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Simple Summary: Nowadays, society demands certification and authentication methodologies that
are able to clarify the origin of different livestock products. This is considered of paramount impor-
tance in order to not only provide accurate information to consumers, but also to protect producers
against fraudulent practices. In this context, the aim of this study is to establish a methodology
to authenticate the grazing activity of dairy goats. To achieve this, milk and faeces samples were
analysed using Near-Infrared Reflectance Spectroscopy. The good results obtained in discriminant
models demonstrated differences in both types of matrices when the two feeding regimes were
compared. The development of this methodology could extend its use not only in dairy systems of
goats but also in other animal species and systems.

Abstract: Consumers are increasingly prone to request information about the production systems of
the food they buy. For this purpose, certification and authentication methodologies are necessary
not only to protect the choices of consumers, but also to protect producers and production systems.
The objective of this preliminary work was to authenticate the grazing system of dairy goats using
Near-Infrared Reflectance Spectroscopy (NIRS) analyses of milk and faeces of the animals. Spectral
information and several mathematical pre-treatments were used for the development of six discrimi-
nant models based on different algorithms for milk and faeces samples. Results showed that the NIRS
spectra of both types of samples had some differences when the two feeding regimes were compared.
Therefore, good discrimination rates were obtained with both strategies (faeces and milk samples),
with classification percentages of up to 100% effectiveness. Discrimination of feeding regime and
grazing authentication based on NIRS analysis of milk samples and an alternative sample such as
faeces is considered as a potential approach for dairy goats and small ruminant production.

Keywords: ruminants; grazing authentication; chemometrics; NIRS

1. Introduction

Nowadays, consumers are more aware about food quality, authenticity, origin, la-
belling and ingredients than ever [1]. Regarding dairy products, consumers demand
information about animals’ diets, as well as the systems in which they were raised [2–4].
Hence, the demand for traditional, regional and organic products, which are perceived as
healthy and added-value foods, has increased [5,6]. In this context, denominations of origin,
quality certificates and discrimination methodologies are considered of great importance
to ensure consumer food safety and choice [7] as well as to obtain profitability for small
producers [8]. However, although there are some national and international regulations
focused on food labelling and trade, these regulations and their controls are frequently
perceived as insufficient [1].
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Animal products from grazing systems, where pastures and other natural resources
become the animal diet basis (although grains or concentrate feed are also employed),
have a more positive image than those from intensive systems [9]. Therefore, products
from these systems are often preferred by consumers due to their origin from animals
with a more natural feeding regime, since animal diet is considered by consumers today
as an essential criterion for determining the quality of products [10,11]. The feeding
regime of animals is directly related to food properties and safety, but this connection is
often not clear for consumers, who therefore do not have enough information to make a
proper choice [12].

Previous studies to authenticate the feeding regime of origin from food products
employed direct and indirect analyses such as triacylglycerols species’ evaluation in milk
and dairy products [13], the use of nuclear-magnetic-resonance-based metabolomic markers
to authenticate beef production systems [14], the evaluation of hippuric acid as a marker of
feeding regime in goat milk [15], or the categorization of organic foods through the study
of certain biomarkers [16]. These studies require complex methodologies or the use of
previously established specific markers, which are not always easily definable [17].

Near-Infrared Reflectance Spectroscopy (NIRS) or NIRS technology is based on the
correlation of physico-chemical properties of a product and the absorption of radiation
in the infrared region; it is considered a rapid, non-destructive, cheap, and user-friendly
methodology that is able to determine a great deal of parameters with high repeatability
and reproducibility without the need to set prior classification criteria [18]. Chemometric
methods are used afterwards to develop discriminant and predictive models which corre-
late the spectral data to the quantitative and/or qualitative attributes of the samples [19].
The technological progress both in chemometrics and in NIRS instrumentation has induced
its implementation as an analytical tool in the agri-food industry [20]. Different samples
such as dairy products [4,10], meat [21,22] or honey [23,24] have been successfully analysed
through NIRS technology with different quantitative and qualitative aims, thus highlight-
ing its versatility. NIRS has already been evaluated as an analytical tool to discriminate
animal feeding regimes: for example, a high classification success was obtained after NIRs
analysis of cheese and milk to study and differentiate ruminants’ diet [8,10]; this is con-
sidered as a promising approach for authenticating products from grass-fed animals [25].
However, despite the interest of this application for authentication purposes in the dairy
sector, NIRS technology has been mainly used with cow-derived products, and only scarce
information about small ruminant products has been found in the literature.

Most of the NIRS studies reporting dairy systems’ authentication usually evaluate final
products such as milk or cheese. However, previous works have shown that faeces spectra
have sufficient information to quantitatively predict the chemical composition or digestibil-
ity of fed diets in different species such as pigs [26], rabbits [27] and ruminants [28,29]. In
this sense, Ottavian et al. [30] also addressed the use of faecal NIRS analysis to successfully
discriminate dairy cows among two levels of concentrate supplementation. Hence, faeces
offer some advantages as an interesting and alternative sample for authentication, due
to their ease of collection as well as the information they provide about the individual
physiology, including animal feeding [31]. Thus, faeces may also constitute an alternative
and good option to discriminate and certify the grazing practice in livestock farming.

The objective of this present study is to evaluate the preliminary viability of NIRS
technology to authenticate grazing of dairy goats and its discrimination from intensive
feeding, where concentrate feed constitutes the diet base. For this aim, two different
biological samples, milk and faeces, were studied in order to compare the results obtained
in the discriminant models.

2. Materials and Methods
2.1. Animals and Samples

The present study was carried out using a total of 71 individual milk samples and
66 individual faeces samples from Florida goats, an autochthonous breed of southern
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Spain. The animals included in the study were adult females with an age ranging between
two and three years. Samples were collected in two farms in the province of Cordoba:
39 milk and 35 faeces samples belonged to an intensive farm, and the remaining 32 milk
and 31 faeces samples belonged to a farm where the goats had an important food input
through natural grazing in addition to conventional dairy feeding. Both farms held an
M4 brucellosis status (officially brucellosis-free) when the samples were collected. All
samples were collected in spring of 2021. The two farms included in the present study
were selected due to their similarity in terms of productive conditions, animal health, as
well as genetics. In addition, the help and collaboration of farmers were also considered
within the selection criteria. Milk and faeces samples were analysed in order to perform a
direct authentication using the final product on one hand (milk) and, on the other hand, to
evaluate an alternative matrix (faeces).

Both farms included in the study belonged to the National Breeders Association of
Florida goats (ACRIFLOR), where technicians ensure equal productive conditions but
consider different feeding regimes as the differential factor. While the animals at the
intensive farm were permanently stabled in different pens, the goats at the second farm
grazed in different paddocks ranging from 16 to 32 ha, depending on the number of animals
per batch. Those animals grazed during the time between milkings, which were conducted
in the early morning (7–8 a.m.) and early afternoon (4–5 p.m.). After the second milking,
the goats were stabled indoors. Dehesa with Mediterranean scrubs and olive groves were
the main vegetation in the grazing paddocks.

Therefore, the diet of animals was based on concentrate feed in the intensive farm
and a combination of concentrate feed and natural resources obtained while grazing in the
second farm. The commercial feed used in both farms was based on cereals and legumes,
with an average nutritional composition of 16.6–18% of crude protein, 6.62–7.3% of crude
fibre, 7.98% of ash, 3.17–3.57% of ether extract, 0.98–1.05% of calcium, 0.43% of phosphorous
and 0.22–0.47% of sodium. The amount of commercial feed given to the goats in both
farms was approximately 2 kg feed/animal per day (1.74 kg of dry matter). The rest of the
daily intake was covered with gramineous and legume hay in the intensive farm and with
pastures and different grazing resources in the second farm. In addition, in both farms, the
goats were offered cereal straw ad libitum. Considering an average daily intake of 2.5 kg
of dry matter for an adult dairy goat in production [32], the intake obtained from grazing
was approximately 25–30% of the total daily intake. Animals were on the above-described
feeding regime for at least one month before sampling.

Individual milk and faeces samples were collected during milking to avoid unneces-
sary manipulations and stress. Milk samples were collected after teat cleaning and before
teat cup attachment. Faeces samples were collected per rectum in order to prevent sample
degradation or contamination. The animals without enough faeces in their rectum were
removed from the experiment to avoid stress during milking. All samples were stored and
transported to the Animal Production Laboratory of the University of Cordoba and were
frozen at −18 ◦C until their processing and NIRS analysis.

2.2. Sample Processing and Near-Infrared Spectra Collection

Faecal samples were oven-dried at 60 ◦C for 24 h, and then, they were milled to pass a
1 mm sieve. The DESIR (dry-extract system for infrared) methodology adapted for milk [33]
was used for the NIRS analysis of the samples as follows: milk samples were unfrozen
by immersion in a water bath at 40 ◦C, mixed gently to achieve uniform dispersion of
their components, and then left to cool at room temperature. A glass microfibre filter
(Millipore, AP4004705, Merch, Madrid, Spain) per sample was impregnated with milk and
then oven-dried at 40 ◦C for 24 h.

A FOSS-NIRSystems 5000 scanning monochromator (FOSS-NIRSystems, Silver Spring,
MD, USA) equipped with a transport module was used for sample analysis. Spectral
absorbance values were recorded in reflectance mode from 1100 to 2498 nanometers (nm)
every 2 nm, as log 1/R, where R is the sample reflectance. Each spectrum was time-
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averaged from 32 scans and compared with the 16 measurements of a ceramic reference.
Spectra of the oven-dried milk and faeces samples were acquired using a small ring cup,
thus obtaining one spectrum per sample.

2.3. Data Processing and Discriminant Models Development

The WinISI IV software package (version 4.8, Foss, Hillerød, Denmark), MATLAB®

software (The Mathworks Inc., Natick, MA, USA, 2007) and its plugin PLS Toolbox
(Eigenvector Research, Inc., Manson, WA, USA) were used for the chemometric treatment
of the data. Prior to the development of the discriminant models, a principal component
analysis (PCA) was carried out to observe the structure of the spectral population and to
detect possible outlier samples. PCA is an exploratory method to reduce the dimensionality
of data matrices that retains as much variability of the spectral data as possible, thus al-
lowing detection of anomalous or outlier spectra. Samples whose Mahalanobis distance or
spectral distance to the centre of the spectral population was greater than 3 were considered
anomalous and were eliminated. Discriminant models were developed separately for the
milk and faecal samples with outlier-free sample sets. A similar procedure was followed in
both cases, as described below:

Discriminant models used exclusively spectral information for their classification in
groups, and no chemical lab information was required. As the WINISI IV program requires
that the samples belonging to each group to be included in separate files, “grazing” and
“intensive” files were created for both the milk and the faeces sample sets, containing
the samples from the animals belonging to the grazing and intensive production systems.
Furthermore, to validate the discriminant models, each group (grazing and intensive) was
randomly divided into calibration and external validation sets with 80% (n = 111) and 20%
(n = 26) of the samples, respectively. Samples from the validation set were used as “blind”
samples to evaluate the effectiveness of the model calibrated.

Several mathematical pre-treatments were used in this work. Firstly, spectral deriva-
tives were employed to eliminate additive and multiplicative effects in the spectrum [34].
These were named using four digits: the first digit is related to the order of the derivative
(1 = 1st derivative; 2 = 2nd derivative); the second digit refers to the size of the derivation
segment (interval expressed in nm, where the calculation of the derivative is performed);
and the third and fourth digits refer to the treatment of the smoothing segments (intervals,
expressed in nm, used for the smoothing calculation). Spectral derivatives 1, 5, 1, and 1
and 2, 5, 1, and 1 were used in this work, following the recommendations of the WINISI IV
chemometric software for discriminant models. In combination with derivatives, the stan-
dard normal variate and detrending algorithms (SNV + DT) were used to correct the scatter
effect [35]; albeit, models were also performed without scatter correction. Thus, four dis-
criminant models were obtained for each algorithm in the spectral region of 1100–2500 nm:
1, 5, 1, 1 and 2, 5, 5, 1, both with SNV + DT and without scatter correction.

All 6 discriminant algorithms available in the WINISI IV version 4.8 chemometric
software were used for the development of the discriminant models. Each algorithm
provided a different mathematical approach to the discrimination. The foundations for
each discriminant algorithm used in this work is described below:

PLS2: this algorithm creates a dummy variable to denote group membership, assigning
a value of 2 if the spectrum belongs to one group, and a value of 1 to the other samples.
A 2-block PLS regression is performed with the dummy variable to create calibrations
that predict values for group parameters. The value of 1.5 is established as the limit value
between both groups, so that samples with a predicted value above 1.5 belong to the group,
and those below 1.5 do not belong to the group.

Correlation: in this algorithm, a mean spectrum is calculated for each group. Each
sample is assigned to the group with the highest correlation and, thus, a higher value of
the classification variable.

Maximum distance: the algorithm calculates the mean spectrum of each group and
calculates the distance of each sample to the mean spectra at every datapoint. The sample
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is assigned to the group with the lowest maximum distance, i.e., the one with the lowest
value of the classification variable.

Mahalanobis distance: this algorithm calculates the centre of each group and the
Mahalanobis distance (H) of each sample to that centre. Samples are assigned to the closest
group, i.e., the one in which they have the lowest H value.

X-residuals: this algorithm calculates the model spectrum for each group and recon-
structs each spectrum to make it similar to the model one. The difference between the
original spectrum and the reconstructed one is called the X-residual. The samples are
assigned to the group with the lowest X-residual value.

Maximum X-residuals: this discriminant algorithm combines all the previous discrim-
inant procedures, providing a maximum X-residual value for each sample. Samples are
assigned to the group with the lowest maximum X-residual value.

During discriminant model development, the algorithms assigned the samples to one
of the groups: if it was assigned to its origin group, it was considered as correct or correct
classification; if it was classified in a group other than the one of origin, it constituted a
failure. The best algorithm to discriminate milk and faeces groups was selected according to
the highest percentage of correctly classified samples in calibration and external validation.

3. Results
3.1. NIRS Spectra Evaluation

The individual evaluation of each spectrum obtained after NIRS analysis revealed
no anomalies for milk samples. However, after faeces spectra evaluation, the spectrum of
one sample belonging to the grazing group was removed from the set due to an anormal
absorbance. This finding may be related to a possible failure during sample preparation
or during the subsequent analysis. Therefore, the final number of samples employed for
discriminant model development were 71 in the case of milk samples and 66 faeces samples.

The mean spectra of both feeding strategies were compared for milk and faeces
samples; the comparison is available in Figure 1. Different absorption bands can be
distinguished along the spectra: two slight bands around 1450 and 1940 nm are mostly
characteristic of moisture absorption [27,34]. Bands at 1210, 1726, 1760, 2308 and 2348 nm
correspond to fatty acids and fat content [36]; bands at 1516, 2056, 2174, and 2468 nm
correspond to protein absorption [37]; and bands at 1922, 2078–2110, 2268 and 2420 nm in
the faecal spectra correspond to fibre content [38].

1 

 

 

Figure 1. Cont.
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1 

 

 
Figure 1. Mean Near Infrared Spectroscopy (NIRS) spectra for faeces (A) and milk (B) samples
considering the two feeding strategies evaluated.

In general, a greater absorbance was obtained for the grazing group in comparison with
the intensive feeding group, a difference which can be noticed in both faeces (Figure 1A)
and milk samples (Figure 1B). Although this difference was present over almost the entire
mean spectra, there were some areas where it was more pronounced: the spectra of both
sample sets had a higher absorbance for the grazing group in bands at 1650–1750 nm and
2250–2350 nm, which correspond, as above-mentioned, to the fat content, underlining
the possible influence of this component for the discrimination between the two feeding
regimes evaluated.

3.2. PCA Using NIRS Spectra of Faeces and Milk Samples

In parallel with spectra evaluation, PCA did not highlight any outliers among samples
evaluated with NIRS technology; hence, all the samples were employed for the chemometric
models except the sample excluded during the previous evaluation of NIRS spectra. PCA
allows for exploring the distribution as well as the tendencies and tentative differences
between the samples analysed. In this sense, some interesting findings may be addressed
from both PCA obtained with faeces and milk samples (Figure 2). First, although PCA
is not a discriminant model, a slight separation between grazing and intensive feeding
groups is appreciated in the score plot of both matrices. A different spatial location was
observed for each farm or feeding group, which seemed to concentrate in different areas of
the graphic. Furthermore, according to the size of the point clouds, a different distribution
of samples was observed between the two feeding strategies compared: while the samples
of the intensive feeding group were concentrated around a specific area of the PCA graphic,
grazing goats’ samples showed a higher dispersion (larger point cloud size).
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3.3. Discriminant Models

The tentative and initial differences noticed between the two feeding strategies during
the PCA evaluation were confirmed afterwards with the discriminant model development.

As stated previously, discriminant models were performed separately for faeces and
milk samples using exclusively the spectral information. In each population, 80% of the
samples was used to develop the models, and the remaining 20% was used to validate them.
Four combinations of mathematical treatments in the NIRS spectral region of 1100–2500 nm
were used in each of the six discriminant algorithms: PLS2, correlation, maximum distance,
Mahalanobis distance, X-residuals and maximum X-residuals. The results for milk and
faeces samples are presented separately to ease comprehension.

3.3.1. Faeces Samples

The results of the faeces discriminant models are shown in Table 1. Data related
to confusion matrices are available in Supplementary Table S1. In general, high classi-
fication percentages were reached in both the calibration and the external validation of
models, although some differences were found among the algorithms and the mathematical
treatments used.
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Table 1. Calibration and external validation results for the six algorithms performed using Near Infrared Spectroscopy (NIRS) spectra of milk and faeces samples.

Algorithm Mathematical Treatment

Classification Success

Faeces Samples Milk Samples

Model Calibration Model External Validation Model Calibration Model External Validation

PLS2

1, 5, 1, 1 no scatter 100% 81.8% 78.6% 100%

2, 5, 1, 1 no scatter 100% 100% 94.6% 100%

1, 5, 1, 1 SNV + DT 100% 100% 98.2% 73.3%

2, 5, 1, 1 SNV + DT 96.4% 90.9% 80.4% 73.3%

Correlation

1, 5, 1, 1 no scatter 87.3% 90.9% 87.5% 93.3%

2, 5, 1, 1 no scatter 90.9% 81.8% 92.9% 100%

1, 5, 1, 1 SNV + DT 87.3% 90.9% 85.7% 93.3%

2, 5, 1, 1 SNV + DT 90.9% 81.8% 87.5% 100%

Maximum distance

1, 5, 1, 1 no scatter 94.5% 81.8% 94.6% 100%

2, 5, 1, 1 no scatter 96.4% 81.8% 78.6% 80%

1, 5, 1, 1 SNV + DT 96.4% 72.7% 98.2% 100%

2, 5, 1, 1 SNV + DT 94.5% 54.5% 94.6% 80%

Mahalanobis distance

1, 5, 1, 1 no scatter 89.1% 90.9% 87.5% 80%

2, 5, 1, 1 no scatter 89.1% 90.9% 76.8% 73.3%

1, 5, 1, 1 SNV + DT 87.3% 100% 92.9% 93.3%

2, 5, 1, 1 SNV + DT 87.3% 54.5% 85.7% 73.3%

X-residuals

1, 5, 1, 1 no scatter 100% 90.9% 92.9% 73.3%

2, 5, 1, 1 no scatter 100% 100% 89.3% 100%

1, 5, 1, 1 SNV + DT 100% 100% 98.2% 100%

2, 5, 1, 1 SNV + DT 100% 100% 98.2% 93.3%

Maximum X-residuals

1, 5, 1, 1 no scatter 96.4% 90.9% 100% 86.7%

2, 5, 1, 1 no scatter 98.2% 90.9% 96.4% 93.3%

1, 5, 1, 1 SNV + DT 96.4% 100% 100% 93.3%

2, 5, 1, 1 SNV + DT 100% 100% 98.2% 80%

No scatter: no scatter effect correction performed; SNV + DT: standard normal variate and detrending transformation.
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The PLS2 algorithm reached an excellent calibration, with 100% classification suc-
cess with all the mathematical treatments except 2, 5, 1, 1 and SNV + DT, which ob-
tained 96.4% calibration success. Validation results obtained with PLS2 were also high,
reaching 100% success with two of the mathematical treatments and 81.8% and 90.9% in
the two remaining ones. In contrast, the results obtained with the correlation algorithm
were lower, with calibration and validation success ranging between 81.8% and 90.9%.
Models using the maximum distance algorithm showed high calibration classification
(94.5–96.4%), although validation rates were significantly lower (54.5–81.8%). The Ma-
halanobis distance algorithm obtained an acceptable calibration success (87.3–89.1%) but
variable validation success (54.5–100%). The results with the X-residuals algorithm achieved
100% correct classification both in calibration and validation, except for the case of 1, 5, 1, 1
and no scatter mathematical treatment, which reached 90.9% validation success. Lastly, the
success obtained by the maximum X-residuals algorithm ranged between 96.4% and 100%
in calibration and between 90.9% and 100% in validation.

Overall, the best results were obtained with the PLS2, X-residuals and maximum
X-residuals algorithms, which all reached 100% correct classification in both calibration
and external validation. Furthermore, a better performance of the discriminant models
(in both calibration and validation) was observed when using the second derivative for
the mathematical treatment in comparison with the first derivative, either with SNV + DT
or with no scatter correction. In contrast, there seemed to be no clear relationship be-
tween SNV + DT or no scatter effect correction and the obtention of higher classification
results. Furthermore, a significative finding was detected regarding the validation results,
since every misclassified sample belonged to the grazing group in most of the algorithms’
combinations (Table S1).

3.3.2. Milk Samples

The calibration and external validation results from the discriminant models per-
formed using NIRS spectra of milk samples are also summarised in Table 1. Data related to
confusion matrices are available in Supplementary Table S2. In general, calibration results
showed slightly lower classification rates with milk NIRS spectra in comparison with the
faeces data; higher variability in the accuracy was observed in validation results, depending
on the algorithm and the mathematical treatment used.

The PLS2 algorithm achieved a variable classification success in calibration, ranging
between 78.6% and 98.2%, as well as in validation, ranging from 73.3% to 100%. The corre-
lation algorithm achieved a good calibration success (85.7–92.9%) and the highest results in
model validation using milk NIRS spectra (93.3–100%). The models performed using the
maximum distance algorithm also obtained good success in both calibration (78.6–92.9%)
and validation, where a higher classification percentage was achieved by employing the
first derivative (100%) in comparison with the second derivative (80%). The Mahalanobis
distance algorithm showed similar classification successes in calibration (76.8–92.9%) and
validation (73.3–93.3%). The X-residuals algorithm achieved a calibration success ranging
between 89.3% and 98.2% and a validation success of 73.3–100%. Discriminant models
using the maximum X-residuals algorithm obtained the highest percentages of correct
classification in calibration (96.4–100%), while their validation success was slightly lower
(80–93.3%).

The highest effectiveness was obtained with the maximum distance and X-residuals
algorithms, which achieved a success of 98.2% and 100% in calibration and validation,
respectively. None of the discriminant models achieved 100% correct classification in both
calibration and validation. In general, no clear connection between any mathematical
treatment (no scatter correction, SNV + DT, first or second derivative) and the obtention of
higher classification rates was detected in milk samples.

Similarly to faeces samples, misclassified samples found in the external validation
of milk discriminant models tended to belong to the grazing group (Table S2), although
the separation between the two feeding groups in the score plot was not as clear as in
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the faeces models (Figure 2). In this sense, while an acceptable separation between the
two feeding strategies was found for faeces (Figure 2A), samples from both diets were
closer for milk samples (Figure 2B): this can be seen by looking at the overlapping samples
in the score plot, which are higher in the case of milk, with samples from both groups
almost overlapped in the graphic (Figure 2B). Therefore, the influence of diet seems to be
higher in faeces than in milk samples, at least at a spectral level.

4. Discussion
4.1. NIRS Spectra Evaluation

The differences related to fat composition and its possible influence on the discrimi-
nation between the two feeding regimes noticed during NIRS spectra evaluation of both
matrices are consistent with previous results. Capuano et al. [16] highlighted that the
authentication of cow fresh herbage feeding was largely related to the wavelengths that are
representative of fat content in milk. In fact, the feeding strategy used for cows has been
considered to be the most powerful factor in milk fat composition modification [25,39]. All
of this is in line with the influence of pasture feeding—and therefore grazing—on the fat
composition of ruminant products, which has been underlined before [25]. The obtention
of a higher fat content for the grazing strategy in the present study could be due to a
direct transfer from the ration to the samples or due to a transformation produced by the
individual metabolism or the rumen microbes [25].

4.2. PCA Using NIRS Spectra of Faeces and Milk Samples

With respect to the PCA of faeces and milk data, the differences highlighted between
the two feeding groups are consistent considering the two strategies followed for the
feeding of the animals. Goats included in the intensive feeding group were fed exclusively
with concentrate feed and hay, which would be translated into homogeneous NIRS spectra
of both milk and faecal samples. On the other hand, animals of the grazing group also
had an important nutritional contribution coming from different natural resources while
grazing, which was estimated to be approximately 20–30% of the daily dry matter intake.
Thus, the huge diversity of resources exploited, as well as the differences in terms of animal
preferences along grazing [40], resulted in heterogeneous spectra in this group. This higher
variability provided larger point clouds, as samples were more dispersed than the samples
of the intensive feeding group, which tended to be more concentrated because of the
homogeneous diet.

Grazing in this dairy goat breed has been deeply studied before, highlighting an
important heterogeneity and variability of natural resources included in the diet [41–43]. In
fact, results about the grazing behaviour of different ruminant species previously published
by Celaya et al. [44] pointed out goats as a species which graze for a longer time and utilise
significantly more vegetation [44]. Similar findings have been underlined before with other
species such as the Iberian pig, where some of the analytical results obtained after the
comparison of grazing and intensive diets were related to the diet heterogeneity and the
individual preferences of the animals in the field [45]. Therefore, the tentative differences
observed between PCA results of milk and faeces spectra of the two diets are associated to
animal grazing behaviour and diet.

4.3. Discriminant Models
4.3.1. Faeces Samples

The external validation results obtained in the discriminant models using faeces
spectra, where misclassified samples tended to belong to the grazing group, may be
explained by attending to the above-mentioned discussion in Section 4.2 and may be
directly related to the diet of animals. In this sense, while intensive feeding would result in
homogeneous NIRS spectra of faeces because of the lack of diet variability, grazing goats
browse diverse natural resources while grazing, hence obtaining heterogeneous spectra.
This fact has already been highlighted before attending to the dispersion of points in the
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score plots of both groups (Figure 2). Moreover, and as already mentioned, these animals
could also express their individual preferences when grazing, contributing to a higher
variability of NIRS spectra. Therefore, the inclusion of a higher number of samples that
cover as much variability as possible regarding the animal behaviour and the vegetation and
pasture diversity would be of paramount importance in order to improve the robustness of
the discriminant models.

Despite the scarce literature about grazing authentication in small ruminants, there
are some interesting studies employing NIRS and faeces samples in this sense. Landau
et al. [46] carried out a review work where an evaluation about the contribution of NIRS
technology for the prediction of feed characteristics as well as the botanical composition
of grazing diets through faeces analysis was conducted. Dixon and Coates [28] reviewed
the potential of NIRS to provide useful information about the nutrition and physiology
of herbivores through faeces analysis, including grazing goats. However, these studies
were mainly focused on NIRS usefulness to predict and estimate some diet constituents
and attributes, without attending to the comparison and discrimination between different
feeding strategies.

In this sense, in addition to the interesting determinations and estimations of diet
parameters, nowadays, there is a challenge based on the development of rapid, easy
and low-cost methodologies able to authenticate products with attributes appreciated
by consumers, such as grazing products [47]. Thus, considering that faeces constitute a
biological sample which provides useful information about the physiology, feeding and
ecology of the animals [28], and also according to the present results, faecal NIRS analysis
may constitute a potential strategy to value grazing systems and products. Moreover, faeces
also offer advantages related to being easy and non-invasive to collect; this advantage is
considered even more important in grazing and extensive systems, where animals are not
always reachable or even observed, which hampering their handling [28]. In this sense,
faeces could be collected after spontaneous defaecation during certification or inspection
visits. It would not require any animal restraint or immobilisation, as currently conducted
in the milking parlour for milk sampling.

Overall, NIRS analysis of faeces could be considered as a potential strategy which
allows the indirect certification of the resulting products from grazing animals, such as
milk, cheese or meat. The combination of an alternative sample (faeces) and an innovative
methodology (NIRS) could contribute to the development of authentication methods of
added-value products susceptible to fraud, satisfying the demands of both farmers and
consumers, who advocate for the development of analytical methodologies that go beyond
on-farm inspection, self-inspections, visual determinations, or audits by independent
companies [25].

4.3.2. Milk Samples

The satisfactory results obtained with milk samples after NIRS analysis are consistent
with previous findings in the literature, where a clear influence of animal feeding to milk
composition has been highlighted [48]. In this sense, the inclusion of grazing in dairy
goat production systems would result in milk spectral differences and, consequently, in
a successful discrimination with regard to a typical intensive diet (feed and hay). In
fact, with respect to that background, many studies have already been conducted for the
authentication of animal feeding regimes and grass-fed diets using dairy products; this
topic was recently reviewed by Prache et al. [25]. Similar classification rates have been
obtained in comparison with the present results: for example, a 100% success was achieved
for the discrimination of cows mainly fed with pasture using both milk [49] and cheese
samples [50], although complex analyses of isotopic, molecular and lipids markers were
employed. Among the methodologies and analytical tools employed for grass-fed product
authentication, Prache et al. [25] highlighted NIRS as one of the most promising options
due to its advantages (rapidity, low cost and accuracy), which allows for possible routine
use of this method.
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With respect to the spectral differences induced in milk by feeding regimes (and specif-
ically by grazing), several authors have previously highlighted that fat profiles could be
responsible for those differences. For example, Engel et al. [49] showed that, in comparison
with other milk components, fatty acids had the best discriminatory power to differentiate
milk from cows mainly fed with grass or with maize silage. Also, Coppa et al. [51] found
that milk fatty acids were useful to predict diet composition and authenticate feeding
systems in cows. In fact, this fat profile in milk would be not only useful to discriminate
between different diets, but also between similar ones; several studies which show that the
fatty acids even allow discrimination between cultivated and natural pastures exist [52].
These findings are consistent with the results obtained in the present study with milk
samples, where the main differences between the two feeding strategies were observed
around the fat absorption bands (Figure 1). Therefore, the successful rates obtained for diet
discrimination with milk spectra could be partly related to the fat profile.

Finally, the findings described here have a practical significance because the methodolo-
gies used can effectively distinguish between intensive and grazing systems and products,
a demand that existed before. This is notable as it benefits extensive producers, allowing
clear product differentiation for marketing and consumer trust. Consumers are willing to
pay more for authentic products and for products from grazing-based systems, improving
profitability for these minority productions, a major challenge nowadays. However, despite
the interesting results and the high discrimination rates obtained, the research presented
here is considered preliminary, and some limitations related to the number of samples
have been identified. Two farms were evaluated in the present study, albeit comparable
conditions were ensured within the productive situation of the animals. Therefore, further
studies including a greater number of samples, animals and farms are required to obtain
more reliable conclusions in the future; this would allow the inclusion of a higher variabil-
ity, especially regarding pastures and natural resources grazed, and the improvement of
model robustness. These aspects are considered of paramount importance for the possible
implementation of the effective feeding regime discrimination that was reached in the
present study to be available on a large scale.

5. Conclusions

The results of this preliminary study highlight the potential of NIRS technology to
discriminate feeding regimes and, therefore, to authenticate grazing in dairy goats. Fur-
thermore, the discrimination was achieved employing not only milk, the most commonly
studied sample, but also faeces, which are considered an alternative sample. Several ad-
vantages may be addressed to this spectral fingerprint method based on sample optical
properties: it is fast, chemical-free and zero-waste, and has the possibility of industrial
implementation. The discriminant models performed in this study offer a good rate of
success in sample classification for both types of matrices, achieving 100% in calibration and
external validation. Therefore, faeces and milk NIRS spectra seem to contain enough infor-
mation to discriminate and authenticate grazing in organic or grass-fed certified dairy goats.
However, additional research is required to extend the potential application evaluated here
to the productive sector.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/ani13152440/s1 , Table S1: Confusion matrices obtained in calibra-
tion and external validation for the six algorithms performed using NIRS spectra of faeces samples;
Table S2: Confusion matrices obtained in calibration and external validation for the six algorithms
performed using NIRS spectra of milk samples..
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