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Simple Summary: Equid alphaherpesvirus type 8 (EqHV-8) infection presents equids with severe
respiratory disease, abortions, and neurological syndromes. No vaccines and therapeutic molecules
have been reported for EqHV-8 control. In the present study, cobalt protoporphyrin (CoPP) pos-
sesses antiviral activity against EqHV-8 via HO-1 (heme oxygenase-1) mediated type I interferon
(IFN) response; it will be a novel potential molecule to develop an effective therapeutic drug for
EqHV-8 prevention.

Abstract: Equid alphaherpesvirus type 8 (EqHV-8) is the causative agent of severe respiratory disease,
abortions, and neurological syndromes in equines and has resulted in huge economic losses to the
donkey industry. Currently, there exist no therapeutic molecules for controlling EqHV-8 infection. We
evaluated the potential antiviral activity of cobalt protoporphyrin (CoPP) against EqHV-8 infection.
Our results demonstrated that CoPP inhibited EqHV-8 infection in susceptible cells and mouse models.
Furthermore, CoPP blocked the replication of EqHV-8 via HO-1 (heme oxygenase-1) mediated type
I interferon (IFN) response. In conclusion, our data suggested that CoPP could serve as a novel
potential molecule to develop an effective therapeutic strategy for EqHV-8 prevention and control.
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1. Introduction

Equid alphaherpesvirus 8 (EqHV-8) is a double-stranded enveloped DNA virus that
belongs to the Alphaherpesvirinae subfamily [1]. It has been reported to cause severe respi-
ratory diseases, abortions, and neurological disorders in equines [2]. Recently, numerous
EqHV-8 field strains have been isolated from horses or donkeys in several countries and
have caused enormous economic losses to the equine and donkey industry worldwide [3,4].
Unfortunately, no effective drug is available to control EqHV-8 infection, indicating the
urgency to develop more drugs to control and prevent EqHV-8 infections.

HO-1 (heme oxygenase-1), encoded by the HMOX1 gene, a rate-limiting enzyme im-
plicated in heme catabolism, has been reported to exert anti-inflammatory, anti-apoptotic,
antioxidative, and antiviral effects in the host [5–10]. Recent studies have reported a
broad-spectrum antiviral effect of HO-1 against numerous viruses, including human im-
munodeficiency virus (HIV), human respiratory syncytial virus (hRSV), hepatitis B virus
(HBV), hepatitis C virus (HCV), Ebola virus (EBOV), bovine viral diarrhea virus (BVD),
porcine reproductive and respiratory syndrome virus (PRRSV), and hepatitis A virus
(HAV) [11–17]. Type I IFNs, known as viral IFNs, are induced by virus infection; most
types of virally infected cells are capable of synthesizing IFN-α/β in cell culture, and
they play a critical role in antivirus infections [18,19]. For example, dengue virus (DENV)
replication is sensitive to IFN in both in vitro and in vivo studies [20,21]. The relationship
between HO-1 and innate immunity has been widely studied. For example, GV1001 exerts
an anti-HBV activity via HO-1-mediated production of type I interferon (IFN) [22]. During
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pathogen invasion, HO-1 regulates the activation of molecules involved in innate immunity
such as interleukin (IL)-6, tumor necrosis factor (TNF), and nitric oxide (NO) [23]. To
our knowledge, anti-EqHV-8 activity and the potent mechanism of CoPP have not been
reported until now.

A previous study has reported that COPP, a potent agonist of HO-1, possesses antiviral
effects. In the present study, we investigated the activity of CoPP against EqHV-8 and
the potential antiviral mechanisms of anti-EqHV-8. We demonstrated that CoPP exerts a
strong anti-EqHV-8 activity both in vitro and in vivo. Furthermore, the anti-EqHV-8 effect
of CoPP depends on HO-1-mediated type I IFN production, which could provide clues for
developing new drugs against EqHV-8 infection.

2. Materials and Methods
2.1. Cells, Viruses, Antibodies, and Chemicals

MH-S (a murine alveolar macrophage cell) and MDBK (Madin–Darby bovine kid-
ney) cells were purchased from the China Center for Type Culture Collection (CCTCC,
Wuhan, China) and maintained in 10% fetal bovine serum (FBS) Dulbecco’s minimal es-
sential medium (DMEM) at 37 ◦C and 5% CO2. The EqHV-8 SDLC66 strain (GenBank:
MW816102.1) was proliferated in MDBK cells. The mouse anti-EqHV-8-positive serum,
derived from mice by artificial infection EqHV-8, was prepared in our laboratory, and all
experimental protocols were approved by the Liaocheng University Animal Care and Use
Committee (permit number: LC2021-05). Anti-OAS1 (2′-5′-oligoadenylate synthetases
1) (catalog number ab272492), anti-PKR (Protein kinase R) antibodies (catalog number
ab184257), and anti-HO-1 mAb (catalog number ab13243) were obtained from Abcam, and
Cy3 AffiniPure goat anti-mouse IgG (H+L) (catalog number 115165044) and horseradish
peroxidase (HRP)-labeled goat anti-mouse IgG (H+L) (catalog number 115035020) were
purchased from Jackson. CoPP was purchased from Sigma-Aldrich (St. Louis, MO, USA)
and dissolved in NaOH (0.2 M).

The MDBK cells were seeded into 96-well plates for 24 h before virus infection, fol-
lowing which the viral supernatant was serially diluted 10-fold in eight replicates with
100 µL per well. The tissue culture infectious dose 50 (TCID50) was calculated after 5 days
post-infection (dpi). The production of virus progeny was determined in MDBK cells using
the Reed–Muench method, and the data were analyzed using GraphPad Prism 8.0.

2.2. CoPP Cytotoxicity

MH-S and MDBK cells were seeded into 96-well plates (1 × 104/well). After 24 h,
varying concentrations (5, 10, 25, 50, and 100 µM) of CoPP were added to the wells, and
the cells were incubated for 24 h. Afterward, the CCK-8 (Cell Counting Kit-8) reagent
(10 µL/well) was added, and the cells were incubated for 2 h. The number of viable
cells was determined by reading the absorbance at 450 nm as measured by the EpochTM
Microplate spectrophotometer (BioTek, Winooski, VT, USA), and these data were analyzed
using GraphPad Prism 8.0.

2.3. Inhibition Assay of CoPP In Vitro

To investigate the potential antiviral effect of CoPP against EqHV-8 infection in vitro,
MH-S and MDBK cells were pre-treated with different concentrations of CoPP (0, 5, 10, 25,
50, and 100 µM) for 12 h, followed by infection with EqHV-8 SDLC66 (0.1 MOI). The cell
samples and cellular supernatant were harvested at 24 h post-infection (hpi) and analyzed
by Western blotting and qPCR.

2.4. Effects of CoPP on EqHV-8 Infection

To determine the stage of the EqHV-8 life cycle affected by CoPP, MH-S cells were
seeded into 12-well plates and termed as pre-treated, co-treated, and post-treated with
CoPP (100 µM) relative to the EqHV-8 (0.1 MOI) inoculation groups. After 24 h, the cells
were collected to examine the expression of the gD protein, and the production of progeny
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viruses was measured by Western blotting using anti-EqHV-8 gD polyclonal antibody and
qPCR with EqHV-8 186 primers as described above.

2.5. The Change of IFN Response Treated with CoPP

The siRNAs targeting the HO-1 gene were synthesized by Ribo Biotechnology Co., Ltd.
(Guangdong, China), and the siRNAs sequences are shown in Table 1. The effects of siRNAs
were identified by Western blotting. MH-S cells were transfected with si-HO-1 (100 nM)
or siNC (negative-control) (100 nM), followed by treatment with CoPP (100 µM) for 12 h.
Subsequently, the cells were infected with EqHV-8 SDLC66 with 0.1 MOI. All cells were
collected and RNA was extracted to evaluate the expression of IFNα, IFNβ, HO-1, gD,
and interferon-stimulated genes (ISGs) (PKR and OAS1) by qPCR; simultaneously, HO-1,
gD, PKR, and OAS1 were detected by Western blotting, and then cells were treated with
si-HO-1 or siNC; the expression of HO-1, gD, PKR, and OAS1 proteins was also detected
by Western blotting. The data were analyzed by GraphPad Prism 8.0 and the ChemiDoc
XRS imaging system.

Table 1. The primers in this study.

Primers Primer Sequences (5′-3′)

HO-1-F AGTTCATGAAGAACTTTCA
HO-1-R TACCAGAAGGCCATGTCC

EqHV-8 186-F CCCACGTGTGCAACGCCTAT
EqHV-8 186-R ATACAGTCCCGAGGCAGAGT
EqHV-8-gD-F GATGCCAAACCGAATCAGCC
EqHV-8-gD-R TAGGCGAGTCAAGCCGTTTT

IFN-α-F TACTCAGCAGACCTTGAACCT
IFN-α-R CAGTATTGGCAGCAAGTTGAC
IFN-β-F AGCTCCAAGAAAGGACGAACAT
IFN-β-R GCCCTGTAGGTGAGGTTGATCT
OAS1-F GGAGGCGGTTGGCTGAAGAGG
OAS1-R GAACCACCGTCGGCACATCC
PKR-F CGTTTCTTGCCTCCTGCTTTG
PKR-R GGGACCTCCACATGACAGAAG

GAPDH-F CCTTCCGTGTCCCTACTGCCAAC

GAPDH-R GACGCCTGCTTCACCACCTTCT

2.6. Animal Experiments

Twelve specific pathogen-free, 6-week-old male BALB/c mice were purchased from
the Pengyue Experimental Animal Breeding Co., Ltd. (Jinan, China) and randomly divided
into four groups (n = 3 mice/group). Mice in group 1 were inoculated with the DMEM
medium as the Mock group. Mice in group 2 were inoculated intraperitoneally with 100 µL
of DMEM, and those in group 3 were inoculated intraperitoneally with 100 µL of NaOH
solution (0.2 M). Mice in group 4 were inoculated intraperitoneally with 100 µL of CoPP
(20 µM/kg). Mice in group 2, group 3, and group 4 were challenged intranasally with
1 × 105 PFU/mice of EqHV-8. EqHV-8 or DMEM incubation in mice was performed under
deep anesthesia with Zoletil 50 (Virbac, Nice, France). Mice in each group were housed
separately to prevent cross-infection. The clinical symptoms of mice were monitored
daily. Finally, the mice were euthanized at 8 dpi via cervical dislocation for subsequent
experiments on pathological changes and virus replication in the lungs.

2.6.1. Histopathology Evaluation

The mice lungs of different groups at 8 dpi were collected for hematoxylin and eosin
(HE) staining for evaluating histopathological changes as previously described [24]. Briefly,
lungs were fixed in 10% formalin solution, underwent dehydration by alcohol, were
transparentized in xylene, and then embedded in paraffin wax, sliced in a microtome (Leica,
Nussloch, Germany) to 4 µm, affixed onto slides, followed by deparaffinization, clearance,
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diluted alcohols (95%, 75%), and hematoxylin solution stains, were differentiated, using
95% or 100% alcohol directly after the eosin stain, and, after cleared, placed on a coverslip
to be observed by light microscopy.

2.6.2. Virus Replication in Tissues

Lungs (0.1 g) from different groups mixed with PBS (1 mL) were crushed, homoge-
nized, and then frozen and thawed 3 times. After that, the supernatant was collected to
extract viral genomic DNA using a Viral DNA Kit (Omega Bio-Tek, Inc., Norcross, GA,
USA) according to the manufacturer’s protocol. To determine the EqHV-8 replication in the
lungs, a qPCR assay was used to detect EqHV-8 based on the above methods. Finally, viral
loads were calculated in the lungs by absolute quantification.

2.7. Gene Transcription and Immunoblot Analysis
2.7.1. Real-Time Quantitative PCR (qPCR)

All cell samples were collected and analyzed using a step-one plus real-time poly-
merase chain reaction (PCR) system as previously described [24]. Briefly, the total RNA
was extracted by TRIzol (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s
instructions, and reverse transcription PCR was performed using the PrimeScript™ RT
Master Mix kit (Takara, Japan). The mRNA transcription levels of HO-1, glycoprotein
D protein(gD), IFN-α, IFN-β, PKR, and OAS1 were normalized against those of glycer-
aldehyde 3-phosphate dehydrogenase (GAPDH) using the 2−∆∆CT threshold cycle (CT)
method, and the relative fold changes were subsequently calculated. All primers are listed
in Table 1.

To determine the EqHV-8 genome DNA copy number, the absolute quantification was
performed using the pMD18-T-ORF72 as the template, containing 186 bp of EqHV-8 ORF72.
It served as a standard sample to calculate the EqHV-8 genome DNA copies. The qPCR
reaction was performed at 95 ◦C for 4 min, followed by 40 cycles at 94 ◦C for 30 s, 60 ◦C for
30 s, and 72 ◦C for 20 s.

2.7.2. Western Blotting

The cells were collected and lysed in the radioimmunoprecipitation (RIPA) lysis buffer
and mixed to boil for 10 min in with 5× sample loading buffer. Next, the proteins were
loaded onto 12% sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE)
gels with equal amounts and transferred onto polyvinylidene fluoride (PVDF) membranes
as described previously [25]. The polyvinylidene fluoride (PVDF) membranes were blocked
with 5% bovine serum albumin (BSA) and incubated with anti-HO-1 mAb, anti-α-tubulin
mAb, or anti-EqHV-8 gD polyclonal antibody, PKR, and OAS1 antibodies. HRP-conjugated
goat anti-mouse or goat anti-rabbit IgG was used as the secondary antibody. Finally,
the protein band signals were detected using an enhanced chemiluminescent (ECL) kit
(Bio-Rad, San Francisco, CA, USA). The images were analyzed using the ChemiDoc XRS
imaging system (Bio-Rad).

2.8. Statistical Analysis

Statistical analysis was performed using GraphPad Prism software. Differences among
the groups were analyzed by unpaired Student’s t-test. Significance is indicated as follows:
*, p < 0.05; **, p < 0.01; and ***, p < 0.001.

3. Results
3.1. Chemical Structure and CoPP Cytotoxicity

The structure of CoPP is illustrated in Figure 1A. The cytotoxicity of CoPP in MH-S
and MDBK cells was determined using the CCK-8 kit. The results showed that CoPP did
not exert a cytotoxic effect at concentrations lower than 100 µM in these cells (Figure 1B).
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Figure 1. Chemical structure and cytotoxicity of CoPP. (A) Chemical structure of CoPP. (B) Cytotox-
icity of CoPP in MH-S and MDBK cells. Cells were seeded in 96-well cell plates and treated with
different concentrations of CoPP (0, 5, 10, 25, 50, and 100 µM) for 24 h. The viability of cells was
determined using the CCK-8 assay. These results were confirmed in three independent experiments.

3.2. Inhibition Assay of CoPP In Vitro

The results demonstrated that CoPP decreased the expression of gD protein in MH-S
cells in a dose-dependent manner (Figure 2A,B). Similar to the results of the protein analysis,
the production of progeny viruses was reduced in the CoPP-treated group compared with
the control group (Figure 2C). Similar results were observed in MDBK cells (Figure 2D–F).

3.3. Effects of CoPP on EqHV-8 Infection

To determine if the replication cycle of EqHV-8 is affected by CoPP, we performed a
time-of-addition experiment as shown in Figure 3A. M1 stands for the EqHV-8 infection
group, which served as a positive control (without CoPP treatment). M2 stands for the
CoPP pre-treated group. M3 stands for the CoPP and EqHV-8 co-treated group, whereas
M4 stands for the CoPP post-treated group. The MH-S cells were harvested, and the super-
natant was collected to measure the expression of gD protein and assess the production
of progeny viruses at 24 hpi. Both the expression of gD protein and the number of copies
of the virus significantly decreased in the M2, M3, and M4 groups, as compared with the
M1 control group (Figure 3B,C), indicating that CoPP inhibits EqHV-8 infection at multiple
stages of the virus life cycle.

3.4. The Change of IFN Response Treated with CoPP

HO-1 has been reported to function as a critical mediator of innate immunity by
regulating the production of IFN [26–28]. Firstly, to evaluate whether HO-1 activity is a
critical factor for CoPP against EqHV-8 infection, MH-S cells were pre-treated with CoPP
or si-HO-1, followed by infection with EqHV-8. Next, the expression of HO-1 and gD
genes was analyzed in these cells. The results showed that CoPP reduced the expression
of the gD gene by inducing HO-1, which was reversed by treatment with si-HO-1 at
both transcription and protein levels (Figure 4A,B). To further determine whether the
anti-EqHV-8 activity depends on HO-1-medicated IFN response, we pre-treated the MH-S
cells with different concentrations of CoPP, followed by infection with EqHV-8. Next,
the expression of IFNα/β and ISGs (PKR, OAS1) was analyzed. The expression of IFN
α/β (Figure 4C,D) and ISGs (Figure 4E) increased markedly following CoPP treatment.
Treatment with si-HO-1 reversed the anti-EqHV-8 activity of CoPP via HO-1 knockdown,
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and the expression of PKR and OAS1 proteins was reduced (Figure 4F). These data indicated
that the anti-EqHV-8 activity of CoPP largely depends on HO-1-mediated IFN production.
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Figure 2. Antiviral activity of CoPP against EqHV-8 in MH-S and MDBK cells. MH-S cells were
pre-incubated with different concentrations of CoPP for 12 h and afterward infected with EqHV-8
SDLC66 at 0.1 MOI. The production of gD protein was analyzed by qPCR (A) and Western blotting (B),
and the production of progeny viruses was measured by TCID50 (C). MDBK cells were treated with
CoPP using the same protocol, and the EqHV-8 replication was determined by qPCR (D), Western
blotting, (E), and TCID50 (F). Cropped blots are displayed; the samples were derived from the same
experiment, and gels/blots were processed in parallel. GAPDH served as an internal control, and
the data shown are representatives from three independent experiments and subjected to unpaired
Student’s t-tests. * p < 0.05, ** p < 0.01, *** p < 0.001 (compared with 0 µM CoPP-treated cells).

3.5. CoPP Decreased EqHV-8 Infection in Mice Model

The BALB/c mice models can be used to study virus replication and virulence of
EqHV-8 as described previously [29]. To confirm the antiviral effect of CoPP against EqHV-8
infection in vivo, we assessed the viral load, pathological lesions, and cytokine levels in the
lungs of CoPP-treated EqHV-8-infected mice and compared them with the EqHV-8-infected
group. Results demonstrated that one mouse died at 6 dpi, 7 dpi, and 8 dpi, respectively,
in the EqHV-8-infected group or NaOH-treated groups; however, only one mouse died
at 8 dpi in the CoPP-treated group (Figure 5A). CoPP alleviated the clinical symptoms of
EqHV-8 infection and reduced the mortality rate by 66.7%. The number of viral DNA copies
in CoPP-treated lungs was significantly lower than that in the EqHV-8-infected group and
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NaOH-treated groups (Figure 5B). To further characterize the protective effects of CoPP on
EqHV-8-caused lung damage, we examined the histopathological changes. As expected,
compared with the EqHV-8 infected group, CoPP reduced EqHV-8-induced interstitial
pneumonia (characterized by thicker alveolus walls and inflammatory cell infiltration) in
the lung tissues (Figure 5C). In addition, the NaOH-treated group showed no discrepancy
with the EqHV-8 infected group. Mice in the CoPP-treated group displayed significantly
enhanced expression of HO-1 and IFN-α/β compared with the EqHV-8 infected group,
whereas no significant discrepancy was observed in the NaOH-treated mice (Figure 5D).
These data suggested that the anti-EqHV-8 activity of CoPP largely depends on HO-1
mediated IFNα/β generation (Figure 6).
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including pre-treatment, co-treatment, and post-treatment. Schematic diagram of CoPP-treated cells
(A). The expression of gD protein was determined by qPCR (B) and Western blotting (C). Cropped
blots are displayed; the samples were derived from the same experiment, and gels/blots were
processed in parallel. GAPDH served as an internal control. The data shown are representatives from
three independent experiments subjected to unpaired Student’s t-tests. *** p < 0.001 (compared with
cells in the EqHV-8 only group).
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Figure 4. CoPP inhibits EqHV-8 replication by activating HO-1-mediated IFN response. MH-S cells
were pre-treated with CoPP (100 µM) or 100 nM siRNAs and afterward infected with EqHV-8 SDLC66
at 0.1 MOI. The expression of HO-1 and gD was determined by qPCR and Western blotting (A,B).
Cropped blots are displayed; the samples were derived from the same experiment, and gels/blots
were processed in parallel. The data shown are representatives from three independent experiments
subjected to unpaired Student’s t-tests. && p < 0.01, &&& p < 0.001. The effects of CoPP on the expres-
sion of IFN-α/β and ISGs (PKR and OAS1). MH-S cells were treated with different concentrations
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of CoPP and infected with EqHV-8 SDLC66 (0.1 MOI). The mRNA expression of IFN-α/β was
determined by qPCR (C,D). The mRNA and protein levels of PKR and OAS1 were measured by
qPCR and Western blotting at 24 hpi (E). The relationship of si-HO-1 on the CoPP-induced activation
of IFN response and anti-EqHV-8 effect. MH-S cells were transfected with si-HO-1 or si-NC for
12 h and subsequently infected with EqHV-8 SDLC66 (0.1 MOI) in the presence of 100 µM CoPP
for 24 h. The protein expression of PKR and OAS1 was determined through Western blotting (F).
Cropped blots are displayed; the samples were derived from the same experiment, and gels/blots
were processed in parallel. The data shown are representatives from three independent experiments
subjected to unpaired Student’s t-tests. * p < 0.05, ** p < 0.01, *** p < 0.001 versus Mock.
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Figure 5. CoPP treatment diminishes the replication and pathogenesis of EqHV-8. Mice were infected
by intranasal injection with EqHV-8, and NaOH or CoPP treatment before EqHV-8 infection; DMEM
treatment served as the Mock group. (A) The survival rate of mice among different groups. (B) The
numbers of viral genomes in the lungs of mice in the indicated groups were measured by qPCR.
(C) Representative images of hematoxylin and eosin (H&E) in the lungs derived from mice in the
indicated groups. Bar, 100 µm. (D) The expression of HO-1 and IFN-α/β in the lung tissues of mice
was assessed by qPCR. The data shown are representatives from three independent experiments
subjected to unpaired Student’s t-tests. *** p < 0.001 (compared with the EqHV-8 infected group).
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Figure 6. Schematic showing that CoPP reduces EqHV-8 infection. CoPP increased the expression
and activity of the HO-1 gene, leading to host cellular type I IFN response and ISG (OAS1 and PKR)
expression, and, subsequently, decreased EqHV-8 replication.

4. Discussion

EqHV-8 has emerged as an important and prevalent viral pathogen of donkeys. The
infection has resulted in huge economic losses and is a major threat to the donkey industry
worldwide. EqHV-8 was first reported in the nasal cavity of latently infected donkeys
in Australia in 1988 [30]. It was isolated from a horse with a fever and runny nose in
China [3]. Subsequently, EqHV-8 was reported in a donkey from Israel. There has been
a recent increase in the large-scale breeding of donkeys in China. EqHV-8 infection is
characterized by abortion and respiratory diseases that seriously hinder the economic
growth of the donkey industry. Our group previously reported that EqHV-8 causes abortion
and respiratory diseases in donkeys [4]. However, the number of effective drugs available
against EqHV-8 infection is limited. In the present study, we demonstrated that CoPP exerts
anti- EqHV-8 activity via HO-1-mediated production of type I IFNs and ISGs (Figure 6).

CoPP is an analog of the heme group and contains a central iron moiety. It is a
well-known inducer of antioxidants and HO-1 [31]. Recently, increasing evidence has
demonstrated that CoPP protects host cells from viral damage by upregulating the ex-
pression of HO-1. For instance, Ma et al. reported that CoPP inhibits the replication
of the influenza virus via IRF3-mediated generation of IFN-α/β [28]. Similar antiviral
effects of CoPP were observed against the spring viremia of carp virus (SVCV) through
ROS/Nrf2/HO-1 axis; CoPP inducing the HO-1 signal pathway was a promising strat-
egy for treating Duck Tembusu virus (DTMUV) infection, hepatitis A virus (HAV), and
pseudorabies virus (PRV), etc., as shown in recent studies [17,32–34]. Except for the Zika
virus (ZIKV), induction of HO-1 by CoPP to limit ZIKV infection may be ineffective as a
therapeutic strategy because ZIKV was able to downregulate HO-1 expression [35]. In the
present study, CoPP significantly inhibited the EqHV-8 infection in MH-S and MDBK cells
in a dose-dependent manner (Figure 2). To further explore the antiviral mechanisms of
CoPP, we first determined which stages of the viral replication cycle were affected by CoPP.
Our data suggested that CoPP interfered with multiple replication processes of EqHV-8
(Figure 3). In addition, our results suggested that CoPP inhibited EqHV-8 replication by
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upregulating the production of type I IFNs and ISGs (PKR, OAS1) mediated by HO-1
in vitro (Figure 4), Interestingly, our results confirmed that CoPP improved clinical symp-
toms and reduced the replication of EqHV-8 in the lungs of mice model (Figure 5A–C).
Meanwhile, The HO-1 and type I IFNs expressions were also confirmed using the mice
model (Figure 5D).

According to previous studies, mouse model was the main animal model for research-
ing the effects of CoPP on viral infections, such as hRSV, DENV, HBV [36], and CoPP, which
were applied with different concentrations as antiviral molecules. For example, Tseng
et al. used 50 mg/kg CoPP to treat mice, followed by infecting DENV, which suggested
a significant delay in the onset of disease and mortality, and decreased virus load in the
infected mice’s brains [37]. Protzer et al. used 10 mg/kg CoPP to indicate it protected mice
from immune-mediated hepatitis associated with apoptotic liver damage induced by HBV
infection [38]. Espinoza et al. used 7.6 µM/kg (5 mg/kg) CoPP to protect mice from hRSV
damage; HO-1 induction also decreased virus replication and lung inflammation [12]. In
our study, 20 uM/kg (30.5 mg/kg) CoPP was used to confirm the inhibition effect of EqHV-
8 replication in mice model. The above examples suggested that the concentration of CoPP
at 5–50 mg/kg is safe for mice growth and physiological function. However, other species
that applied CoPP in antivirus research have not been reported until now, and in the future,
we will attempt to verify the potential effectiveness of CoPP against EqHV-8 in equids, and
a more extensive range of CoPP concentrations will be investigated to determine optimal
dosages. It will provide a novel the potential application and effectiveness of CoPP as an
antiviral molecule, and also help identify any similarities or differences in the mechanisms
of action observed across different viruses and species.

5. Conclusions

In the present study, our data demonstrated that CoPP suppresses the replication of
EqHV-8 in vitro and in vivo via HO-1-mediated production of IFN-α/β, indicating that
CoPP could be a potential novel drug for EqHV-8 control.
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