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Simple Summary: Chicken meat is one of the main protein sources of animal origin worldwide and
its production has been increasing steadily. These chickens have huge growth potential and a short
production period, so all the factors that affect the vitality of day-old birds are getting more and
more important. An other important issue in animal production is the decreased use of antibiotics
to stabilize the bacteriota composition of the gut. In this article, the effects of parent flocks with
different ages and the hatching time of the chickens were evaluated according to the production
parameters, hatchability, and gut bacteriota composition of chickens. From the results, it can be
concluded that the live weight of day-old chickens is crucial because it determines the growth rate
of birds for the whole fattening period. Different parent flocks had no effect, but the hatching time
modified the bacterium composition of the ceca at day 11. The reason for this could be the differences
in the bacteriota colonization in the hatcher and the feed and water access between the early- and
late-hatched chickens.

Abstract: This trial was carried out to find out the effects of the parent flock and hatching time
of broiler chickens on the production traits and bacteriota development of animals. Two sets of
730 hatching eggs were collected from two different parent flocks with ages of 25 and 50 weeks. In
the hatchery, both groups were divided into two subgroups: those hatched during the first 10 and
the subsequent 10 h of the hatching window. A feeding trial was carried out afterwards, using the
four treatments in six replicate floor pens and feeding commercial starter, grower, and finisher diets
that contained all the nutrients according to the breeder’s recommendations. The day-old chickens of
the older parent flock and those hatched later were heavier, and this advantage remained until the
end of the production period. The different ages and origins of the parent flocks failed to modify the
microbiological parameters of the chicken’s ceca; however, the hatching time significantly influenced
the different bacteriota diversity indices: the late-hatched chickens showed higher Bacteroidetes and
lower Firmicutes and Actinobacteria abundances at day 11. These treatments resulted in differences in
the main families, Ruminococcaceae, Lactobacillaceae, and Bacteroidaceae. These differences could not be
found at day 39.

Keywords: broiler chickens; parent flock age; hatching time; production traits; bacteriota composition;
ceca
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1. Introduction

It is well known that the stability of the intestinal microflora is crucial in the efficient
use of nutrients in farm animals. The initial contact with the hen contributes to the devel-
opment of the intestinal flora [1]. This relationship with the hens is missing in the intensive
production systems in the hatcheries. Therefore, the development of intestinal flora, for
example, in broiler chickens, is more accidental and influenced by several environmental
factors [1–3]. Another important issue that can modify the vitality and production potential
of the chickens is the length of the hatching window. This means that the chicks in the
hatchery do not hatch at the same time. While some animals spend only a short time
in the brooder, other chicks can spend even 20–24 h without access to feed and water.
Our hypothesis was that besides the differences in the physiological and metabolic status
of the early- and late-hatched chickens, the time spent in the brooder also means more
time for the early-hatched animals to be colonized with the spore-forming bacteria on the
eggshell surface. Little is known about this effect on the early development of the intestinal
microbiota [4,5].

It is well known that the weight of the eggs and the weight of day-old chickens
increase with the age of the parent stock [6]. Chicks of the older hens are heavier and
exhibit significantly higher growth rates than birds from younger flocks [7,8]. During
the development of the chicken embryo, it has been estimated that more than 90% of
the total energy requirement is derived from yolk lipids [9]. According to the results of
Hamidu et al. [10], the breed and age of the parent stock influence the daily embryonic
metabolism, which is almost exclusively fuelled by lipids. It is also well known that the
older broiler breeder hens produce eggs with higher eggshell pore numbers than the young
ones. Changes in the eggshell structure also modify the conductance of oxygen and carbon
dioxide across the eggshell [8,11,12]. However, it is not known whether this eggshell
characteristic could have an influence on the development of the intestinal microbiota in
the embryo or day-old chicken.

The aim of this study was to investigate the effects of the age of the parent stock and
the hatching time on the performance parameters and cecal microbiota composition of
broiler chickens.

2. Materials and Methods
2.1. Egg Collection and Hatching

Eggs were collected from a 25- and a 50-week-old Ross 308 flock from different farms.
A total of 730 eggs were collected per farm and transported in air-conditioned trucks
(16–18 ◦C) to the hatchery (Gallus Ltd., Devecser, Hungary). There was a one-day differ-
ence between the eggs’ arrival to the hatchery; that is, the eggs of the younger layers arrived
one day earlier. The average egg weight was 53.4 and 69.1 g of the young and old flocks,
respectively. The eggs were disinfected via formalin fumigation with paraformaldehyde
at a concentration of 7 g/m3. Before incubation, the eggs were stored at 16–18 ◦C and
75–80% humidity. The hatching was started on the seventh day after laying in Petersime Bio
Streamer 24S-type pre-hatching machines. The temperature, relative humidity, CO2 content
of the air, and the rotation of the eggs were automatically performed by the hatching ma-
chine according to the standard hatching protocol, starting with 37.9 ◦C and 94% humidity,
which was reduced at day 18 to 35.7 ◦C and 74%. On day 18, infertile, dead, damaged, and
rotten eggs were selected with candling. All the fertile eggs were then vaccinated against
infectious bursal disease (IBD) (Cevac Transmune) with automatic equipment (Embrex
Inovoject, Zoetis Inc., New York, NY, USA). After inoculation, the machine automatically
moved the eggs to the brooding trays. The environmental parameters of the brooders were
also controlled automatically according to the normal hatching protocol. The temperature
at the start was 36.7 ◦C, which was reduced to 35.3 ◦C on the last day of brooding. The hu-
midity in the brooder was 82% in the beginning; this value increased to 89% on the second
day and declined again to 82%. The collection of the early-hatched animals happened in the
period between 481 and 491 h, and that of the late-hatched chickens between 492 and 502 h
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of incubation time. The average hatching time was 489.4 and 493.9 h in the early- and
late-hatched groups, respectively. After the selection, the day-old chickens were vaccinated
against infectious bronchitis (Cevac Bron 120 L, Ceva-Phylaxia, Budapest, Hungary) and
Newcastle disease (Cevac Vitapest) and transported immediately. They arrived in the
experimental farm within 2 h.

2.2. Animal Experiment and Treatments

A floor pen trial was conducted at the experimental farm of the Institute of Physiology
and Nutrition, Hungarian University of Agriculture and Life Sciences (Georgikon Campus,
Keszthely, Hungary). The animal experiment was approved by the Institutional Ethics
Committee (Animal Welfare Committee, Georgikon Campus, Hungarian University of
Agriculture and Life Sciences) under the license number MÁB-5/2022. All husbandry and
euthanasia procedures were carried out in accordance with the Hungarian Government
Decree 40/2013 and in full consideration of animal welfare ethics.

From the total 280 chickens of each parent flock and hatching time group, 144 birds
were selected with similar live weight and transported to the experimental farm. A total
of 576 chickens were allocated into 4 treatment groups with 6 replicate floor pens of
24 chickens. The net surface of pens was 1.5 m2, which meant 16 chickens per m2 stocking
density. The following treatments and abbreviations were used: young parent stock
and early-hatched chickens (YE); young parent stock and late-hatched chickens (YL); old
parent stock and early-hatched chickens (OE); and old parent stock and late-hatched
chickens (OL).

During the experiment, computer-controlled housing and climate conditions were
maintained according to the breeder’s recommendations [13]. The housing temperature
reduction steps were as the follows: d 1–2: 30 ◦C; d 3–5: 29 ◦C; d 6–8: 28 ◦C; d 9–11: 27 ◦C;
d 12–14: 26 ◦C; d 15–17: 25 ◦C; d 18–20: 24 ◦C; d 21–30: 23 ◦C; d 24–26: 22 ◦C; and
d 27–39: 21 ◦C. Feed and water were available ad libitum throughout the whole experiment.
Corn–soybean-based diets were fed in all groups. The nutrient content of the diets met the
requirements of Ross 308 broiler chickens [13]. Three phases were used during fattening.
The starter diets (0–10 days) were fed in mash; the grower (11–24 days) and finisher feeds
(25–39 days) were fed in pelleted form. The composition and nutrient contents of the diets
are shown in Table 1.

Table 1. The composition and analyzed nutrient content and of experimental diets (g/kg as fed).

Composition of the Diets Starter Grower Finisher

Corn 391.3 424.8 479.4
Wheat 100.0 100.0 100.0
Extracted soybean meal 407.0 374.0 321.0
Sunflower oil 51.0 60.0 64.0
Limestone 16.5 13.9 12.0
MCP 13.2 11.0 8.9
L-Lysine 4.1 2.7 2.1
DL-Methionine 4.0 3.2 2.9
L-Threonine 1.4 0.8 0.6
L-Isoleucine 0.3 0.1 0.1
L-Arginine 0.3 0 0
L-Valine 1.0 0.6 0.6
NaCl 3.0 3.0 3.0
NaHCO3 1.0 1.0 1.0
Premix 1 5.0 4.0 4.0
Xylanase 2 0.2 0.2 0.2
Phytase 3 0.1 0.1 0.1
Coccidiostat 4 0.6 0.5 0
Sum 1000 1000 1000

Measured nutrient contents

AMEn (MJ/kg) 12.48 12.42 13.16
Crude protein 22.3 19.2 18.6
Crude fat 7.0 8.0 8.4
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Table 1. Cont.

Composition of the Diets Starter Grower Finisher

Crude fibre 4.2 4.1 4.1
Ca 1.04 0.94 0.88
P (total) 0.63 0.61 0.53

1 Premix was supplied by UBM Ltd. (Pilisvörösvár, Hungary). The active ingredients in the premix were as follows (per
kg of diet): retinyl acetate—5.0 mg; cholecalciferol—130 µg; dl-alpha-tocopherol-acetate—91 mg; menadione—2.2 mg;
thiamin—4.5 mg; riboflavin—10.5 mg; pyridoxin HCL—7.5 mg; cyanocobalamin—80 µg; niacin—41.5 mg; pan-
tothenic acid—15 mg; folic acid—1.3 mg; biotin—150 µg; betaine—670 mg; Ronozyme® NP—150 mg; monensin-
Na—110 mg (only grower); narasin—50 mg (only starter); nicarbazin—50 mg (only starter); antioxidant—25 mg; Zn
(as ZnSO4·H2O)—125 mg; Cu (as CuSO4·5H2O)—20 mg; Fe (as FeSO4·H2O)—75 mg; Mn (as MnO)—125 mg; I (as
KI)—1.35 mg; Se (as Na2SeO3)—270 µg. 2 NSP digesting enzymes, beta 1-4, endo-xylanase enzyme—Econase XT,
AB Vista, Marlborough, Wiltshire, SN8 4AN. 3 Quantum Blue (Panadditív Kft. 2040, Budaörs, Hungary); 4 Maxiban,
Elanco Clinton Laboratories, Clinton, IN, USA.

2.3. Measurements and Sample Collection

During the 39-day-long fattening period, the bodyweight (BW) of all the animals was
measured at day 0 and at the end of each feeding phase. Feed intake (FI), bodyweight
gain (BWG), and feed conversion ratio (FCR) were calculated on a pen basis for each phase
and for the entire period. On days 11 and 39, 2 chickens per pen were selected randomly,
slaughtered, and digesta samples were collected. Cecum chymus samples were collected
from the left sac. The luminal contents were homogenized with sterile cell spreaders
and about 2 g sample was taken into a sterile container. All samples were immediately
snap-frozen and stored at −80 ◦C until analysis. Before DNA extraction, the samples of
two birds of the same pen were pooled.

2.4. DNA Extraction, 16S rRNA Gene Amplification and Illumina MiSeq Sequencing

The extraction of the bacterial DNA was carried out using the AquaGenomic Kit (Mo-
BiTec GmbH, Göttingen, Germany) and further purified using KAPA PureBeads (Roche,
Basel, Switzerland) according to the manufacturer’s protocols [14]. The genomic DNA was
investigated using a Qubit 3.0 Fluorometer with a Qubit dsDNA HS Assay Kit (Thermo
Fisher Scientific Inc., Waltham, MA, USA). Bacterial DNA was amplified with tagged
primers covering the V3–V4 region of the bacterial 16S rRNA gene [15]. Polymerase chain
reactions (PCR) and DNA purifications were performed according to Illumina’s demon-
strated protocol (Illumina Inc., San Diego, CA, USA, 2013). PCR product libraries were
defined and qualified using High Sensitivity D1000 ScreenTape on TapeStation 2200 instru-
ment (Agilent Technologies, Santa Clara, CA, USA). Equimolar concentrations of libraries
were pooled and sequenced on an Illumina MiSeq platform using a MiSeq Reagent Kit v3
(600 cycle; Illumina Inc.) 300-bp read length paired-end protocol. Raw sequence data of
16S rRNA metagenomics analysis were deposited in the National Center for Biotechnology
Information (NCBI) Sequence Read Archive under the BioProject identifier PRJNA996958.

2.5. Bioinformatics and Statistical Analyses

Bacteria were identified via the analysis of the V3–V4 region of the 16S rRNA gene
using Illumina MiSeq platform. Sequences were analyzed using Quantitative Insights
into Microbial Ecology 2 (QIIME2), version 2020.2 software package [16]. Sequences were
filtered based on quality scores and the presence of ambiguous base calls using the quality-
filter q-score options. Representative sequences were found using a 16S reference as a
positive filter, as implemented via the deblur denoise-16S method. Sequences were clus-
tered into Operational Taxonomic Units (OTUs) using VSEARCH algorithm open-reference
clustering based on a 97% similarity to the SILVA reference database [17]. Alpha diversity
metrics (Chao1, Shannon, and Simpson) and beta diversity metrics (Bray–Curtis dissimi-
larity) were estimated using Qiime2-diversity and Microbiomanalyst online software [18]
after samples were rarefied to 1000 sequences per sample. To examine the differences in
the microbial community structure between samples, SPSS statistical software version 23.0
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(IBM Corp. Released 2015) was used. To verify the significance of bacterial community, an
analysis of similarities (ANOSIM) and calculations were performed with 999 permutations.

The results of hatchability were evaluated using the Fisher exact test of the R Statistic
programme [19]. The production traits and microbiota composition data were evaluated
using the two-way analysis of variance of the SPSS software (version 23.0—IBM Corp.
Released., 2015), using the hatching time and the age of the parent flocks as the main
factors. The microbial composition at different taxonomical levels were compared using
a two-way ANOVA test with Benjamini–Hochberg false discovery rate correction (FDR
p-value). Normality of data (Shapiro–Wilk test) and homogeneity of variance (Levene’s
test) were checked prior to statistical testing. Statistical significance was defined as p < 0.05,
whereas a p-value between 0.05 and 0.10 was considered as a trend.

3. Results
3.1. Hatchability

The age of the parent flock did not influence the percentage of fertile eggs, dam-
aged eggs, or rotten eggs; however, the egg hatchability of the younger parent flock was
significantly higher (Table 2).

Table 2. Effects of the parent flock’s age on the different hatchability characteristics.

Fertile Eggs (%) Damaged Eggs (%) Rotten Eggs (%) Hatched from Fertile Eggs (%) Hatched of All Eggs (%)

Old parent flocks 95.6 0.56 5.83 93.8 b 89.2 b

Young parent flocks 97.5 0.14 4.44 95.4 a 92.9 a

SEM 1.58 0.29 2.17 2.33 3.30

p-values 0.168 0.374 0.236 0.047 0.016

The hatchability parameters were evaluated with Fisher exact test. The differences were considered significant at
a level of p ≤ 0.05. a,b means with different superscripts of the same column are significantly different. Data were
expressed as means ± SEM.

3.2. Production Traits of Birds

Both the hatching time and the age of the parent flock resulted in significant differences
in the hatching weight of the chickens. The hatching weight of the chickens of the older
parent flock and those hatched later was significantly higher (Table 3). The advantage of the
day-old chickens from the older parent stock remained until the end of the fattening period
and resulted in a significantly higher growth rate and better feed conversion ratio. The
differences in the production traits between the early- and late-hatched chickens were less,
but the cumulative weight gain of the late-hatched chickens was also significantly higher.

3.3. Microbiota Analyses

In this study, from all 48 samples, a total of 799.166 good-quality 16S rRNA reads
were available for analysis after quality filtering. The average sequence number was 16.649
(min: 3136; max: 24,402). These sequences were assigned to 701 OTUs at 97% similarity
using the open approach.

Table 3. Effects of treatments on the bodyweight, feed intake, the feed conversion ratio, and weight
gain of broiler chickens.

Parent Flock Age Young Old Parent Flock Age Hatching Time

SEM

p-Values

Hatching Time Early Late Early Late Young Old Early Late Parent
Flock Age

Hatching
Time Interaction

Bodyweight (g)

d 0 35.2 36.9 47.7 49.7 36.4 b 48.3 a 41.7 b 42.9 a 1.254 0.000 0.000 0.826
d 10 230.2 228.1 310.2 302.9 229.1 b 306.5 a 270.2 267.8 8.546 0.000 0.439 0.668
d 24 1112.9 1150.3 1362.5 1397.2 1131.6 b 1379.8 a 1237.7 1273.7 27.449 0.000 0.057 0.943
d 39 2513.9 2581.5 2808.5 2984.9 2547.7 b 2896.7 a 2661.2 b 2783.2 a 42.587 0.000 0.004 0.156

Feed intake
(g/day)

starter 286.2 289.8 303.6 316.0 288.0 b 309.8 a 294.9 302.9 3.488 0.001 0.145 0.413
grower 1137.7 1153.2 1320.5 1317.5 1145.4 b 1319.0 a 1229.1 1235.3 24.079 0.000 0.857 0.788
finisher 2162.3 2147.9 2332.8 2362.9 2155.1 b 2297.9 a 2197.5 2255.4 30.024 0.012 0.279 0.179

sum 3586.3 3590.9 3857 3996.5 3588.6 b 3926.8 a 3721.6 3793.7 51.528 0.000 0.364 0.395
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Table 3. Cont.

Parent Flock Age Young Old Parent Flock Age Hatching Time

SEM

p-Values

Hatching Time Early Late Early Late Young Old Early Late Parent
Flock Age

Hatching
Time Interaction

Bodyweight
gain (g)

starter 194.9 194.5 262.7 262.0 194.7 b 262.4 a 228.8 228.3 7.417 0.000 0.375 0.738
grower 895.4 918.7 1052 1099.3 907.0 b 1075.6 a 973.7 b 1009.0 a 19.335 0.213 0.209 0.420
finisher 1387.6 1447.5 1456.5 1574.5 1417.6 b 1515.5 a 1422.1 b 1511.0 a 17.933 0.873 0.084 0.456
cum. 2478.5 2560.8 2771.3 2936.0 2519.4 b 2853.6 a 2624.7 b 2748.4 a 41.021 0.028 0.082 0.678

FCR (g/g)

starter 1.47 1.49 1.16 1.20 1.48 a 1.18 b 1.31 1.35 0.036 0.000 0.919 0.980
grower 1.32 1.24 1.29 1.24 1.26 1.22 1.26 1.22 0.015 0.000 0.030 0.468
finisher 1.60 1.50 1.57 1.54 1.52 1.51 1.54 1.49 0.015 0.001 0.001 0.226
cum. 1.49 1.40 1.41 1.39 1.42 a 1.37 b 1.41 1.38 0.012 0.000 0.003 0.289

cum.—cumulative. Data were expressed as means ± SEM. The production parameters were evaluated with
two-way ANOVA, using the hatching time (early; late) and the age of parents (young; old) as the main factors.
The differences were considered significant at a level of p ≤ 0.05. a,b means with different superscripts of the same
column are significantly different.

3.3.1. Alpha and Beta Diversity

The Shannon and Simpson diversity indices demonstrated that the microbiota of early-
hatched birds was more diverse than that of the late-hatched chickens at day 11 (Table 4).
No such differences in the alpha diversity were found at day 39 (Table 5).

Table 4. Alpha diversity indices of the cecum chymus at day 11.

Parent Flock Age p-Values

Hatching Time Young Parent Old Parent Average (Hatching Time) Hatching Time Parent Flock Age Interaction

Chao 1
Early 175.952 193.232 184.592

0.481 0.814 0.406Late 178.026 168.328 173.177
Average (Age) 176.989 180.780

Shannon
Early 3.720 3.862 3.791 a

0.018 0.708 0.187Late 3.546 3.295 3.420 b

Average (Age) 3.633 3.578

Simpson
Early 0.951 0.955 0.953 a

0.011 0.483 0.354Late 0.918 0.889 0.904 b

Average (Age) 0.935 0.922

Alpha diversity indices were compared using two-way ANOVA, using the hatching time (early; late) and the
age of parents (young; old) as the main factors. The differences were considered significant at a level of p ≤ 0.05.
a,b means with different superscripts of the same column are significantly different.

Beta-diversity based on principal coordinate analysis (PCoA) ordination using the
Bray–Curtis dissimilarity matrix showed a significantly different (PERMANOVA
R-squared = 0.087 p = 0.004) bacterial community structure between the chickens of the
two hatching times (Figure 1A) at 11 days of age. This difference was not visible at the age
of 39 days (R-squared = 0.056 p = 0.18; Figure 1B). No significant differences due to parent
flock age at day 11 (R-squared = 0.051 p = 0.239; Figure 1C) or day 39 (R-squared = 0.034
p = 0.643; Figure 1D) were revealed.

3.3.2. Taxonomic Composition of Cecal Microbiota at Phylum Level

At day 11, six, and at day 39, eight phyla were identified in the cecal contents of the
birds (Tables 6 and 7). At both time points, Firmicutes was the major dominant phylum
in the cecum followed the Bacteroidetes and Tenericutes. Minor phyla were Proteobacteria,
Cyanobacteria, and Actinobacteria. At 39 days, Epsilonbacteraeota and Euryarchaeota appeared
in a small proportion. The age of the parent flocks failed to influence the bacteriota
composition of the ceca at phylum level. On the other hand, at day 11, the time of hatching
affected the abundances of three phyla significantly (Table 6). Firmicutes was present at a
significantly higher abundance in the early-hatched birds (88.488–77.39%; p = 0.048), while
as a trend, the abundance of phyla Bacteroidetes (7.982–20.108%; p = 0.056) and Actinobacteria
(0.086–0.053%; p = 0.089) were higher in the late-hatched animals. These differences had
disappeared by day 39 (Table 7).
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Table 5. Alpha diversity indices of the cecum chymus at day 39.

Parent Flock Age p-Values

Hatching Time Young Parent Old Parent Average (Hatching Time) Hatching Time Parent Flock Age Interaction

Chao 1
Early 380.614 367.537 374.076

0.100 0.951 0.438Late 335.548 350.850 344.474
Average (Age) 360.130 358.552

Shannon
Early 4.318 4.189 4.254

0.800 0.889 0.429Late 4.174 4.264 4.382
Average (Age) 4.252 4.229

Simpson
Early 0.958 0.951 0.954

0.741 0.667 0.295Late 0.941 0.960 0.966
Average (Age) 0.951 0.955

Alpha diversity indices were compared using two-way ANOVA, using the hatching time (early; late) and the age
of parents (young; old) as the main factors. The differences were considered significant at a level of p ≤ 0.05.
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Figure 1. Principal coordinate analysis (PCoA) based on Bray–Curtis dissimilarity matrix on sampling
sites: (A) hatching time effect at day 11 (E—early-hatched; L—late-hatched); (B) hatching time effect
at day 39; (C) parent age effect at day 11 (Y—young parent; O—old parent); (D) parent age effect at
day 39. The percentage of variation explained by each PCoA is indicated on the axes with Bray–Curtis
dissimilarity. To verify the significance of the bacterial community, permutational analysis of variance
(PERMANOVA) calculations were performed. The differences were considered significant at a level
of p ≤ 0.05.

3.3.3. Taxonomic Composition of Cecal Contents at Family Level

The detailed treatment effects are shown in Tables S1 and S2. Both main factors failed
to result in significant differences in the ratio of the bacterial families. However, similarly to
the changes in phylum level, as a tendency, hatching time resulted in differences in the ratio
of the main families. The families above 1% abundance, as affected by the hatching time,
are shown on the taxa bar plot (Figure 2). There were four major families (Ruminococcaceae,
Lachnospiraceae, Bacteroidaceae, and Lactobacillaceae) and ten minor families above 1%. As
the taxa bar plot shows, the family abundance patterns of the early- and late-hatched
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chickens are different. At this age, in the ceca of the early-hatched chickens, the abundance
of Ruminococcaceae and Lactobacillaceae was 7% and 4.6% higher, respectively, while that of
Bacteroidaceae was 12.2% lower than in the 39-day-old animals. The Lachnospiraceae family
was not influenced by the hatching time. In accordance with the diversity and phylum
results, the differences between the families had disappeared by day 39.

Table 6. Effects of hatching time and the age of parent flocks on the cecal microbiota composition at
the phylum level at 11 days of age.

Phylum (%)
Parent Flock Age FDR p-Values

Hatching Time Young Patent Old Parent Average (Hatching Time) Hatching Time Parent Flock Age Interaction

Firmicutes
Early 84.830 92.146 88.488 a

0.048 0.290Late 83.304 71.476 77.390 b

Average (Age) 84.067 81.811 0.625

Bacteroidetes
Early 9.917 6.047 7.982 B

0.056 0.170Late 12.458 27.759 20.108 A

Average (Age) 11.188 16.903 0.290

Proteobacteria
Early 0.161 0.429 0.295

0.104 0.122Late 1.932 0.400 1.166
Average (Age) 1.046 0.415 0.269

Actinobacteria
Early 0.077 0.096 0.086 A

0.089 0.913Late 0.042 0.063 0.053 B

Average (Age) 0.059 0.080 0.250

Cyanobacteria
Early 1.513 0.085 0.799

0.187 0.313Late 0.171 0.000 0.086
Average (Age) 0.842 0.043 0.342

Tenericutes
Early 3.502 1.198 2.350

0.157 0.896Late 2.093 0.302 1.197
Average (Age) 2.798 0.750 0.100

The microbiota composition at phylum level were compared using two-way ANOVA, using the hatching time
(early; late) and the age of parents (young; old) as the main factors. The differences were considered significant at
a level of p ≤ 0.05. a,b means with different superscripts of the same column are significantly different. A,B means
with different superscripts of the same column show a trend.

Table 7. Effects of hatching time and the age of parent flocks on the cecal microbiota composition at
the phylum level at 39 days of age.

Phylum (%)
Parent Flock Age FDR p-Values

Hatching Time Young Patent Old Parent Average (Hatching Time) Hatching Time Parent Flock Age Interaction

Firmicutes
Early 91.905 93.253 92.579

0.596 1.483Late 91.120 90.007 91.630
Average (Age) 91.513 91.630 1.064

Bacteroidetes
Early 6.626 5.036 5.831

0.471 1.186Late 6.684 6.648 6.666
Average (Age) 6.655 5.842 1.132

Proteobacteria
Early 0.257 0.201 0.229

0.303 0.872Late 0.553 0.591 0.572
Average (Age) 0.405 0.396 0.952

Actinobacteria
Early 0.028 0.032 0.030

0.533 1.385Late 0.024 0.072 0.048
Average (Age) 0.026 0.052 0.844

Cyanobacteria
Early 0.638 1.160 0.899

0.545 0.955Late 0.927 1.490 1.209
Average (Age) 0.783 1.325 0.622

Tenericutes
Early 0.279 0.290 0.284

0.485 0.937Late 0.232 0.181 0.206
Average (Age) 0.255 0.235 1.167

Epsilonbacteraeota
Early 0.248 0.000 0.124

0.468 0.943Late 0.437 0.987 0.712
Average (Age) 0.343 0.493 1.046

Euryarchaeota
Early 0.014 0.024 0.019

0.988 0.855Late 0.019 0.020 0.019
Average (Age) 0.017 0.022 1.185

The microbiota composition at phylum level were compared using two-way ANOVA, using the hatching time
(early; late) and the age of parents (young; old) as the main factors. The differences were considered significant at
a level of p ≤ 0.05.
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4. Discussion

According to the literature data, there are differences in the hatchability of the eggs
between the young and old parent flocks [20–23]. In the study of Roque et al. [22], hatcha-
bility and viability (hatchability of fertile eggs) were lower in the younger, 27–31-week-old
flock due to the increased early- and late embryonic mortalities. This is consistent with
what can be found in the breeders’ management manual [14]. In our case, the fertility and
the embryonic death rate was not worse in the younger flock, and the hatchability was even
higher. Similarly to our results, Abudabos et al. [23] found higher mid-term dead embryos
from older hens. Egg storage before hatching could also be a factor, which depresses egg
albumen Haugh units (HU) and chick quality [21]. This effect is greater in old, 45-week-old
breeding hens.

It is also well-known that the breeder’s age influences the weight of the egg and the
day-old chicken [7,8,24], and this bodyweight effect can persist until slaughter [25].

After the chick hatches and the remaining yolk complex is withdrawn into the abdom-
inal cavity, the lipid assimilation and metabolism of the yolk continues and is sufficient
to adequately maintain the chick for several days after hatching [9]. The time of hatching
resulted in a significantly higher hatching weight for birds hatched later. The reason behind
this may be the weight loss of “early” hatched chicks and the greater depletion of their
glycogen stores [26]. In addition, the late-hatched chickens are more mature in develop-
ment at the time of hatching [5]. There are plenty of results available on the effects of feed
and water deprivation on the metabolism and viability of young broiler chickens [27–29].
The novelty of this result is that no artificial deprivations were used, but only the effects
of the hatching window during a normal hatchery practice were measured. Similarly to
the parent flock age effect, the hatching time also affected the final bodyweight of the
animals, which was, significantly, 122 g higher in this trial. Of course, immediate feed and
water allowance of the early-hatched chickens could compensate for the weight loss. It
highlights the importance of the novel hatchery feeding technologies that reduce the stress
and improve the adaptation ability of the day-old chickens [30]. Besides the higher growth
potential of the late-hatched chickens, the higher variance in the day-old weight results
also increase the live weight variance of the flocks later on, which impairs feed conversion.

The aim of this study was also to find out if the different parent flocks or the hatching
time of the chickens can modify the early development of the cecal microbiota. The
potential impact of the parent flocks could be either the different eggshell structure [31,32]
or the differences in the environmental and farm conditions, and in this way, the vertical
microbiota transfer from the hens to the egg [33–36].

No significant differences have been found in the diversity indices and microbiota
composition between the chickens of the two parent flocks at any time interval. Since the
diets of the two flocks were identical, it means that the bacteriota transfer via the eggs is
determined mainly by genetic factors. The effects of the other farm conditions are low,
probably since the bacteria cannot get through the eggshell [31,32], and most of the bacteria
are killed during the disinfection in the hatcheries [37].

On the other hand, the hatching time caused several significant changes in the cecal
bacteriota in this trial. The time interval between hatch and first feeding affects the devel-
opment and function of intestinal tract [38]. The development of the intestinal tract consists
of the increase of the total length and weight of the intestine, as well as the length and area
of the intestinal villi [4]. The immune and thermoregulatory system of poultry undergo
significant physiological changes too. The lipids of egg yolk are the primarily source of
energy during the early post-hatch period [39,40]. Several factors influence the residual
yolk weight at hatch, especially egg size and incubation temperature, while the breeder
hens’ age affects the nutrient composition of the residual yolk [40]. The transport from
the yolk sac into the intestine was observed up to 72 h after hatching [41]. In addition, it
was also described that the yolk utilization was more rapid in fed than in fasting birds,
suggesting that the transport of yolk through the intestine could be increased by the greater
intestinal activity found in fed chicks. It is known that in the first days after hatching, the
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deprivation of feed slows down the gut development, as is reflected by lower gut weight,
shorter length, lower enzyme activity, altered villi and crypt cell density, and lower crypt
depth and height in the short and long term [5].

In mammals, it has been proven that microbes exist in different regions of the placenta
and that microbial DNA can be transferred horizontally from mother to fetus through the
placenta [42,43]. In addition, however, the structure and succession of the gut microbiota
is influenced by many factors, such as the method of delivery, the birth environment,
and dietary habits [44,45]. In the case of birds, the eggshell forms a barrier to microbial
transfer to the embryo, but also provides an important protection against environmental
pathogens [46]. In hatcheries, the newly hatched chicks have only limited contact with the
hen’s microbiota [2]. This is mainly restricted to the transfer of microbes to their offspring
during the egg formation process [47]. This is important because the host’s microbes can
prevent the infections, increase hatchability, and can be beneficial in the early bacteriota
development [48,49].

Several studies reported that the delay in access to feed may affect the microbiota
development. A huge increase in microorganisms occurs in the chicken’s intestine after the
first ingestion of feed [50–52]. According to our results, the early-hatched birds, which were
longer without feed, had more diverse cecal microbiota than the late-hatched birds. The
reason for this difference is not known. One explanation could be that the early-hatched
chickens had more contact with eggs in the brooder baskets and could be colonized with
some spore-forming bacteria that survive the disinfection in the hatchery. Disinfection
reduces the bacterial load on the eggshell surface from more than 104 CFU to about 103

CFU [37]. On the eggs, the dominating phyla are Firmicutes, Actinobacteria, Fusobacteria, and
Tenericutes. After the fumigation process in the hatchery, the ratio of Firmicutes decreases,
that of Actinobacteria increase, and, as new phyla, Proteobacteria, Bacteroidetes, and Cyanobacte-
ria are present [37]. Disinfection results in more diverse egg surface bacteriota composition
at lower taxonomic levels. We could not prove this hypothesis, since no changes in the
spore-forming bacterial groups have been found due to the differences in the hatching time.
Usually, early feed access increases the bacterial diversity in the intestine [52], but we could
not find results specifically on hatching time-induced changes.

In our study, a higher abundance of Bacteroidetes and a lower abundance of Firmicutes
and Actinobacteria was found in the late-hatched chickens. Actinobacteria is one of the
four main phyla of the cecal microbiota, and although its abundance is low, the bacteria
of this phylum play an important role in maintaining intestinal homeostasis since they
can use a wide variety of complex polysaccharides [53,54]. Several studies proved the
importance of the Bacteroidetes and Firmicutes ratio in the different gut segments [55–57].
The frequency of the Bacteroidetes phylum is very variable (10–57%) in birds of slaughter
age. An important difference between the two phyla is that while members of Firmicutes
express fucose isomerase, members of Bacteroidetes express xylose isomerase [55]. Members
of Bacteroidetes are present mostly in the distal intestine, where they participate in supplying
the host with energy obtained from feed through the fermentation of otherwise indigestible
polysaccharides [58]. They are also important participants of the cross-feeding mechanisms,
providing substrates for lactic acid-producing bacteria, and can provide extra energy if
fibrous diets are fed [53,59,60]. In addition, the secretion of antimicrobial peptides is
also a characteristic feature of members of the phylum, which also supports the positive
ecological function of Bacteroidetes [56,61]. Furthermore, representatives of Bacteroidetes also
produce propionate, resulting in a beneficial balance between maintaining homeostasis and
producing sufficient energy from available nutrients [55]. In the case of the late-hatched
birds, the higher frequency of Bacteroidetes phylum may be because the early-hatched
animals depend longer only on the nutrients of the yolk sac. It contains mostly fats and
protein and only low amounts of carbohydrates [27]. However, the late-hatched birds got
access to digestible and indigestible carbohydrates-containing feed sooner, which could
promote the colonization of Bacteroidetes in the ceca. Li et al. [62] found the opposite,
wherein 24 h- and 48 h-long feed deprivation resulted in significantly higher Bacteroidetes
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and Actinobacteria abundances. However, the results are not fully comparable because of
the differences in the treatments.

In the first few days, the dominance of the Firmicutes phylum is more beneficial since
many of its members are butyrate producers. The production of butyrate in the young
chicken’s ceca is important because of the high demand for butyrate for the intensive
growth of intestinal cells and to exclude members of the first-colonizer potential pathogens;
for example, Clostridia and Enterobacteriacea [58,63,64].

Although at the family level, the differences between the early- and late-hatched
chicken’s microbiota were not significant, the abundance of the families Lactobacillaceae
and Ruminococcaceae belonging to the Firmicutes phylum decreased, while that of family
Bacteroidaceae increased in the late-hatched chickens. Members of the Lactobacillaceae family
produce lactic acid, which is the main substrate for several members of the Ruminococ-
caceae family, which use lactate as a substrate to produce butyrate and caproic acid [65].
Because of this cross-feeding mechanism, the close correlation between Lactobacillaceae
and Ruminococcaceae is therefore not surprising. The other main butyrate-producing fam-
ily, Lachnospiraceae, was not affected by the treatments. In contrast, the members of the
Bacteroidaceae family contain several genes encoding cellulose and complex polysaccharides-
degrading enzymes [61,66,67] and produce, besides propionate and butyrate, different
oligosaccharides [56,68].

5. Conclusions

From the results of this experiment, it can be concluded that besides the well-known
factors, the time of hatching also has a significant effect on the live weight of day-old
chickens. The late-hatched chickens are heavier, and they can maintain this advantage
even to the end of the fattening. Therefore, shortening the hatching window or using early
feeding techniques decreases the live weight variance of day-old birds and later of the flock.
Lower variance in the live weight means a more accurate nutrient supply and a better feed
conversion ratio.

The other novel finding of this trial was that hatching time also modifies the early
bacteriota development in the ceca. At day 11, the alpha diversity of the early-hatched
chickens was higher than that of the late-hatched birds, suggesting more bacterial contact
of the early-hatched birds in the brooder. Since there was no big difference in the access to
feed between the early- and late-hatched chickens, this result means that the bacteria on the
eggshell that survive the disinfection process could also have an impact on the colonization
of day-old chickens.

The ceca of late-hatched chickens contained more bacteria belonging to the phylum
Bacteroidetes and less of Firmicutes at day 11. The exact mechanism behind this shift in bacte-
riota is not known, but the higher abundance of Bacteroidetes is positive, since these bacteria
play an important role in fiber degradation and supporting substrates in the context of the
so called cross-feed mechanism to the lactic acid and butyric acid-producing microbes.
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