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Simple Summary: High levels of predation can reduce survival rates of young birds and affect overall
population growth. Therefore, birds that are better adapted to avoid predators, such as through
strategic nest positioning, camouflage, and loud alarm calls, have a greater chance of successfully
fledging their young. This study examines how white storks adapt to potential human threats during
their nesting season and shows the effects of factors such as age, reproductive stage, and presence of a
mate on their nesting behavior. The results show that storks are able to adapt their defense strategies
depending on the perceived value and level of threat to their current brood. In particular, during
crucial breeding phases, storks tend to prolong their stay in the nest while accelerating their return,
reflecting a delicate balance between immediate reproductive needs and future prospects. In addition,
the influence of a mate leads to earlier departure from the nest, suggesting a possible sexual conflict
and interplay between parental care priorities. These results provide a deeper understanding of the
intricate decision-making mechanisms of white storks when faced with perceived threats during the
breeding season. The study contributes to a more comprehensive understanding of avian behaviors
in response to environmental challenges.

Abstract: Recognizing, assessing, and responding to threats is critical for survival in the wild. Birds,
especially in their role as parents, must decide whether to flee or delay flight when threatened.
This study examines how age, reproductive stage, and the presence of a mate influence flight
initiation distance (FID) and nest recess duration in white storks. Analyzing the data with a
generalized additive mixed model (GAMM), we found significant correlations between FID and
age, reproductive stage, and presence of a mate. These results suggest that the trade-off between
current and future reproduction shifts during critical breeding periods, such as incubation and
nestling care. To increase breeding success, White Storks appear willing to take risks and extend
their stay in the nest when offspring are most valuable and vulnerable. In the presence of a mate,
individuals leave the nest earlier, suggesting possible sexual conflict over parental care. The duration
of nest abandonment is consistent with FID, except for age. These results illustrate how parental age,
brood value, vulnerability, and sexual dynamics influence white stork flight decisions in complex
ways. Understanding these dynamics enriches our knowledge of bird behavior and adaptations to
environmental challenges and highlights the complexity of parental decision making.
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1. Introduction

Breeding success depends on several factors, including the birds’ ability to find suitable
nesting sites, secure sufficient food for themselves and their chicks, and protect their
offspring from predators. Birds that are better adapted to avoid predators, such as through
effective nest placement, camouflage, or alarm calls and mobbing, are more likely to fledge
their offspring. High predation rates can reduce the number of chicks that survive to
adulthood, thus affecting overall population growth. As a result, predation mortality is an
important selective force and a critical determinant of breeding success in birds because
it influences bird behavior, morphology, and reproductive strategies [1,2]. Therefore,
offspring defense against predation is an important component of parental investment in
many species, with potential fitness costs [3–5]. In addition, the intensity of nest defense
has been shown to be positively related to breeding success [6,7].

Theory predicts that in altricial birds, the reproductive value of offspring monotoni-
cally increases with age and parents invest more in the current brood when the prospect
of nesting again during the season decreases [8,9]. Conversely, theory also predicts that
parents of precocial birds invest less in defense after their young hatch and disperse [10].
However, there are inter- and intraspecific differences in parental defense, and many factors
may influence the residual reproductive value. Offspring value or parental condition may
decline over the course of the breeding season [11–13]. Other factors such as parental
uncertainty may cause males to defend less [14].

When animals accurately identify potential threats, they can take appropriate action
to avoid dangerous situations, which increases their chances of survival. Flight initiation
distance (FID) is defined as the distance an individual will tolerate before taking flight
from an approaching threat, and it is a useful measure of risk-taking behavior [15]. The
decision-making process for flight initiation distance has been theoretically evaluated but
not yet adequately tested [16,17].

The decision to flee or suppress the escape response may depend on a number of
factors that determine the benefits and costs of antipredator behavior [18]. In addition to
natural predators, animals must contend with an ever-increasing human population [19,20].
However, due to the complexity of the escape response, which includes subtle and nonlethal
effects [21,22], assessing the effects of human disturbance on animals remains challeng-
ing [23].

FID and duration of absence are behaviors that can occur in a variety of situations
(e.g., foraging) and they can be considered to be defensive of the nest and offspring in the
context of nesting [15]. In addition, numerous studies have shown that predation and FID
are closely linked, with prey often adapting their response to predator behavior [24]. The
effects of predation and disturbance on animal behavior and population dynamics can have
far-reaching consequences beyond changes in FID. For example, in avian species, hunting
pressure can affect nest presence and ultimately influence breeding success [25]. A higher
nest presence positively affects breeding success in several bird species [26,27]. Conversely,
nest recess has been associated with breeding failure [28–30], suggesting that nest absence
is associated with fitness costs [31].

The persistent and cumulative effects of human disturbance have been shown to
have a range of negative impacts on animals that ultimately negatively affect their fitness
and long-term viability [32,33]. These studies show that the negative effects of human
disturbance go beyond physical damage or habitat destruction and can include behavioral
changes, physiological stress, and reduced reproductive success [34–36].

Various hypotheses, such as offspring value, vulnerability, parental condition, etc.,
provide a conceptual framework to understand the complex dynamics of parental invest-
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ment in the context of sexual selection [37,38]. Some of these hypotheses used to explain
nest defense are not mutually exclusive, and their relative importance may vary depending
on the specific ecological conditions, evolutionary history, and behavioral strategies of
different species [39].

In the Mediterranean, white storks (Ciconia ciconia) often breed in olive groves or
rural areas and are, therefore, vulnerable to aerial predators as well as heat stress and bad
weather. They are also exposed to anthropogenic disturbance. A previous study examining
white storks’ responses to drones found that these devices are not perceived as particularly
threatening [40].

Theory suggests that white storks are more sensitive to perceived threats at certain
stages of the breeding cycle and may exhibit longer FIDs and reduce the duration of
nest recess during egg-laying, incubation, and chick brooding. In addition, age and the
presence of a mate may influence these responses. The objectives of our study were, first,
to determine FID and the duration of nest recess of nesting white storks disturbed by an
approaching human, and, second, to examine whether differences in parental decisions
related to age, timing of breeding, and the number of adults occupying the nest could be
interpreted within the framework of life history theory [3].

2. Materials and Methods
2.1. Study Area

Algeria hosts a substantial population of white storks that have formed colonies on the
southern edge of their breeding range, dotting the landscape with loose settlements. One
of these colonies, a thriving one, has settled in an olive grove near Dréan in northeastern
Algeria (36◦ 41.1700′ N, 7◦ 41.5200′ E). Interestingly, this colony is located only 300 meters
from the largest garbage dump in the region. The breeding season at this Dréan site
extends from late February to mid-July. Since 2011, the breeding ecology of this white
stork population has been meticulously monitored. Each year, chicks are fitted with
uniquely coded Darvic PVC rings prior to fledging as part of a chick ringing program.
Our experiment was conducted at this colony (Figure 1a), which hosts approximately two
hundred breeding pairs annually and has served as a study site for ecological studies since
2011 [41,42].

White storks often show a preference for rural habitats, nesting near human settlements
and using man-made structures such as roofs and poles. In Dréan, these birds prefer to
nest on olive trees (Olea europaea L.). The olive grove also serves as pasture, mainly for
sheep and cows, and is surrounded by cultivated fields. White stork nests are subject to
potential threats from a variety of sources, including roaming children, common ravens
(Corvus corax), black kites (Milvus migrans), and booted eagles (Hieraaetus pennatus).

The Dréan olive grove, located close to human activities, provides a unique opportu-
nity to explore the intricate interactions and adaptations of white storks in an environment
they share with both their human neighbors and potential predators. This site is an im-
portant arena for understanding the complex dynamics that govern stork behavior and
reproductive success amidst various challenges.
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Figure 1. (a) View of the white stork colony at Dréan, northeastern Algeria; (b) histogram of egg-
laying dates by white storks at Dréan.

2.2. Data Collection

Trees were evenly distributed in a 10 m grid and only those that contained a single
nest (which constituted the majority) were selected. Specifically, only trees with a height of
5 to 6 m were retained. Nests were sampled between 29 February and 29 June 2018. We
estimated FIDs for nesting white storks in a standardized manner: a researcher, always the
same, moved at normal speed with his head toward an occupied nest and recorded with a
surveyor’s (measuring) rope the distance at which the bird initiated flight distance. The
experiment focused on ringed individuals. The starting distance was not recorded, but we
ensured that it was over 100 m. The duration between the bird’s departure and return was
also noted. If a bird did not return after half an hour, it was recorded as absent for 30 min.

2.3. Statistical Analysis

We ran a generalized additive mixed model (GAMM) with a Gaussian error distribu-
tion to test whether the flight initiation distance (response variable) varied as a function of
the date (1 = 1 January), age, number of adults in the nest, time of day, and breeding success



Animals 2023, 13, 2920 5 of 12

(explanatory variables). Similarly, we ran a GAMM with a Gaussian error distribution to
test whether the duration of nest recess was also related to the same covariates. We used
the bird ID (ringed bird) as a random effect. We also tested whether the time span of nest
recess was related to FID by running a generalized linear model (GLM) with a binomial
error distribution and a logit link function. The time delay was categorized as “Late” if the
delay was over 30 min and “Early” if the delay was under 30 min.

To test whether the response variables (FID and leave duration) could be explained by
reproductive phase, we performed another GAMM by dividing the sampling date into four
periods: pre-egg-laying, egg-laying and incubation (32 days), chick brooding (28 days), and
post-brooding. We retained the other two explanatory variables of age and presence of a
mate. All statistical analyses were performed using R software (version 4.2.3) [43].

3. Results

We collected 287 samples from 59 different white storks ranging in age from 2 to 7 years.
Age is an important determinant of arrival time in white storks, with younger birds arriving
and breeding later in the colony than older birds, resulting in a longer breeding season
(Figure 1b). FID ranged from 0.0 m (birds that remained in the nest) to 57.8 m, with a mean of
17.4 ± 11.9 m. Time spent away from the nest ranged from 0.0 min to 30.0 min (birds that did
not return to the nest after half an hour), with a mean of 7.5 ± 9.6 min.

The pattern of FID was described as a U-shape, with a decrease in distance from the
beginning of the study to mid-March. FID stabilized at this minimum value until early
May and then gradually increased until the end of the study (Figure 2a). FID was also
significantly correlated with age, with younger birds initiating a flight response at a greater
distance from the experimenter (Table 1). In addition, birds flew at a greater distance when
their mate was in the nest (Table 1).
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Table 1. Parameter estimates for GAMMs of flight initiation distance and period of nest recess of
disturbed white storks. The terms edf and Ref.df stand for effective degree of freedom and reference
degree of freedom, respectively.

Parameter Estimate SE t-Value p-Value

Flight Initiation Distance
Parametric Coefficients

Intercept 12.26 3.4 3.61 0.0004
Age −1.36 0.6 −2.26 0.0245

No. of
Individuals 8.27 1.3 6.36 8.10 × 10−10

edf Ref.df Chi.sq p-Value

Smooth Terms
Date 4.64 4.64 24.56 <2× 10−16

Leave Duration
Parametric Coefficients

Intercept 4.88 2.32 2.11 0.0362
Age −0.53 0.37 −1.43 0.1527

No. of
Individuals 3.62 1.05 3.45 0.0007

edf Ref.df Chi.sq p-Value

Smooth Terms
Date 5.49 5.49 26.47 <2× 10−16

The duration of nest recess also followed a U-shape, with a gradual decrease from
the beginning of the study to the minimum between mid-March and early May before
increasing again until the end of the experiment in late June (Figure 2b). Age was negatively
correlated with the duration of nest recess, but not in a significant way. In contrast, the
presence of a mate significantly increased the duration of nest recess (Table 1).

In addition, the duration of nest recess was significantly correlated with FID (Table 2).
The GLM results showed that FID was around 25 m; birds with a larger FID took increas-
ingly longer to return to their nests (Figure 3).

Table 2. GLM parameter estimates for the period of nest recess of disturbed white storks as predicted
by FID (null deviance = 187.9 anddf = 286; residual deviance = 155.7 anddf = 286).

Predictor Odds Ratio 95% CI Lower Bound 95% CI Upper Bound Std. Error z-Value Pr

Intercept 0.014 0.005 0.035 0.518 −8.217 <2 × 10−16

FID 1.097 1.05 1.148 0.018 5.191 2.09 × 10−7

To confirm our preliminary results that FID might be closely related to the repro-
ductive phase of the birds studied, we tested this hypothesis by replacing the sampling
date (time of the year) with the four reproductive phases (Figure 4) and used a GAMM
to observe if the response variables (FID and nest recess) could be explained by age,
presence of a mate, and reproductive phase. The results showed that age, presence of
a mate, and reproductive phase all played a significant role in explaining FID (Table 3).
Similarly, nest recess could also be explained by the presence of a mate and reproductive
phase. Egg-laying and incubation as well as chick brooding were the two periods with the
shortest nest recess (Table 3).
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Table 3. Parameter estimates for GAMMs of flight initiation distance (FID) and nest recess of
disturbed white storks during four reproductive phases.

Parameter Estimate Se t-Value p-Value

FID
Parametric Coefficients

Intercept 29.27 2.99 9.78 <2 × 10−16

Egg-Laying and Incubation −5.28 1.33 −3.98 7.80 × 10−5

Chick Brooding −7.35 1.63 −4.51 8.20 × 10−6

Post-Brooding 7.2 1.62 4.45 1.06 × 10−5

Age −2.31 0.55 −4.18 3.45 × 10−5

No. of Individuals 5.46 1.18 4.61 5.10 × 10−6

Nest Recess
Intercept 11.41 1.78 6.39 3.65 × 10−10

Egg-Laying and Incubation −7.83 1.09 −7.15 2.97 × 10−12

Chick Brooding −7.84 1.34 −5.86 8.18 × 10−9

Post-Brooding −1.26 1.32 −0.96 0.339
Age −0.18 0.28 −0.63 0.532

No. of Individuals 3.82 0.94 4.05 5.97 × 10−5

4. Discussion

The results show that adult white storks are able to adapt their behavior to perceived
threats. Being present in the nest allows the birds to protect their clutch and brood, and
meet the thermal needs of their eggs and nestlings. When confronted with drones instead
of humans, adult birds had a shorter FID (20 m). They also returned earlier (23 s on average)
after disturbance by drones [40]. Such adaptations of nest defense behavior are consistent
with the risk to parents’ hypothesis, which posits that parents adapt their behavior to
balance the benefits of the reproductive value of the current offspring against the costs to
their own survival and future reproductive opportunities [44].

The results also show a significant correlation between FIDs of breeding white storks
and the date (1 = 1 January) of the year, age, and presence or absence of a breeding partner.
Egg-laying occurs between the second half of February and early May, and breeding date
is strongly associated with arrival date and age [41,42,45]. The significant relationship
between FID and reproductive stage found in white storks ([40], this study) and great
egrets (Ardea alba) [46] is partially consistent with the offspring value hypothesis [10,47],
which states that parents make decisions that maximize their overall reproductive fitness,
including both current and future reproductive success. However, during the late rearing
phase, which is characterized by frequent agonistic behavior of white stork fledglings [40],
the increase in FID is not consistent with the above hypothesis.

In contrast, the results support the vulnerability hypothesis [48], according to which
birds have a shorter FID when incubating or brooding nestlings. They also leave the nest
quickly before egg-laying or when they have older chicks, suggesting that white storks
protect their nest during critical periods (incubation and brooding young chicks) by staying
in the nest longer. Thus, parents optimally adapt their nest defense to the developmental
stage of their offspring [40]. As predicted, age has a significant influence on when birds
decide to leave their nest. Young individuals tend to have a longer FID, indicating a higher
residual reproductive value, while older birds prefer to wait longer before leaving the
nest. Younger stork pairs breed later in the season than older pairs and often have lower
nesting success [41]. Thus, younger pairs may not place as much value on their broods as
older pairs [49]. Nest defense also increases with parental age in California gulls (Larus
californicus) [50]. However, parental age is often closely related to experience, reproductive
characteristics, and survival, making it difficult to tease apart the various costs and benefits
of parental decisions [39,51,52].

The presence of a partner also has a significant effect on the distance at which white
stork parents leave their nests. In the presence of a partner, individuals reduce their risk-
taking by choosing a longer FID and leaving their mate to bear the cost of protecting the
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nest. This result is consistent with the theory that the sexes have conflicting evolutionary
interests [53].

In addition, this study shows a strong correlation between the amount of time indi-
viduals leave the nest unattended after human disturbance and FID. White storks with
shorter FIDs are more likely to return to their nests after shorter periods of time when
disturbed, highlighting the need to reduce threats to nests during critical periods [48]. As
noted for FID, the reproductive phase—including incubation and nestling care—tends to
shorten the time away from the nest. This behavior may be due to the protective instinct of
individuals that are reluctant to leave the nest during periods of high offspring value [10]
and vulnerability [48]. These results suggest that nest defense is positively correlated with
brood vulnerability and decreases as chicks grow and threats diminish [40,54,55].

Age does not correlate with the duration of nest absence, unlike the presence of a
mate, which tends to increase the duration of nest recess. As parental care is costly, an
individual’s decision to leave the nest earlier in the presence of its mate suggests sexual
conflict over parental care [56,57].

Predator defense responses such as flight in nesting white storks can be viewed as a
cost-benefit trade-off between reduced predation risk and increased vulnerability of the
clutch and brood [17,48]. This response not only diverts energy expenditure from brooding
or resting, but also exposes eggs and chicks to adverse weather conditions and predators.
Heat stress or cold snaps can impair egg development or kill young chicks that are unable
to thermoregulate [58,59]. These results are also consistent with several studies that have
shown that human disturbance has the greatest negative impact on breeding success during
the egg and chick stages [60–62].

The spread of human settlements and the conversion of natural habitats to urban
landscapes have impacted white stork survival strategies through influences such as
invasive predators and urbanization. Human presence has altered the selective pressures
that drive white stork behavior. With the increasing prevalence of invasive predators,
white storks must navigate a changing landscape of threats—a landscape that requires
adaptations to both traditional and invasive predators [63]. In rural areas, habituation or
other selection pressures have led successful white storks dwellers to modify their behavior
toward predators [64] and adapt (reduce) flight initiation distance, possibly at a cost [65,66].
Therefore, our study needs to be replicated under different habitat conditions to examine
the range of behavioral plasticity of white storks.

A comprehensive understanding of the behavioral plasticity of defense mechanisms
is of great importance, especially for species threatened with extinction. This knowledge
becomes a compass to guide conservation efforts and provide insights into the survival
strategies of endangered species. In a world where ecotourism has become increasingly
important [67], protected areas where these species are conserved are under increasing
pressure from human activities [68]. The delicate balance between conservation of these
habitats and increasing human presence requires innovative solutions. In this complex
interplay between human disturbance and ecological integrity, the use of FID is emerging
as an important tool. Wildlife managers charged with protecting wildlife have used FID
as a tool to design and implement buffer zones [69–71]. FID is becoming the critical metric
that delineates these vital spaces and creates an area where human and wildlife needs
can coexist.

5. Conclusions

In summary, this study reveals the impressive adaptability of adult white storks
in the face of perceived threats and sheds light on the intricate mechanisms underlying
their survival strategies. These storks, whose primary focus is protecting their nests and
offspring, show nuanced adaptations to various disturbances, highlighting the complexity
of their interactions in their environment. In particular, comparison of disturbance by
approaching humans and flying drones reveals specific behavioral responses towards
humans: an intentional extension of flight distance (FID) followed by a delayed return
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to the nest. This complicated interplay of behaviors is consistent with the risk to parents’
hypothesis and highlights the intricate balance between parental survival and offspring
reproductive potential.

The study establishes a clear relationship between FID, reproductive stages, age,
and the presence of a mate. Longer nest presence is consistent with the principles of the
vulnerability hypothesis. This results in shorter FIDs during incubation and nestling care
and underscores the adaptive focus on protecting the most vulnerable life cycle stages. The
nuanced variations at FID, corresponding to different breeding phases, provide insight
into residual reproductive value and illustrate the plasticity of decision making in these
storks. However, the presence of a mate introduces an additional layer of complexity—a
mixture of mutual benefit and conflict. This complexity in adult decision making, which
is strongly influenced by age, experience, and reproductive stage, is enriched by these
nuanced relationships.

The implications of this study extend far beyond white stork behavior and reproduc-
tive strategy to shed broader light on the field of conservation. In an era characterized
by burgeoning ecotourism and increasing human pressures, the protection of wildlife
habitats assumes paramount importance. The management of human-induced disturbance
is becoming increasingly important and requires the formulation of strategies that balance
human activities with wildlife welfare. The effectiveness of FID as a tool for establishing
buffer zones to promote wildlife conservation is becoming increasingly evident. These
findings underscore the ever-evolving synergy between scientific knowledge and practical
conservation that helps maintain fragile coexistence with the natural world.
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