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Simple Summary: When humans are recovering from an anesthetic procedure, their medical care
teams monitor a number of medical and behavioral biomarkers to ensure they are conscious and can
safely return home from the hospital. For example, the ability of the patient to open their eyes, track
objects, navigate their environment, speak, and respond appropriately to questions, are considered
important supplemental behavioral biomarkers. We set out to monitor the return of sound production
in bottlenose dolphins as they recovered following anesthesia. Sound production in dolphins is
important for both their ability to navigate underwater using echolocation and to communicate with
conspecifics using whistles. We found that otherwise healthy dolphins recovering from an anesthetic
procedure produced echolocation clicks approximately 92 min following the return of spontaneous
breathing. This return was correlated to the return of the righting reflex, or the dolphin’s ability to
maintain balance in the water. Whistle production, used for communication, began after the emission
of clicks. We suggest that underwater acoustic monitoring of bottlenose dolphins provides useful
information to supplement other medical biomarkers of anesthetic recovery.

Abstract: (1) Background: When a human or animal is recovering from general anesthesia, their
medical team uses several behavioral and physiological parameters to assess their emergence from
the unconscious state to complete wakefulness. However, the return of auditory and acoustic
behaviors indicative of the complete return of consciousness in humans can be difficult to assess in
a completely aquatic non-human mammal. Dolphins produce sound using the nasal system while
using both passive auditory and active biological sonar (echolocation) to navigate and interrogate
their environment. The sounds generated by dolphins, such as whistles and clicks, however, can
be difficult to hear when the animal is submerged. (2) Methods: We implemented a system to
audibly and visually (i.e., using spectrograms) monitor the underwater acoustic behavior of dolphins
recovering from anesthesia. (3) Results: Eleven of the twelve recorded dolphins began echolocating
within 92 min (Mean = 00:43:41 HH:MM:SS) following spontaneous respirations. In all cases, the
dolphins echolocated prior to whistling (Mean = 04:57:47). The return of echolocation was significantly
correlated to the return of the righting reflex (Mean = 1:13:44), a commonly used behavioral indicator
of dolphin emergence. (4) Conclusions: We suggest that acoustic monitoring for the onset of click
production may be a useful supplement to the established medical and behavioral biomarkers of
restoring consciousness following anesthesia in bottlenose dolphins.

Keywords: dolphin; acoustic; vocalization; anesthesia emergence; welfare

1. Introduction

Following the general anesthesia of human and non-human patients, a suite of neu-
robiological processes and interactions lead to the return of consciousness. Altogether,
these events are known as the emergence period of anesthesia. Characterization of these
biological processes, which begin following cessation of anesthetic delivery until the return
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of non-reflex responses to verbal commands, are lacking in many species [1,2]. Addition-
ally, it is generally understood that this transition to consciousness cannot be completely
explained by anesthetic drugs but also by molecular, genetic, and behavioral factors [3,4].

As in terrestrial species, anesthetic emergence in bottlenose dolphins (Tursiops trun-
catus) has yet to be well documented and understood. Empirical evidence supports an
asymmetrical process (hysteresis) similar to that observed in human and non-human
mammalian species [3]. Pharmacologic factors, such as central nervous system receptor
binding and metabolism of anesthetic drugs and agents, as well as non-pharmacologic
factors, such as body temperature regulation, electrolyte imbalances, and disease states,
all likely contribute to the variations observed during anesthesia emergence. Although
bottlenose dolphin anesthesia practices are outside of the scope of this manuscript, there is
a rich history of dolphin anesthetic procedures dating back to the 1930s and continuing
to the present [5–12]. Many of the same behavioral and physiological parameters used
in human medicine and terrestrial veterinary medicine are preserved in dolphins. For
example, the opening of the eyes, visual tracking, return of the palpebral and blink reflexes,
return of oropharyngeal and lingual movements and jaw tone, and sometimes the return
of spontaneous respirations are used to assess consciousness when determining readiness
for removal of the endotracheal tube [9]. In addition, dolphin-specific reflexes monitored
include the swimming reflex, observed as dorso-ventral undulations of the fluke, and blow-
hole tone and movement [9,10,13,14]. More recently, the restoration of normal individual
cardiopulmonary features, such as stable mean arterial blood pressure and respiratory
sinus arrhythmia, have been used.

Following the removal of the endotracheal tube and return of spontaneous ventilation,
dolphins are usually moved to limited space enclosures for continued physiological and
behavioral monitoring. Here, animal care teams can assess the return of righting reflexes
and consciousness. The ability to maintain buoyancy and balance in the water column
without aid, the use of pectoral flippers to navigate and remain upright, the use of the
tail fluke for water propulsion, evidence of successful navigation of the environment,
and appropriate responses to behavioral cues (i.e., a trained response to a hand signal
given to the animal from their care team), all indicate that a dolphin has likely restored
consciousness. Historically, these observations would indicate the end of the anesthetic
emergence period, and the dolphin would be considered ready to safely return to their
home enclosure or environment.

Bottlenose dolphins (hereafter referred to as dolphins) produce sound through the
pressurization and muscular activation of paired nasal cavities (e.g., [15,16]). Unlike most
terrestrial mammals, these sounds can be produced without overt physical movements.
Therefore, sound production when a marine mammal is submerged can be difficult for
humans to hear and/or visually identify. While dolphins do not have vocal cords and,
therefore, produce phonations, we refer to any sound produced by the vocal apparatus of a
dolphin as vocalization and use that term throughout for consistency with the previous
literature [17,18]. Dolphins produce three main categories of vocalizations: clicks used
for echolocation, burst pulses, and whistles [19]. Dolphins utilize underwater biological
sonar (i.e., echolocation) to sense and navigate their environment. Echolocation is made
up of emitted, broadband trains of clicks and their received echoes. Burst pulses are
also made up of clicks that are emitted in short bursts or packets and at a fast rate (i.e.,
average inter-click interval = 0.004 s, [20]). These pulsed sounds are considered social
communication signals and are typically recorded during agonistic and/or aggressive
contexts (e.g., [21]). Burst pulse analyses were not included in the present study. Whistles
are frequency and amplitude-modulated narrowband vocalizations that sound tonal to the
human ear (e.g., [22,23]). Bottlenose dolphins develop and maintain individually distinctive
whistle contours (i.e., patterns of frequency modulation over time) that are termed signature
whistles (e.g., [22,24,25]). Signature whistles are most commonly emitted during periods
spent isolated from conspecifics and are produced at an abnormally high repetition rate
during periods of distress (e.g., [26–30]).
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For the purposes of improving the health and welfare of bottlenose dolphins, the
Sound and Health team of the National Marine Mammal Foundation endeavors to develop
innovative tools for the monitoring and interpretation of acoustic behavior in dolphins.
Sound production is imperative for dolphins to both safely navigate their environment
and communicate their needs with conspecifics [31]. Thus, the return of sound production
following general anesthesia of this species could be a useful biomarker in decision-making
algorithms for program managers. Here, we describe the opportunistic application of
an acoustic monitoring system in a group of bottlenose dolphins emerging from general
anesthesia. The goals of this study were (1) to monitor the return of acoustic behavior
during the emergence period and (2) to assess the utility of the return of acoustic behaviors
as biomarkers for determining complete wakefulness in bottlenose dolphins.

2. Materials and Methods
2.1. Animals and Anesthetic Procedures

Bottlenose dolphins cared for by the U.S. Navy Marine Mammal Program, Naval Infor-
mation Warfare Center Pacific, are housed in 9 m by 9 m floating, netted natural seawater
enclosures in San Diego Bay, CA, USA. Over the period from January 2020 to February
2021, 10 healthy adult bottlenose dolphins (male = 6, female = 4; age range 8–46 years old)
were placed under general anesthesia for oral, ophthalmic, renal, or pulmonary procedures
(12 anesthetic procedures on 10 individual animals). Prior to each procedure, comprehensive
physical examinations were performed by a veterinarian. As an index of general health
and a prognostic tool for anesthesia-related complications, the physical status of individual
dolphins was classified using the American Society of Anesthesiologists (ASA) physical
status classification system [32,33]. Duration of anesthesia was defined as the difference
between the time to intubation and the time to extubation (Table 1).

Table 1. Focal animal characteristics. Sex, age, medical, or surgical procedure requiring general
anesthesia, American Society of Anesthesiologists (ASA) physical status classification score (I–VI),
and duration of anesthesia for each dolphin. * Denotes the same individual dolphin anesthetized on
two separate occasions. ˆ Denotes a second dolphin anesthetized on two separate occasions.

Dolphin Sex Age Medical or Surgical
Procedure

ASA
Classification

Duration of Anesthesia
(HH:MM)

1 * F 37 Dental extractions II 03:37
2 M 8 Bronchoscopy II 03:41
3 M 29 Dental extractions II 04:33

4 ˆ F 45 Corneal graft II 00:56
5 * F 38 Dental extractions II 03:07
6 M 42 Dental extractions II 03:34
7 F 16 Dental extractions II 02:58
8 F 40 Dental extractions II 03:16
9 M 41 Corneal graft II 00:30
10 M 10 Bronchoscopy II 04:03
11 M 37 Dental extractions II 03:39

12 ˆ F 46 Ureteroscopy IV 03:08

All dolphins were provided an intramuscular injection of midazolam, 0.08–0.1 mg/kg
(Hospira, Inc., Lake Forest, IL, USA), combined with meperidine, 0.1–0.2 mg/kg (West-
Ward Pharmaceuticals, Eatontown, NJ, USA). Induction of anesthesia was accomplished
with intravascular midazolam, 0.02 mg/kg, and propofol, 1–4 mg/kg (Hospira, Inc., Lake
Forest, IL, USA), to effect, for endotracheal intubation. Regional and/or local anesthesia
of mandibular and/or maxillary nerves for oral procedures was accomplished using no
more than 1 mg/kg of 2% lidocaine (Fresenius Kabi, Lake Zurich, IL, USA) for injection.
Centralization of the eye during ophthalmic procedures was induced using injectable
cis-atracurium for temporary paralysis (0.1 mg/kg every 15–20 min; Hospira, Inc., Lake
Forest, IL, USA). All dolphins were maintained on a surgical plane of anesthesia using
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the volatile anesthetic gas sevoflurane (Piramal Critical Care, Inc., Bethlehem, PA, USA).
Comprehensive physiologic monitoring was accomplished through electrocardiogram,
pulse oximetry, direct blood pressure readings, capnography and respiratory gas analyses,
and rectal temperature (GE Carescape B650, GE Healthcare, Finland), as well as arterial and
venous blood gas analysis (ABL90 Flex; Radiometer Medical ApS, København, Denmark).
Following completion of the medical or surgical procedure, reversal agents flumazenil, at a
1:13 reversal ratio (Fresenius Kabi, Lake Zurich, IL, USA) and naloxone, 10 mcg/kg (Interna-
tional Medication Systems Limited, El Monte, CA, USA), were administered intravenously.
All dolphins recovered from anesthesia without complications.

2.2. Emergence from Anesthesia

Emergence from anesthesia was monitored and assessed in two phases using multiple
physiological and behavioral parameters. The first phase ended with the successful removal
of the endotracheal tube and replacement of the orally displaced larynx into the nasal cavi-
ties (i.e., extubation). The second phase ended with complete wakefulness and, therefore,
veterinary-directed approval for dolphins to return to their natural seawater enclosures.

During the first phase of emergence, behavioral and physiological parameters were
used to assess the transition to wakefulness. Behavioral parameters included the opening
of the eyes and visual tracking, the return of palpebral and blink reflexes, gag reflex, and
swimming reflex, the return of blowhole tone, and the return of oropharyngeal and lingual
tone and movement. Physiological parameters included stable, unsupported mean arterial
blood pressure, indicators of adequate oxygenation (i.e., normal mucosal membrane color
and pulse oximetry readings), and the return of a normal respiratory sinus arrhythmia
characteristic for this species. The return of spontaneous respirations was also used to assess
emergence; however, not all dolphins spontaneously ventilated while intubated. Following
successful extubation, dolphins were moved to a warm, shallow, above-ground seawater
pool (constructed of laminated plastic; max depth = 1.5 m; diameter = 7 m) for phase two
of anesthetic emergence. Dolphins were supported by personnel until the return of the
righting reflex (i.e., the ability to maintain sternal positioning in water without support).
However, further restoration of automatic and volitional behaviors, such as the ability to
adjust buoyancy, tail fluke propulsion, proper pool navigation, and appropriate responses
to behavioral cues, signaled complete wakefulness and restoration of consciousness. The
time to return of the righting reflex was recorded in 11/12 anesthetic procedures and used
as a pre-established comparative biomarker.

2.3. Acoustic Data Acquisition and Analysis

Acoustic data were acquired during phase two of anesthetic emergence when the
dolphin was isolated in the above-ground seawater pools. The acoustical system consists
of a High Tech Inc (HTI) high-frequency hydrophone (2 Hz to 125 kHz, ±3 dB) that
sits about a meter down in the water column, connected to a Behringer UMC202HD
sound digitizing card. Real-time communication to a Panasonic CF-31 Toughbook laptop
was accomplished via a USB interface. PAMGuard version 2.01.05 [34] software was
used to create a live-feed visual spectrogram utilizing the following modules: sound
acquisition, FFT, spectrogram display, National Marine Mammal Foundation Welfare
Acoustic Monitoring system (NMMF WAMS) [35] sound recorder, and sound output
(window type Hann, 192,000 Hz sample rate, Hop size 2048, 50% overlap, FFT length 4096,
0–39 kHz frequency range, 0–10 sec time window). A trained acoustic observer (B.L.J or
J.J.S.) visually analyzed the live-feed recording throughout the recovery time (see Figure 1)).
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Figure 1. Spectrogram of low frequency clicks (a) and a whistle (b) produced by a bottlenose
dolphi. Frequency (x-axis) is given in kHz, and time is presented in s (y-axis). The energy is given
in a color gradation with lighter colors representing higher energy sound. The corresponding
waveform (relative amplitude on the y-axis and time (s) on the x-axis) is plotted above the examples
of echolocation clicks (panel (a)) and a whistle (panel (b)). Clicks appear as broadband vertical lines
with little to no visible space (inter-click interval) between consecutive lines (clicks). The whistle
can take many different shapes but appears as a bright narrow line that changes in frequency over
time and can have harmonics (repetitive lines at interval frequencies above the lowest fundamental
frequency contour).

3. Results

The time to return of the righting reflex (Mean (M) = 01:13:44 HH:MM:SS, Stan-
dard Error (SE) = 00:09:02; Range = 00:31:00–02:16:00) following extubation was used
as a previously established biomarker of anesthetic emergence. The time to return of
echolocation (M = 00:43:41, SE = 00:06:28, Range 00:21:58–01:32:09) and the time to whistle
(M = 04:57:47, SE = 02:22:31, Range 00:28:57–22:08:08) following extubation were assessed
as novel biomarkers of emergence (Table 2, Figure 2). In 9/12 events, dolphins recorded
whistling during the emergence period and began whistling only after echolocating.

Non-parametric correlation tests were performed between the three variables to assess
relatedness among biomarkers. The time to echolocation was significantly correlated
with the time to return of the righting reflex (Spearman’s rho = 0.648, p = 0.043). Time to
whistle was not significantly related to either time to echolocation (Spearman’s rho = 0.617,
p = 0.077) or time to return of the righting reflex (Spearman’s rho = 0.619, p = 0.102).

Table 2. Descriptive statistics for biomarker variables assessed during emergence from general
anesthesia. The minimum time to, the maximum time to, the mean time to, and the standard error
for the mean time to are reported for time to echolocate, time to the return of the righting reflex, and
time to whistle. All times are given in HH:MM:SS format.

Time to Echolocation Time to Return of
Righting Reflex Time to Whistle

Dolphins 11/12 11/12 9/12
Minimum 00:21:58 00:31:00 00:28:57
Maximum 01:32:09 02:16:00 22:08:08

Mean 00:43:41 01:13:44 04:57:47
Standard Error 00:06:28 00:09:02 02:22:31
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Figure 2. Bar graph depicting the range of time from extubation (HH:MM:SS, x-axis) to the time of
return of the biomarkers explored. The start of the bar represents the minimum time from extubation
the biomarker was recorded, and the end of the bar represents the maximum time from extubation
for this group of dolphins. The vertical line within each bar demonstrates the mean.

4. Discussion

Here, we provide preliminary information on the return of sound production as an
adjunctive biomarker of bottlenose dolphin anesthetic emergence. Time to echolocation
correlated with the return of the dolphin righting reflex—a reflex indicating the restora-
tion of visual, vestibular, and somatosensory input. The correlation and return of these
two biomarkers suggest the dolphin CNS is no longer inhibited by anesthetic agents,
and restoration of consciousness and complete wakefulness are achieved. Similarly, a
medical team monitoring the emergence from general anesthesia in humans considers
both physiological and behavioral indicators of restoration of consciousness following
anesthesia-induced unconsciousness. Two imperative behavioral indicators are the ability
to navigate the environment using vision and the ability to speak and respond to questions
appropriately. As echolocation is the dolphin’s primary sensory modality for naviga-
tion [31,36], we suggest that the return of echolocation following anesthesia could be a
useful biomarker for program managers to ensure a dolphin is capable of navigating its
environments, especially in low light or visually occluded waters. Due to the observed indi-
vidual differences, non-standardized anesthetic drug protocols, complex interactions of the
physiology of anesthesia, and the neurobiological mechanisms underlying the anesthetic
emergence phase, our recommendation is to utilize acoustic monitoring as an adjunctive
biomarker of restoration of consciousness in dolphins. Such acoustic biomarkers could be
used as supplemental indicators of anesthetic emergence and should not be considered a
replacement for other critical physiologic and behavioral indicators.

In the current study, we did not find that whistles were a consistent and useful cue
to indicate anesthetic emergence. Whistles began after echolocation, if at all, and showed
much more variability in their time to and rate of production. Similarly, humans recovering
from anesthesia typically open their eyes and scan their environment prior to attempting to
communicate vocally. Whistle production was not significantly correlated to the return of
the righting reflex biomarker, nor was it correlated with the return of echolocation. Whistles
are used by dolphins primarily for communication with conspecifics. However, dolphins
who are in distress produce their signature whistle at a high repetition rate and intensity.
It is unclear if the time to whistle production could be considered a delay in anesthetic
emergence, and, if so, if it could be a result of reduced anesthetic drug metabolism or
clearance, the lack of conspecifics in proximity making communication superfluous, the
lack of stress or anesthetic complications (i.e., distress whistling was unnecessary), or a
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combination of all of these factors. Future studies should quantify dolphin whistle behavior
during control contexts to assess whether individual differences in whistle production were
related to a dolphin’s propensity to whistle. Whether the whistle characteristics change
after an anesthetic procedure, and if so, when they return to baseline, are also interesting
questions for future studies.

All dolphins in this study received comprehensive pre-anesthetic health assessments,
including blood sample analysis, physical examination, thoracic and abdominal ultrasound,
electrocardiogram assessment, and, in a few cases, echocardiogram. Dolphins were then
categorized into a physical status category, as described by the American Society of Anes-
thesiologists (ASA), for determining anesthetic risk based on health indicators. While this
method of categorizing health is utilized in both human and veterinary medicine, subjec-
tivity could account for inaccuracies in method implementation [32,33]. It is important to
note that previous studies suggest that a high whistle rate could be an indicator of poor
health status (e.g., [26–30]). Thus, in critical care cases, where dolphins may have significant
disease prior to anesthesia, it is feasible that whistle behavior changes could be an indicator
of distress and should not be ignored.

To assess complete wakefulness, humans recovering from anesthesia are commonly
asked to respond to simple questions, such as ‘What is your name?’. Similarly, future efforts
could emphasize training dolphins to respond to hand signal cues using their individual
signature whistles. Capturing this behavior would allow animal care teams to request the
signature whistle from an individual dolphin, thereby not only assessing the dolphin’s
ability to respond to hand signals but also confirming memory and implementation of
learned behavior and the return of motor control of the blowhole and sound production
apparatus. Specifically, eliciting the individual’s signature whistle further demonstrates
the dolphin’s ability to produce a distress call, which could elicit helping behaviors from
conspecifics if needed following recovery from anesthesia [30].

As the present report was prepared as an opportunistic application, it provides an
interesting foundation for future research to build upon. In other words, to provide robust
validation of biomarkers of anesthetic emergence in dolphins, formal assessments and
comparisons of medical, pharmacologic, physiologic, behavioral, and acoustic variables
in large sample sizes are warranted. Variables for future study consideration include, but
should not be limited to, sex and age categories, genetic factor categories, time of day of
the sound production study, and overall physical status to evaluate for possible interaction
effects on time to echolocate following general anesthesia in this species.

While we were able to confirm that dolphins in this study regained the ability to pro-
duce clicks, future work should attempt to characterize whether dolphins are successfully
utilizing the echoes of produced clicks to navigate their environment. One such strategy
could involve the implementation of physical barriers to assess successful echo utiliza-
tion in navigation. The combination of echolocation production, followed by successful
navigation away from an obstacle, may provide additional assurances that dolphins are
successfully receiving and integrating information from the self-produced sound.

5. Conclusions

In conclusion, the return of spontaneous echolocation in dolphins could be a useful
supplemental indicator of restoration of consciousness and complete wakefulness in dol-
phins recovering from general anesthesia. Specifically, the production of sound and the
use of echolocation could be useful biomarkers in decision-making algorithms for program
managers to determine the appropriate cues for returning dolphins back to unassisted,
free-swimming environments. Future studies focused on increased sample sizes, controlled
pharmacologic and physiologic studies, and assessment of acoustic behavioral indicators in
dolphins experiencing prolonged anesthetic emergence will be necessary for generalizing
to the greater MMP dolphin population and beyond. As such, the acoustic behavior of
aquatic animals is an underutilized indicator in aquatic medicine compared to terrestrial
animal or human medicine. Therefore, we recommend that animal care managers strongly
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consider sound production when developing health and welfare monitoring programs for
bottlenose dolphins under their care.
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