
Citation: Tan, L.; Liu, Q.; He, Y.;

Zhang, J.; Hou, J.; Ren, Y.; Ma, W.;

Wang, Q.; Shao, C. Establishment and

Characterization of a Spermatogonial

Stem Cell Line from Tiger Puffer Fish

(Takifugu rubripes). Animals 2023, 13,

2959. https://doi.org/10.3390/

ani13182959

Academic Editor: Xiuzhen Sheng

Received: 11 April 2023

Revised: 28 July 2023

Accepted: 29 July 2023

Published: 19 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

animals

Article

Establishment and Characterization of a Spermatogonial Stem
Cell Line from Tiger Puffer Fish (Takifugu rubripes)
Leilei Tan 1,2, Qian Liu 2, Yangbin He 2, Jingjing Zhang 2, Jilun Hou 3 , Yuqin Ren 3, Wenxiu Ma 2,
Qian Wang 2,4,* and Changwei Shao 2,4,*

1 Jiangsu Key Laboratory of Marine Biological Resources and Environment/Jiangsu Key Laboratory of Marine
Biotechnology, Jiangsu Ocean University, Lianyungang 222000, China; tanll2023@163.com

2 National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research
Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; liuqian97927@163.com (Q.L.);
heyb1002@163.com (Y.H.); jingjingzhang0307@163.com (J.Z.); mawenxiu121@163.com (W.M.)

3 Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization,
Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China;
houjl@bces.ac.cn (J.H.); renyq@bces.ac.cn (Y.R.)

4 Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for
Marine Science and Technology, Qingdao 266237, China

* Correspondence: wangqian2014@ysfri.ac.cn (Q.W.); shaocw@ysfri.ac.cn (C.S.);
Tel.: +86-187-6521-7669 (Q.W.); +86-139-6962-5483 (C.S.)

Simple Summary: Tiger puffer fish (Takifugu rubripes) is an economically important marine fish, in
which the development of selective breeding is limited due to the long time of sexual maturation.
In order to promote the breeding research of this species, we established the spermatogenic stem
cell line of the tiger puffer fish. In this study, we isolated spermatogonial stem cells from the testis
of the 6-month-old tiger puffer fish and cultured them stably in vitro for more than 60 generations.
The characteristics of the in vitro cultured spermatogonial stem cell line showed polygonal in shape.
The germ cell marker genes dnd, ddx4, piwil, dazl, stem cell marker genes sox2, myca and nanog,
and spermatogonial stem cell marker genes gfra1b and ly75 were highly expressed in this cell line.
The establishment of this spermatogonial stem cell line provides a dependable material for the
reproduction research of tiger puffer fish.

Abstract: Tiger puffer fish (Takifugu rubripes) has become the main fish species cultured in China
since the last century because of its high economic value. Male and female tiger puffer fish need 2
and 3 years each to reach sexual maturity, which limits the development of breeding research for
this species. In recent years, in vitro culture of fish spermatogonial stem cells (SSCs) have shown
potential in aquaculture. In the present study, we established a spermatogenic stem cell line from
T. rubripes (TrSSCs). TrSSCs were characterized by polygonal morphology, predominantly retained
44 chromosomes, and grew rapidly at 26 ◦C and in L-15. TrSSCs were still able to grow stably after
more than one year of in vitro culture. TrSSCs showed positive alkaline phosphatase staining. TrSSCs
expressed germ cell-associated genes, including dnd, ddx4, piwil, gfra1b, sox2, myca, nanog, ly75, and
dazl, as determined by semiquantitative assays, and almost all cells were found to express the germ
cell genes ddx4 and gfra1b in a fluorescence in situ hybridization assay. In vitro, induction experiments
demonstrated the TrSSCs possessed the ability to differentiate into other types of cells. Our research
has enriched the fish spermatogonial stem cell resource bank, which will provide an efficient research
model for sex determination and sex control breeding in fish, establishing a foundation for subsequent
breeding research.

Keywords: spermatogonial stem cell line; cryopreservation; transfection; Takifugu rubripes

Animals 2023, 13, 2959. https://doi.org/10.3390/ani13182959 https://www.mdpi.com/journal/animals

https://doi.org/10.3390/ani13182959
https://doi.org/10.3390/ani13182959
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/animals
https://www.mdpi.com
https://orcid.org/0000-0003-1370-822X
https://orcid.org/0000-0002-0326-4410
https://orcid.org/0000-0002-6953-2203
https://doi.org/10.3390/ani13182959
https://www.mdpi.com/journal/animals
https://www.mdpi.com/article/10.3390/ani13182959?type=check_update&version=1


Animals 2023, 13, 2959 2 of 14

1. Introduction

Spermatogonial stem cells (SSCs) can self-renew to produce more stem cells and
produce spermatozoa through the differentiation of daughter cells and further differen-
tiation [1–3]. SSCs represent only a small proportion of testicular cells [4,5], and the
establishment of an SSC line can generate more SSCs in vitro, which is important for breed-
ing research. Mammalian SSC lines have been established in many species, including
mouse (Mus musculus), rat (Rattus norvegicus), wild boar (Sus scrofa), and tree shrew (Tupaia
belangeri). These SSC lines can stably proliferate for multiple generations in vitro for a long
time and express SSC marker genes [6–10].

In fish, SSC establishment is limited by cultivation techniques for prolonged growth
of spermatogonial stem cells in vitro [11]. Rainbow trout (Oncorhynchus mykiss) type A
spermatogonia can be cultured in vitro for approximately 1 month, but the growth of
SSCs is inhibited by the dominance of testicular somatic cells with increasing incubation
time [12,13]. Swamp eel (Monopterus albus) SSCs were cultured in vitro for only 1 month
without feeder layer cells [14]. Caspian trout (Salmo caspius) SSCs still express SSC-related
genes (ly75, gfrα1, nanos2, plzf, and vasa) when cultured in vitro for more than 1 month [15].
To date, three species of fish SSC lines have been cultured in vitro for more than 50 genera-
tions. The medaka (Oryzias latipes) SSC line maintains the phenotype and gene expression
profile (vasa, dazl, piwi, and c-kit) of spermatogonial stem cells after 140 passages [16].
Chinese hook snout carp (Opsariichthys bidens) SSCs can grow stably after two years of
in vitro culture and have SSC gene expression patterns (dazl, dnd, vasa, gfra1, and nanog) [17].
Orange-spotted grouper (Epinephelus coioides) SSCs can proliferate stably in vitro for more
than 20 months and express SSC-specific genes (vasa, dazl, plzf, nanog, oct4, and ssea1) [11].

Tiger puffer fish (Takifugu rubripes) belongs to the order Tetraodontidae, suborder
Tetraodontidae, and family Tetraodontidae, is mainly found in coastal China, the Korean
Peninsula, and Japan, and is popular for its tasty meat and high nutritional value [18,19].
Since the last century, the tiger puffer fish has gradually become a major aquaculture species
in China because of its high economic value [20]. The mature testes of male tiger puffer
fish are delicious, so males are more expensive than females in the market [21,22]. Tiger
puffer fish grow slowly, taking 17–18 months to reach a weight of 1 kg [23]. It will take 2
and 3 years to reach sexually mature for males and females, respectively, and the size of
the parents is larger than the average size on the market. The parental breeding of tiger
puffer fish requires more time and space than that of market-sized fish [24,25], which poses
a barrier to breeding. Thus, by establishing a SSC line, breeding research can be conducted
using stem cells and a new model for SSC research on fish will be established.

In this study, we identified and established a T. rubripes SSC line (TrSSCs) which is
capable of long-term in vitro cultivation. Subsequently, we investigated the chromosome
number, transfection efficiency, and optimal culture conditions and analyzed the gene
expression pattern of TrSSCs. This study provides a new model for SSC research and an
unlimited source of cells.

2. Materials and Methods
2.1. Fish and Sample Preparation

Six-month-old tiger puffer fish was provided by Beidaihe Central Experiment Station,
Chinese Academy of Fishery Sciences. They were reared in circular tanks placed in 300 L of
seawater at 23 ◦C under a 14 h/10 h light-dark photoperiod. The fish were fed pellet feed
and seawater was changed twice a day.

Blood was collected from healthy Japanese flounder (Paralichthys olivaceus) using a
sterile syringe and dispensed in centrifuge tubes. The dispensed blood was left to stand
for 2 h at 4 ◦C, and the rest of the blood was processed by centrifugation at 8000 rpm
for 15 min at 4 ◦C to collect serum. Sterile serum was collected using a 0.22 µm sterile
filter. The culture medium contained Leibovitz’s L-15 (L-15, Gibco, Billings, MT, USA),
15% fetal bovine serum (FBS, Gibco, Billings, MT, USA), 800 IU/mL penicillin, 0.8 mg/mL
streptomycin and 2 µg/mL amphotericin B (Solarbio, Beijing, China), 1% Japanese flounder
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serum, 1% Japanese flounder embryo extract, 2 ng/mL recombinant human fibroblast
growth factor (bFGF, Abcam, Cambridge, UK) and 2 ng/mL recombinant human leukemia
inhibitory factor (LIF, Abcam, Cambridge, UK).

2.2. Primary Culture and Subculture

Healthy fish were chosen and raised in sterile seawater containing 1000 IU/L penicillin
and 1000 mg/L streptomycin for one day. Then they were placed into a water body
containing 200 mg/L MS-222 anesthetic followed by wiping with a 75% alcohol cotton ball.
Subsequently, the testes were removed on an ultraclean bench, washed three times with
L-15 containing penicillin-streptomycin-amphotericin B to remove the tissue mesentery
and blood, and cut into 1 mm3 small pieces. These pieces were digested with 0.05% trypsin–
EDTA for 30 min and inoculated into a 25 cm2 culture flask for culture at 23 ◦C. During the
primary cell culture, half of the medium was changed every 3 days. The cell morphology
was observed under a microscope, and when the cells reached about 50% confluence, the
area of higher density of fibroblasts was marked on the top of the culture flask, and then
the fibroblasts were removed with a cell scraper.

After the tiger puffer testis primary cells had reached 90% confluence, the cells were
digested with 0.25% trypsin to remove small pieces of the attached testis. The SSCs were
first digested under trypsin treatment for a shorter period of time, due to the relatively
weak adsorption properties of SSCs to the culture flasks [26], and the SSCs to be isolated
were treated with this method for the first 10 generations.

When the cells adhered and grew to 80–90% of the bottom area of the culture flask, the
passage was carried out. After discarding the old medium, cells were washed with L-15
containing penicillin–streptomycin-amphotericin B. Approximately 1 mL of trypsin–EDTA
was added, and the cell culture flask was gently shaken in order to spread the trypsin
evenly. After most cells became round, trypsin was removed, the cells were subcultured at
a ratio of 1:2, a new culture medium was added, the cells were gently blown several times
to disperse and then cultured in a 23 ◦C incubator.

2.3. Cryopreservation and Recovery of Cells

TrSSCs in good condition were collected with 0.25% trypsin when they reached 90%
fusion and were centrifuged at 1500 rpm for 5 min at 23 ◦C in order to discard the trypsin.
The pelleted cells were collected in a cell culture freezing medium (70% L-15 medium,
20% FBS, 10% DMSO) to resuspend the cells in 2 mL cryogenic vials. The cryogenic vials
were transferred into a programmed cryopreservation container (Beyotime, Jiangsu, China)
for storage at −80 ◦C for 12 h and then kept in liquid nitrogen (−196 ◦C) for long-term
storage.

For reculture, the cryopreserved cells were shaken in a 37 ◦C water bath until melted.
The cells were then added to 2 mL centrifuge tubes at 1500 rpm for 5 min at room tem-
perature, collected in fresh subculture medium, seeded into 25 cm2 cell culture flasks, and
incubated at 23 ◦C.

2.4. Cell Growth Studies

The growth status of cells was detected in the 30th generation at different temperatures
(17 ◦C, 20 ◦C, 23 ◦C, 26 ◦C and 29 ◦C) and media (DMEM, DMEM/F12, M199, MEM
and L-15). The 30th generation cells were made into a cell suspension of appropriate
concentration calculated with the blood cell counting plate. Then, the cell suspension was
added to the 96-well plate at 100 µL/well (approximately 2000 cells per well, 5 replicates).
The culture plate was placed in the incubator for preculture for 12 h, the experimental
temperature or test medium was changed after 12 h, and the cells were cultured in the
incubator for an appropriate time. The number of cells in each well of the culture plate
was detected daily for 7 consecutive days using the CCK-8 kit (Yeasen, Shanghai, China)
according to the manufacturer’s instructions.
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2.5. Chromosome Karyotype Analysis

Details of chromosome karyotype analysis were as previously described [27], with
modifications. TrSSCs at passage 40 were inoculated into 75 cm2 culture flasks for 24 h at
23 ◦C. The incubated cells were stimulated for 30 min at 4 ◦C, transferred to the culture
medium and cultured in an incubator for 16 h at 23 ◦C. Colchicine was added to the
cells at a final concentration of 0.05 µg/mL and then incubated for 4 h. After removal of
the original medium PBS (Solarbio, Beijing, China) rinse, cells were collected by trypsin
treatment. The collected cells were treated in hypotonic solution (0.075 M KCl) for 40 min
at 37 ◦C and centrifuged at 1500 rpm for 5 min. Then, the supernatant was removed and
precooled Karnaugh’s solution was added and to fix cells for 15 min at 4 ◦C. The tubes
were centrifuged as described above and the cell pellets were dissolved in the fixative and
dropped onto slides. After drying, the slides were stained with 5% Giemsa dye solution
(Solarbio, Beijing, China) for 25 min. The slides were washed and dried, and then observed
and photographed under a microscope.

2.6. Transfection with GFP Reporter Gene

The efficiency of cell transfection was examined by transfecting plasmid pEGFP-N1
expressing green fluorescent protein. Cells at passage 30 were inoculated into 12-well plates
and stably grown for 1 day before transfection until cell confluence reached 80% for cell
transfection. Before transfection, the old culture medium was discarded, the cells were
washed once with PBS, and 1 mL of L-15 containing 3% FBS was added to each well. Ac-
cording to the manufacturer’s instructions, LipofectamineTM 3000 and P3000TM (Invitrogen,
Waltham, MA, USA) were diluted by Opti-MEM (Gibco, Billings, MT, USA) and mixed with
pEGFP-N1. The mixture of pEGFP-N1 and liposomes was incubated for 15 min, added to
the cell culture plate, and cultured at 23 ◦C. After 2 days, the cells were observed under a
fluorescence microscope (DMi8, Leica, Wetzlar, Germany). The transfection efficiency of
the cell lines was calculated using the software ImageJ (version 1.53).

2.7. Alkaline Phosphatase Staining

TrSSCs at passage 30 were incubated in 6-well plates until approximately 60% conflu-
ence by microscopic observation, and then were fixed in 4% paraformaldehyde for 15 min
and washed 3 times with PBS. TrSSCs were stained for alkaline phosphatase for 24 h by us-
ing the BCIP/NBT alkaline phosphatase color development kit (Beyotime, Jiangsu, China)
according to the manufacturer’s instructions. After 24 h, the BCIP/NBT dye working solu-
tion was removed. Cells were washed twice with distilled water to stop the color reaction,
and transferred to an inverted microscope (Leica, Wetzlar, Germany) for observation.

2.8. Fluorescence In Situ Hybridization

TrSSCs at a density of 5× 104 were inoculated into six-well plates with slides placed on
the bottom (NEST, Wuxi, China) until cell fusion reached 60% and fixed in 4% paraformalde-
hyde for 20 min. Fluorescence in situ hybridization probes were designed according to the
instructions for the synthesis of digoxin fluorescent labeling (Servicebio, Wuhan, China).
Fluorescence in situ hybridization was performed with a FISH kit (Gefan, Shanghai, China)
according to the manufacturer’s requirements. Images were acquired and analyzed using a
laser confocal microscope. The probe sequences were shown in Table 1.
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Table 1. Primers used for cloning and gene expression analysis.

Gene F-Primer (5′ to 3′)

cox1-F GAGGCTTTGGGAACTGATTA
cox1-R GGTATTGTGAGATTGCTGGG
ddx4-F AGAGGGATTAGACAAGGTGG
ddx4-R GGCTCAAAACCCATATCCAG
dnd-F TGATTCCTCTGTTCACCACT
dnd-R GCACAAGTTATTGAGGAGCA

piwil1-F TCAAACATACAGAGGAACGC
piwil1-R GATTTCCTGACCTTTGTGCT
gfra1b-F GAAGAAGGAGAAGAACTGCC
gfra1b-R CATCACCGTACCAATGAGG
ly75-F ACGTTACCCACTTTGACAAG
ly75-R CATATCTAACTGGTGCAGGC

nanog-F AAGTGACAGATTTGAGCAGC
nanog-R GTAGTTTGGATGCCACTAGC
dazl-F ACTATTTGGTCGGTATGGGT
dazl-R TCCACAATCCACAAAGTTCC
sox2-F AGGAAGATGGCGCAAGAAAA
sox2-R GACATGTGTAGCCTGGTCTG
myca-F GCGAGGACATCTGGAAGAAG
myca-R AGACGTGGCATCTCTTCAAC

vasa DIG-ACGATTCTCTTTAGATGGCATTCCAGGTGTA
gfra1b DIG-GAAGGTGCCACAGACGGGATACAACGGA

2.9. Total DNA and RNA Extraction and Polymerase Chain Reaction

Total DNA was extracted from 30th generation cells, testes, and ovaries using a DNA
Extraction Kit (TianGen, Beijing, China) according to the manufacturer’s instructions. The
total DNA quantity and quality were detected with a microspectrophotometer.

Total RNA from cells, testes, and ovaries was extracted using TRIzol (Invitrogen,
Waltham, MA, USA). RNA was extracted in chloroform, precipitated in isopropanol,
washed twice with 75% alcohol, and then dissolved in DEPC water. The quality of RNA
was detected by agarose gel electrophoresis. The cDNA was synthesized using the Prime-
Script™ RT Reagent Kit with gDNA Eraser (TaKaRa, Kusatsu, Japan) from 1.0 µg total
RNA samples following the manufacturer’s manual.

Semiquantitative PCR was used to detect the origin of the cells and the expression of
cellular marker genes in cells and gonads. The PCR system was as follows: upstream and
downstream primers (10 µmol/L) 0.5 µL each; DNA template (90 ng/µL) 1 µL; RNA-free
water 8 µL; 2 × EasyTaq SuperMix 10 µL (Vazyme, Nanjing, China). The PCR conditions
were as follows: 94 ◦C predenaturation for 10 min; 35 cycles: denaturation at 94 ◦C for 30 s,
renaturation at 55 ◦C for 30 s, and extension at 72 ◦C for 45 s; extension at 72 ◦C for 10 min;
and storage at 4 ◦C. PCR products were analyzed by 1% agarose gel electrophoresis for
specific bands. Primers were shown in Table 1.

2.10. Induced Differentiation of TrSSC In Vitro

TrSSCs at passage 30 were cultured in suspension in 6-well plates for 7 days in a
culture containing 10 µM retinoic acid. After 7 days of culture, the cells were isolated and
inoculated into 12-well plates for overnight cell adhesion. Then cells were observed and
photographed under a microscope.
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3. Results
3.1. Establishment of a Spermatogonial Stem Cell Line

Primary cells migrated from the testis tissue mass after 5 days of primary culture
at 23 ◦C (Figure 1a) and formed a monolayer of cells at 20 days at 23 ◦C (Figure 1b).
Cells in the initial culture were somatic cells and germ cells with distinct nuclei. As
the transmission time increased, a gradual decrease in the number of somatic cells with
fibroblast-like phenotype could be observed, with cells gradually becoming predominantly
polygonal spermatogonial stem cells (Figure 1c,d). The subcultured cells were passaged
every 3–5 days for one to two passages. Spermatogonial stem cells were obtained from
male T. rubripes, stably passaged for more than 60 generations and named T. rubripes
spermatogonial stem cells (TrSSCs).
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subcultured TrSSCs in passages 15 and 35. (e,f) show the morphology of TrSSCs on the 2nd and 5th
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In addition, different generations of cells were frozen in liquid nitrogen for seed
preservation. Frozen cells were rapidly thawed and further cultured and no changes in
morphology and growth were detected. The cells at passage 30 were observed using an
inverted microscope to have a high rate of attachment at 5 d of recovery and to reach 90%
confluence (Figure 1e,f).
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3.2. Effects of Temperature and Medium on Cell Growth

TrSSCs at passage 30 were used to evaluate the effect of culture temperature and
medium on the cell growth rate. The results indicated that TrSSCs grew stably in different
media containing 15% FBS, and the growth rate was fastest in the L-15 medium at 23 ◦C.
TrSSCs grown in MEM, DMEM/F12, and M199 grew stably without significant differences
(Figure 2a). TrSSCs can survive and grow in an L-15 medium containing 15% FBS at
17–29 ◦C, with better growth rates at 26 ◦C and 29 ◦C (Figure 2b).
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3.3. GFP Reporter Transfection

To detect the gene function and genetic manipulation research ability of the TrSSCs,
we transfected 30th generation cells with plasmid pEGFP-N1. As shown in Figure 3,
fluorescence microscopy results showed that green fluorescent signals were observed in
cells transfected for 24 h, and the transfection efficiency was calculated at 36% by using the
software ImageJ (version 1.53), indicating that pEGFP-N1 was transfected into cells, and
the cell line can be used to study the expression and function of foreign genes in vitro.
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3.4. Chromosome Numbe

For chromosome karyotype analysis, 100 cells (TrSSCs at passage 40) were observed
and counted. The chromosome morphology of TrSSC diploids was shown in Figure 4a, of
which 62 TrSSCs had a diploid karyotype of 44 chromosomes (Figure 4b).
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Figure 4. Chromosomal karyotype analysis of TrSSCs cells. (a) shows the chromosome morphology
of TrSSCs at 40 generations. (b) shows the chromosome number distribution of 100 cells. Scale
bar = 20 µm.

3.5. Characterization of the Spermatogonial Property of T. rubripes TrSSCs

The tiger puffer fish cox1 partial gene was amplified from the cDNA of the TrSSCs
to verify the species of the cell line. The results of the verification of cell line origin and
type were shown in Figure 5a. The PCR product was 883 bp in length and showed a 100%
sequence similarity with the sequences of cox1 from tiger puffer fish (Genbank accession
number: AJ421455) (Figure S1). Amplification of the cox1 gene in the cell line was consistent
with that in the ovary and testis (Figure 5a). These results indicated that the cell line was
derived from tiger puffer fish.

In our study, when testicular cells from T. rubripes were stably subcultured for
30 passages, 60% of adherent cells were found to be strongly positive for alkaline phos-
phatase staining (Figure 5b). The identification of TrSSCs was then analyzed by using
germ cell markers. The expression of stem cell-related marker genes sox2 and myca,
germ cell-specific marker genes dnd and ddx4, and the reproductive stem cell marker
genes piwil, gfra1b, dazl, nanog, and ly75 were detected (Figure 5a). We also examined the
expression of germ cell-specific marker genes and reproductive stem cell marker genes
by fluorescence in situ hybridization. Almost all cells were positive for the markers ddx4
(Figure 5c–e). More importantly, almost all the cells expressed gfra1b (Figure 5f–h). These
results indicated the successful culture of testicular cells.
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Figure 5. TrSSCs express spermatogonial stem cell-associated marker genes. (a) Expression of SSC-
related genes and cox1 in TrSSCs, testis, and ovary. (b) TrSSCs at passage 30 in alkaline phosphatase
staining. (c) The localization of ddx4 in TrSSCs at passage 30. (d) Cell nuclei were stained with DAPI.
(e) Merge image. (f) The localization of gfra1b in TrSSCs at 30 generations. (g) Cell nuclei were stained
with DAPI. (h) Merge image. Scale bar = 50 µm. Tr, TrSSCs; T, testis; O, ovary.
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3.6. Induced differentiation of TrSSC In Vitro

After continuous treatment with retinoic acid for one week, the types of terminally
differentiated cells from TrSSCs were identified, including fibroblasts (Figure 6a) and
astrocytes (Figure 6b), suggesting the pluripotency ability of TrSSCs in vitro.
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4. Discussion

In this study, we used an effective method to establish a spermatogenic stem cell line
(TrSSCs) from the testis of a six-month-old tiger puffer that has been continuously passaged
for more than 60 generations. The optimal conditions for the TrSSCs growth rate were
determined to be at L-15 and at 26 ◦C. TrSSCs were validated as spermatogonial stem cell
lines through three biological strategies: strong staining activity of alkaline phosphatase,
expression of SSC-related genes, and in vitro differentiation analysis.

Genetic material is carried by chromosomes, and the number of chromosomes is
determined for each species. TrSSCs have 44 chromosomes, the same number of chromo-
somes as in the kidney tissue of tiger puffer fish (2n = 44) [28,29] and the same number of
chromosomes as the two-spotted puffer ovary and testis cell line [30,31].

As previously shown, the in vitro cultured SSCs were round and polygonal in shape,
positive for alkaline phosphatase activity, and expressed germ cell genes [11]. TrSSCs
originate from the gonads, can stably pass through generations, and maintain a polygonal
cell morphology. Alkaline phosphatase is expressed at high levels in embryonic germ cells,
embryonic stem cells, and other pluripotent stem cell types [32]. Alkaline phosphatase is
abundant in the spermatogonial stem cells of medaka, orange-spotted grouper (Epinephelus
coioides) [11], and Chinese hook snout carp [17]. TrSSCs are positive for alkaline phosphatase
and express a variety of spermatogonial stem cell-related genes, including dnd, ddx4, piwil,
nanog, ly75, gfra1b, dazl, sox2, and myca. Sox2 plays a role in the maintenance of germ
cell proliferation in fish and is present in the spermatogonial stem cells of rohu carp [33].
myca is a marker gene associated with cell stem proliferation and is expressed in zebrafish
embryos [34]. dnd [35] was a marker gene of type A spermatogonia in gibel carp [36] and
Pacific bluefin tuna [37]. ddx4 was highly expressed in zebrafish spermatogonial stem
cells [38]. piwil showed expression in both turbot [39] and zebrafish spermatogonia [40].
nanog was a marker of fish pluripotent stem cells [41] and was expressed in medaka [42]
and Japanese flounder spermatogonia [43,44]. dazl was shown to be highly expressed in
spermatogonia of medaka [45] and Coilia nasus [46]. ly75 was a marker gene of turbot
spermatogonial stem cells [47] and was also specifically expressed in rainbow trout type A
spermatogonia [48]. gfra1 is a highly conserved molecular marker in vertebrates, and these
molecules are considered classical markers of rodent spermatogonial stem cells, which were
key regulators in maintaining and regulating mammalian SSC self-renewal [49–51]. gfra1
was shown to be expressed in spermatogonial stem cells of Nile tilapia [52], dogfish [53],
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rainbow trout [54], and swamp eel [14]. Medaka SSCs express vasa, dazl, piwi, and c-kit [16].
Two-year in vitro stable culture of the Chinese hook snout carp SSC line showed dazl, vasa,
dnd, gfra1, and nanog expression and weak expression of dmrt1 [17]. Spotted grouper SSC
lines are alkaline phosphatase-positive and express the germ cell markers vasa, dazl, and plzf
and the stem cell markers nanog, oct4, and ssea1 [11]. In short, TrSSCs can stably self-renew
in vitro and exhibit the properties of spermatogonial stem cells.

In our study, the culture medium was an important factor for the long-term culture
of SSCs in vitro. In rainbow trout, inhibition of A-type spermatogonia growth due to
in vitro culture conditions containing high concentrations of FBS which leads to somatic
cell overgrowth [12]. The concentration of FBS in the TrSSC culture set was 15%, the same
concentration as in the Chinese hook snout carp SSC line [17] and orange-spotted grouper
SSC line [11]. In orange-spotted grouper, the bFGF and LIF can play an important role in
maintaining the properties of orange-spotted grouper SSCs [11]. Mammalian recombinant
GDNF and LIF have no effect on the growth of rainbow trout A-type spermatogonia by
in vitro expansion [55]. The addition of rainbow trout serum to the culture medium in-
creases the number and mitotic activity of spermatogonia cultured in vitro [13]. In medaka,
bFGF inhibits spermatogonia differentiation and promotes proliferation in vitro [16], and
the addition of baculovirus-produced LIF to the culture medium induces spermatogonia
proliferation [56]. Fish serum and embryo extracts play an important role in the in vitro
self-renewal of spermatogonial stem cells in medaka, zebrafish, Chinese hook snout carp,
and Nile tilapia [16,17,45,57]. We used a variety of nutrients and cytokines to maintain
TrSSCs in vitro for long-term development, including bFGF, LIF, as well as serum and
embryo extracts from Japanese flounder. Although Japanese flounder and tiger puffer
belong to different orders, these reagents are important for maintaining the self-renewal of
TrSSCs in vitro.

In our study, TrSSC was suitable for culture in L-15, although the media for Chinese
hook snout carp and spotted grouper were Dulbecco’s modified Eagle medium [11,17].
The TrSSC culture environment contains sufficient oxygen. In fish, spermatogonial stem
cells can be cultured in vitro under saturated oxygen for long periods of time, for example,
spermatogonial stem cells of Chinese hook snout carp and spotted grouper can survive
under aerobic culture conditions for long periods of time and more than one year [11,17].

Spermatogonial stem cells have the potential to differentiate multiple cell types after
induction [58]. Human spermatogonial stem cells can differentiate into cells with neuronal
functions in vitro [59]. Spermatogonial stem cells of the Chinese hook snout carp can
produce different types of somatic cells in vitro when stimulated by retinoic acid [17].
In our study, TrSSCs could generate fibroblasts and astrocytes in vitro, indicating their
capacity for differentiation in vitro.

5. Conclusions

In conclusion, SSCs is a special type of cells that capable of self-renewal, exists in
all periods of spermatozoa development, and plays a very important role in fish genetic
breeding. We succeeded in creating an in vitro long-term culture method for T. rubripes
SSCs, which can be stably passaged for more than 60 generations in vitro and display a
variety of spermatogonial stem cell characteristics. The establishment of TrSSCs provides
an important tool for the study of reproductive mechanisms in tiger puffer fish and other
teleost.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani13182959/s1, Figure S1: Sequence of cox1 gene of T. rubripes
and TrSSCs. The cox1 PCR product was 883 bp in length. The sequence alignment analysis showed
100% similarity between the sequences from TrSSC and that from tiger puffer fish (Genbank accession
number: AJ421455).
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