced by high-temperature stress could be associated with
compensating the activity of mitochondrial respiratory chain complexes and modulating
inner mitochondrial membrane proton permeability.

4.4. Characteristics of ND5 Gene Expression

Compared with the control group, no matter whether under high- or low-temperature
conditions, ND5 transcripts consistently showed a significant reduction in liver. The
ND5 gene encodes the ND5 protein that is a long horizontal α-helix in the hydrophobic
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arm of complex I. Its length varies from species to species [142]. The α-helix containing
transmembrane helices (TMH) at the C-terminus of ND5 can provide structural stability by
clamping the two proton pumping modules [143,144]. In a study of low-temperature stress
in H. rugulosus from China and Thailand, two identical ND5 genes in H. rugulosus from
China exhibited significant differences in expression, whereas two different ND5 genes in
H. rugulosus from Thailand did not [39]. The ND5 protein structure of the two is also related
to the aforementioned disparity. Therefore, the substantial decrease in transcript levels of
ND5 in F. kawamurai at all three temperatures observed in this study suggests that ND5
protein has a major role in regulating metabolism. Given the available data, the suppression
of ND5 transcript levels seems to be a sign that F. kawamurai is under thermal and cold stress.
From the standpoint of protein function, Complex I is involved in the transmembrane
transport of protons, which has to do with driving ATP generation [145]. Low- and high-
temperature stress significantly lowered liver ND5 gene transcript levels, which could lead
to reduced oxidative phosphorylation coupling and proton leakage, lowering reactive ROS
generation and regulating energy consumption [146–148]. Reducing proton leakage could
also increase the efficiency of thermogenic nutrients into energy [37]. Consequently, taking
into account the special features of ND5 expression, it may be that ND5 is a key protein
that regulates metabolism when mitochondria experience temperature change.

5. Conclusions

In this study, the mitochondrial genome of F. kawamurai from Guangzhou, Guangdong,
was sequenced and its phylogenetic relationship was determined. To some extent, this
species can link the frogs living in tropical or subtropical regions to mitochondrial gene
expression levels at extreme temperatures. Under cold stress at 2 ◦C, ATP8, ND1, ND2, ND3,
ND4, and Cytb gene transcript levels all increased substantially, whereas ND5 significantly
decreased. Under 4 ◦C stress, COI, COII, COIII, ATP8, ATP6, ND2, ND4, ND4L, ND5,
and ND6 gene transcript levels all decreased dramatically and significantly. In addition,
under 40 ◦C stress, the transcript levels of COIII, ND1, ND2, ND3, ND4, ND4L, and Cytb
genes increased considerably, whereas COI and ND5 decreased significantly. The distinct
metabolic states of organisms at different temperatures are predicted by the different levels
of mitochondrial genome expression at different temperatures. In conclusion, significant
differences in the expression levels of most mitochondrial PCGs in F. kawamurai exposed to
low-temperature or high-temperature stress may mean that the frogs living in tropical or
subtropical regions are highly susceptible to ambient temperature change. Further research
into the impact of low- or high-temperature stress on mRNA transcript and protein levels
in F. kawamurai will help to clarify the findings of this study.
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