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Simple Summary: Goat identification is highly demanded in modern livestock management, and
sheep face detection is an important basis for goat identification, for which we developed a new
computer model that overcomes the challenges of unclear images, small targets, and low resolution.
By considering the surrounding details and combining different features, our model performs better
than existing methods in detecting goat faces. We used various evaluation metrics to measure its
effectiveness and found a significant improvement in accuracy. The results confirmed that our method
successfully addresses the difficulty of detecting lamb faces. This study has important implications
for the development of intelligent management systems for modern livestock farms to better identify
and monitor goat for improved animal welfare.

Abstract: With the advancement of deep learning technology, the importance of utilizing deep
learning for livestock management is becoming increasingly evident. goat face detection provides
a foundation for goat recognition and management. In this study, we proposed a novel neural
network specifically designed for goat face object detection, addressing challenges such as low image
resolution, small goat face targets, and indistinct features. By incorporating contextual information
and feature-fusion complementation, our approach was compared with existing object detection
networks using evaluation metrics such as F1-Score (F1), precision (P), recall (R), and average
precision (AP). Our results show that there are 8.07%, 0.06, and 6.8% improvements in AP, P, and R,
respectively. The findings confirm that the proposed object detection network effectively mitigates
the impact of small targets in goat face detection, providing a solid basis for the development of
intelligent management systems for modern livestock farms.

Keywords: goat face detection; small targets; intelligent management systems

1. Introduction

The rapid development of deep learning has provided transformative abilities for
computer vision, and its application provides new directions for accomplishing tasks such
as image feature extraction and recognition. Changes in computer vision and artificial
intelligence technologies have led to the application of target detection technologies in a
wide range of industries. Computer vision has gained wide applications in the field of
face recognition, and its applications in personal identification and information verification
are very fast and efficient. Agriculture 4.0 is furthering the application of deep learning
methods in all areas of animal husbandry [1], and the implementation of individual goat
identification helps with individual behavior analyses [2,3], disease prevention [4], and the
precise management of goats [5]. Since faces contain rich textural information as well as
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unique facial features, are unique and universal, and are relatively easy to capture, facial
detection is of high research value as an application of deep learning in agriculture and
provides the basis for subsequent recognition and classification tasks.

Guo [6] was able to achieve 91.1% accuracy by using Faster R-CNN to detect primate
faces, and then using Tri-attention to recognize the detected images. Hitelman [7] used the
Faster R-CNN algorithm to locate the face of a goat in an image, analyzed and compared this
using several classification models and migration learning methods, and finally obtained
an accuracy of 97% using the ResNet 50 V2 model with ArcFace loss function. Li [8] et al.
demonstrated that Vision Transformer can be applied to sheep facial recognition and
proposed a lightweight MobileViTFace model combined with MobileNetV2, which can
reach 97.13% accuracy.

Due to the habits of goats and the limitations of pasture monitoring, the captured goat
face targets are usually small and clustered, which makes goat face target detection very
difficult. There are several methods for small-target detection, as follows:

Supplementary contextual information, which can compensate the problem of limited
features being extracted from small targets by supplementing the network with more
contextual information related to small targets [9]. Leng et al. [10] developed a new
inner and outer recurrent neural network (IENET) and designed a bi-directional feature
fusion module (BI-FFM), a contextual inference module (CRM), and a contextual feature
enhancement module (CFAM). FASSD [11] obtained contextual information by adding a
feature fusion module to SSD and combining this with the attention module to improve
the detection of small targets.

With respect to super-resolution techniques, Li [12] first proposed a perceptual GAN
model for small target detection, which employs a deep residual network as a generator
that enables super-resolution display and captures more details.

Loss functions are beneficial for the class-balancing of small objects and Liu et al. [13]
proposed a new feedback-driven loss function that trains the model in a more balanced
manner by feeding back information about the loss distribution.

In our goat face small-target dataset, the following difficult points needed to be
resolved.

(a) The image resolution is too low, lacking sufficient feature information for recognition,
and environmental factors can easily affect the detection effect;

(b) The number of positive samples for small targets is small and, when the boundary
between the Anchor set by the model and the small target is large, the number of
positive training samples for small targets will be much smaller than the number of
positive samples for large targets; the model is prone to ignore the detection of small
targets, especially when the target object spans a large scale;

(c) When performing feature fusion, the small target information is easily lost due to the
small target features, which are easily overwhelmed by background noise.

To solve the above difficulties, we proposed a Contextualized Small Target Detection
Network (CSTDNet). The main aspects of our network are as follows:

(i) A Contextual Information Detection Module (CIDM) was proposed, which can pro-
vide more background information and further contextual information about the
target, which can help in the detection of small targets;

(ii) A Feature Complementary Module (FCM) was proposed to fuse the information of
each scale while eliminating noise and interference, thus improving the reliability and
anti-interference abilities of the feature target;

(iii) WH-CIoU was proposed on the basis of CIoU, which can calculate the difference
between the predicted frame width and height relative to their true values. The loss
function is more biased to the change in the prediction frame size, which is more
favorable to the regression of the prediction frame.
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2. Materials and Methods

This section introduces the definition of small targets and the network model used to
perform small-target detection.

2.1. Small Target Definition

The definitions of small targets are divided into two categories according to the scale
and size of the target objects: relative definition and absolute definition. Relative definition
means that the size of the target is smaller than a certain percentage of the original dataset
image; for example, the small-target objects in the Stanford Drone dataset [14] are smaller
than 0.2% of the original image size and the median value of the relative area (the ratio
of the area of the bounding box to the area of the image) of the defined small target in
the PASCAL-VOC dataset [15] is less than 5%. The absolute definition specifies that the
pixels of the target must be less than a certain value to be defined as a small target, such as
the AI-TOD [16] dataset, which defines 8–16 pixels as a tiny target and 16–32 pixels as a
small target; the DIOR [17] dataset defines the width or height of a small target as less than
50 pixels.

Based on specific applications and research scenarios, different definitions of small
targets have been given by researchers for specific datasets. Referring to the face detection
dataset WIDER FACE [18], which defines the scale of small targets for faces as 10–50 pixels,
and the daily items SDOD-MT [19] dataset, which similarly defines the range of small
targets as 10–50 pixels depending on the length of the horizontal bounding box, we specified
that targets must be smaller than 50 pixels in the goat face dataset to be classified as small-
target goat faces.

2.2. Network Architecture Design

The development of deep learning has allowed for target detection networks to excel
in the field of target recognition, and the YOLO algorithm is a typical one-stage target
detection algorithm. In this study, we used YOLOV7 [20] as the backbone network, aiming
to improve it and achieve the target detection of goat faces.

2.2.1. YOLOV7-Based Network Architecture

The YOLOV7 network model is an improved target detection network based on the
YOLOV5 [21] optimization, using a feature pyramid FPN + PAN structure to fuse features
from different feature layers, which is beneficial for feature extraction. The network uses
the SPPCSPC module; the SPP module obtains different perceptual fields by maximum
pooling, which can increase the perceptual field and allow the algorithm to adapt to
different resolution images. The CSP module first divides the features into two parts, one
of which is processed conventionally while the other is processed by the SPP structure, and
later merges the two parts, which can reduce the computation time by half. This enables
the speed to become faster and the accuracy to be improved. In terms of sample assignment
strategy, YOLOV7 combines the positive and negative sample assignment strategies in
YOLOV5 and YOLOX [22], which can provide more accurate prior knowledge.

2.2.2. Network Structure

The network structure (Figure 1) of this paper consists of backbone, neck and predic-
tion. Backbone is the same as the backbone part of YOLOV7, and the neck part consists of
a contextual information detection module, feature-fusion complementary module, and
other modules, which will be described in detail below. The detection head in prediction is
the same as that in YOLOV7, using three YOLO heads for detection. Since the detection
type is only one category of goat face, the shape of the three feature layers in the detection
head are (20, 20, 18), (40, 40, 18), and (80, 80, 18). The last shape of 18 can be split into three
sixes, corresponding to the six parameters of the three prior boxes, while six can be split
into four + one + one. Four is the regression parameter of each feature point, and adjusting
the regression parameter can obtain the prediction framework; the first one determines
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whether each feature point contains an object, and the second one determines the feature
category, because there is only one category, so it is one.
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Figure 1. Contextualized Small-Target Detection Network (CSTDNet). The CIDM1 in the figure is a
CIDM without the line1 in Figure 2.
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Figure 2. Context information detection module.

2.3. Context Information Detection Module

The detection of small goat face targets presents a formidable challenge due to multiple
factors. Notably, acquired goat face targets exhibit blurriness, inconspicuous features,
and considerable environmental interference. Furthermore, these small goat face targets
typically occupy only a few pixels within the overall image, further exacerbating their
susceptibility to noise, texture, and other disruptive factors. Consequently, accurately
identifying and locating these small targets becomes arduous. To address the issue of
substantial interference and the resulting low detection accuracy in goat face small target
detection, we proposed a contextual information detection module. This module leverages
the contextual information surrounding the target, enabling the acquisition of additional
background information and contextual semantic cues. By incorporating such contextual
information, the proposed module offers tangible benefits for the detection and localization
of small targets.

We used a dilated convolution with different convolution rate sizes to form different
receptive fields and extract local contextual information. As shown in the local context
extraction backbone in Figure 2, a multi-branch convolutional block exists, in which each
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branch will extract information from different perceptual fields. We used dilated convo-
lution with convolutional rates of 1, 2, 3, and 4 to extract information; to extract more
information, the convolutional kernel size was increased to 3× 3, and the extracted infor-
mation was fused by a cat operation to form local contextual information.

F2 = CAT(Conv(k=3,p=i,r=i)(F2)), i = 1, 2, 3, 4, (1)

where CAT(·) is concatenation and Conv(k=3,p=i,r=i)(·) is the dilated convolution with
different convolution rates.

Local contextual information often exists in a feature layer. In order to obtain global
contextual information in the surrounding environment, it is necessary to combine feature
information from adjacent feature layers; therefore, we introduced feature interactions
between features at adjacent levels and, since the previous and subsequent features have
different scales to the current feature, the two adjacent branches were, respectively, up-
sampled and downsampled after convolution to align the number of channels. Then, the
extraneous information generated in the feature interactions was suppressed by the ECA
attention module [23] to reduce the sensitivity to noise and interference.

F1 = Conv(ECA(Up(F1))), (2)

F3 = Conv(ECA(Down(F3))), (3)

where Up(·) and Down(·) are upsampling and downsampling operations, respectively,
and ECA(·) is the ECA attention mechanism, an efficient attention module.

The final output is F,
F = F1 + F2 + F3. (4)

2.4. Feature Complementary Module

To fuse the feature maps generated at the different stages, we proposed FCM-U and
FCM-D, as shown in Figure 3. FCM-U aggregates the three features generated by the
contextual information detection module and SPPCSPC and aligns the number of channels
to improve the feature resolution and generate a new feature map in FCM-D to fuse the
features generated in the previous stage. In FCM-U and FCM-D, we used convolution
kernels of 3, 5, and 7 for dilation convolution to receive the correct number of channels
for feature alignment, and then divided these two by two into UP or DOWN modules to
improve and reduce the feature resolution. Finally, a differencing operation was performed
to fuse the features and suppress the background noise generated during feature-fusion
by differencing.

Feature

Feature

3*3  rate = 3

5*5  rate = 5

7*7  rate = 7

up/down

up/down

up/down

up/down

3*3  rate = 3

5*5  rate = 5

7*7  rate = 7

Concat

Figure 3. Feature complementary module.
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As shown in Figure 4, the high-resolution feature f1 is downsampled by averaging
pooling to obtain down( f1), and the low-resolution feature f2 is upsampled by bilinear
interpolation to obtain up( f2). up( f2) and down( f1) are then convolved 3× 3 to obtain
Conv(down( f1)) and Conv(up( f2)), respectively. The convolved Conv( f2) is multiplied by
Conv(down( f1)) to obtain the feature f12.

Conv

Conv

up sample Conv

ConvAvgpool

Conv

Convup sample

Figure 4. FCM-Up.

f12 = Conv(down( f1))× Conv( f2). (5)

Similarly, multiply the convolved Conv( f1) with Conv(up( f2)) to obtain the fea-
ture f21.

f21 = Conv(up( f2))× Conv( f1). (6)

Finally, the upsampled f12 is up( f12) passed through the convolution block and multi-
plied with the convolved f21, Conv( f21) to obtain the output feature. The operation can be
expressed as follows:

f f inal1 = Conv( f21)× Conv(up( f12)). (7)

The down module is similar to the up module;as shown in Figure 5 the only difference
is that, instead of upsampling f12 , f21 is downsampled down( f21) through the convolution
block and multiplied through the convolution block with f12 to obtain the output features.
The operation is given in the following equation:

f f inal2 = Conv( f12)× Conv(down( f21)). (8)

Conv

Conv

up sample Conv

ConvAvgpool

Conv

Conv

down sample

Figure 5. FCM-Down.

After up or down, the output features are set after the differential module to output the
final feature results. The differential module can effectively offset noise and interference,
thus improving the reliability and anti-interference ability of the feature target. The equation
is as follows:

di f f erence =| FA − FB | . (9)

FA, FB are the output of the previous stage and | · | is the absolute value operation.

OUT = CAT(di f f erence1, di f f erence2); (10)
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di f f erence1 and di f f erence2 are the outputs of difference in Figure 3, respectively, while
CAT(·) is a concatenation operation.

2.5. Small-Target Detection Head and Loss Function

The anchor frame sizes of YOLOV7 were set to 12, 16, 19, 36, 40, 28, 36, 75, 76, 55,
72, 146, 142, 110, 192, 243, 459, and 401, which are very scientific for target detection but
not suitable for our small-target goat face detection. In order to set the anchor frame at
an appropriate size, we first performed a cluster analysis on the training set anchor frame
size using the clustering algorithm. The maximum target to be detected was revealed to
be 55 and the minimum was 8. Most of the edge labels of the target to be detected were
concentrated from 24 to 32; therefore, we set the anchor frame sizes as 5, 9, 12, 16, 19, 36,
42, 31, 40, 28, 55, 48, 36, 75, 76, 55, 72, and 146 to improve the detection accuracy for small
targets.

The values of the loss function of YOLOV7 include target confidence loss, category
confidence loss, and coordinate regression loss.

Loss = 0.1× LCon + 0.125LCla + 0.05× LLoc. (11)

Binary cross entropy is a common loss function used here to calculate confidence loss
and category loss.

LCon = LCla = BCELoss = − 1
N ∑ ω× (gt× ln(pr) + (1− gt)× ln(1− pr)). (12)

The localization loss LLoc can be calculated using IoU [24], GIoU [25], DIoU [26], and
CIoU [27] for loss calculation. IoU is the most commonly used metric in target detection,
and can be used to evaluate the distance between the prediction frame and the ground true.
The IoU formula is as follows:

IoU =
| gt ∩ pr |
| gt ∪ pr | . (13)

GIoU differs from IoU in that it can focus on non-overlapping regions, and the GIoU
formula is as follows:

GIoU = IoU − | Ac − gt ∪ pr |
| Ac |

. (14)

DIoU can focus on the distance, overlap and scale of the target and anchor; the
equation of DIoU is as follows:

DIoU = IoU −
ρ2(ppr, pgt)

d2 . (15)

CIoU is the addition of the detection box scale loss to DIOU; CIoU is as follows:

CIoU = IoU −
ρ2(ppr, pgt)

d2 − αv, (16)

where gt represents the ground-truth value, pr represents the prediction frame, and Ac
represents the area of the smallest closure region that contains both the prediction frame and
the ground truth frame, ppr represents the centroid of the predicted frame, pgt represents
the centroid of the ground truth frame, ρ is the Euclidean distance between the centroids of
the truth frame and the predicted frame, d represents the minimum value of the diagonal of
the region containing both the predicted frame and the ground truth frame, α is the weight
function, and v is the parameter used to measure the consistency of the aspect ratio, which
is given by the following equation:

α =
v

(1− IoU) + v
(17)
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v =
4

π2 (arctan(
wgt

hgt
)− arctan(

wpr

hpr
))2, (18)

where wgt
hgt

represents the aspect ratio of the ground truth frame and wpr
hpr

represents the
aspect ratio of the predicted frame.

CIoU takes into account the difference in the bounding box width-to-height ratio
instead of the difference between the predicted box and the ground truth box width and
height truth, which can hinder the model regression in some cases. When wgt

hgt
= wpr

hpr
: when

the predicted box width–height ratio is equal to the ground true box width–height ratio, the
value of the αv term of CIoU is 0, which means that its penalty term will be useless and will
degrade to DIoU. Based on the above, our CIoU was based on the proposed WH − CIoU,
the width–height ratio was split and the variance in width and height relative to their true
values were calculated separately, which can directly obtain the minimum value of the
difference, which is more conducive to model convergence, and the WH − CIoU formula
is as follows:

WH − CIoU = IoU −
ρ2(ppr, pgt)

d2 − βε (19)

β =
ε

(1− IoU) + ε
. (20)

ε is as follows:

ε =
2

π2 ((arctan
wpr

wgt
− π

4
)2 − (arctan

hpr

hgt
− π

4
)2). (21)

wpr
wgt

is the ratio of the width of the prediction box to the width of the ground true box,
hpr
hgt

is the ratio of the height of the prediction box to the height of the ground true box.

LLoc = 1− IoU/GIoU/DIoU/CIoU/WH − IoU. (22)

The individual IoUs were compared in the Section 3.

3. Experiments

This section describes the dataset used for the experiment, the evaluation metrics, and
the results of the experiment.

3.1. Goat Face Image Dataset

In this paper, Albasian velvet goats were used as the test subjects and the data
were collected in a pasture in Ordos, in the Inner Mongolia Autonomous Region in
2022. A 12-megapixel cell phone was used to shoot the video, with a frame size of
1920 pixels × 1080 pixels and a rate of 30 frames per second.

The test scenes included various scenes, such as goat barns and grasslands, and
data were collected from hundreds of Albasian velvet goats. The data collection time
range covered multiple time periods from 6:00 to 18:00 with different lighting conditions.
The collected data covered different goat face images with different angles, and different
poses were collected. The captured video was divided into independent goat images
using the frame-splitting operation and one image was taken every 30 frames during the
frame-splitting operation in order to prevent the appearance of overly similar images in
the database.

After that, the images were filtered to keep high-quality images, remove blurred
images, and remove images with high similarity. Filtered images were labeled with the
goat faces using the Pascal VOC 2007 data format to complete the Albasian goat dataset,
and then filtered by the clustering algorithm to remove the images containing goat faces
larger than 50 pixel values. The images containing goat faces larger or smaller than 50 pixel
values were then filtered by the clustering algorithm—the obtained target contained targets
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with 50 pixel values and below—and the small-target dataset of goat faces was obtained
for our training.As in Figure 6 The dataset contained 8871 images with 65,894 goat faces.

Figure 6. Small target goat face dataset.

We used the Mosaic data augmentation method [28] and Mixup data augmentation
method [29] to process the dataset.As in Figure 7, the mosaic data augmentation method
can generate new training data by randomly combining multiple images. This method
randomly scales, crops, and randomly distributes four images and then randomly stitches
them into one large mosaic graph. This processing method can better enrich the dataset,
while random scaling adds more small targets and makes the network more robust. The
Mixup data enhancement method can generate new training data by randomly and linearly
combining two different images. Specifically, it linearly mixes two images in a certain ratio
to obtain a new image and linearly mixes their labels in the same ratio to obtain a new pair
of labels.

Figure 7. Mosaic data augmentation and Mixup data augmentation.
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3.2. Experimental Evaluation Metrics

To evaluate the performance of the proposed model more fairly and accurately, this
paper used precision (P), recall (R), F1-Score(F1), and AP for the performance evaluation
and comparison [30]. The formulae for each metric used in this paper are presented below:

1. Precision (P): This indicator describes the proportion of positive samples detected by
the model that are actually positive. The larger the value, the higher the accuracy rate,
which would ideally be 1:1:

P =
TP

TP + FP
. (23)

2. Recall (R): This indicator describes the proportion of correct positive samples detected
by the model among all positive samples:

R =
TP

TP + FN
. (24)

3. F1-Score: This indicator combines precision and recall and takes a balanced value for
a comprehensive assessment of:

F1 =
2× P× R

P + R
. (25)

4. AP: AP is the average precision, which is the area under the precision–recall curve:

AP =
∫ 1

0
P(R)dR, (26)

where TP is the number of samples that are actually positive and predicted to be
positive, FP is the number of samples that are actually negative but predicted to be
positive, and FN is the number of samples that are actually positive but predicted to
be negative.

Our goat face detection used bounding boxes to represent the position and size of
the goat face. IoU is a method for measuring the position of bounding boxes, used to
evaluate the degree of overlap between predicted and real bounding boxes, ranging from
0 to 1, where 1 represents complete overlap. Setting a certain threshold and retaining the
bounding box can achieve the function of the detection of goat faces. The threshold used in
this study was 0.7.

3.3. Test Environment and Network Parameter Settings

The designed model was trained using the Windows 10 64-bit operating system; the
framework used for deep learning was PyTorch, the programming language was Python,
and the computer had 16 GB of RAM with an AMD Ryzen 7 5800H with a Radeon Graphics
processor and an NVIDIA GeForce RTX 3060 graphics card to accelerate image processing.
The model was trained using batch training, with hyperparameters set to eight image
samples per batch and an initial learning rate of 1 × 10−4. Using the ADAMW optimizer,
the network model was operated to save weights every 10 completed iterations for a total
of 100 iterations.

3.4. Comparison Experiments

To verify the accuracy of the models by comparison, we collected eight models that
use achieved advanced methods in the field of target detection for comparison, includ-
ing CenterNet [31], EfficientDet [32], SSD [33], FASSD [11], FCOS [34], RetinaNet [35],
YOLOV5 [21], and V7 [20] of the same YOLO series. To ensure fairness in the experiments,
we used source code as well as source evaluation methods for the experiments. The fol-
lowing Table 1 shows the experimental results of our proposed model and the comparison
model for goat face detection.
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Table 1. Comparison of experimental results.

Module P (%) R (%) F1 AP (%)

CenterNet [31] 88.02 52.36 0.66 71.51
EfficientDet [32] 95.55 22.0 0.36 39.77

SSD [33] 89.45 47.42 0.57 57.28
FASSD [11] 98.41 21.9 0.35 36.36
FCOS [34] 84.80 63.56 0.73 74.69

RetinaNet [35] 94.37 17.55 0.30 31.40
YOLOV5 [21] 84.47 51.22 0.63 63.45
YOLOV7 [20] 85.71 69.13 0.77 77.9

Ours 90.42 75.93 0.83 85.97

Bold is the maximum value in a single column.

Table 1 shows the best results obtained for goat face detection compared to the other
detection models; AP improved by 8.07%, F1 improved by 0.06, and recall improved by
6.8%. In the statistical test section, we evaluated different algorithmic models using the
Friedman test and the Nemenyi test to compare the performance of different methods on
P, R, F, and AP metrics. We chose five models with excellent test performance to compare
with our model. First, we made an assumption of model equality, named H. Table 1 shows
the ranking results of these six models for different metrics. We calculated the chi-square
value as χ2 = 14.429 and the p-value as p = 0.013 < 0.05. This indicates that the models
show statistically significant differences between them. By performing the Nemenyi test,
we can calculate the critical distance CD = 3.770. From this result, we can infer that our
model CSTDNet is significantly different and performs better than SSD, YOLOV5. The
effectiveness of CSTDNet for small target goat face detection was verified by comparing
several methods through statistical tests. Table 2 shows the ranking of small target detection
results based on comparative test data.

Table 2. Ranking of small target detection results based on comparative test data.

Module P R F1 AP Average

CenterNet [31] 3 4 4 4 3.75
SSD [33] 2 6 6 6 5

FCOS [34] 5 3 3 3 3.5
YOLOV5 [21] 6 5 5 5 5.25
YOLOV7 [20] 4 2 2 2 2.5

Ours 1 1 1 1 1

In the face of practical use, the image, in addition to the small target goat face, will also
appear as a normal-sized goat face. In order to ensure the completeness of the experiment,
while verifying the generalization ability of the model proposed in this paper, in the small
target goat face test set after the normal-sized goat face test set was constructed once again,
the size of the small target goat face data test set was the same as that of the normal-sized
goat face test set, at 1006 sheets. Tests were performed on the constituent datasets, and the
test results are shown in Table 3 below:

From Table 3, we can see that YOLOV7 is better than our model at normal size
target detection, but our model still outperforms most of the models, which shows that
ours possesses good generalization, outperforms YOLOV7 in small target detection, and
achieves an approximately similar performance in normal size detection.

Similar to small target detection, the same Friedman test and Nemenyi test were used
to evaluate six models, including ours, for normal-sized target detection. Table 4 shows
the results of ranking these six models on different metrics for normal target detection. We
calculated a chi-square value of χ2 = 18.813 and a p-value of p = 0.002 < 0.05. This indicates
that there are statistically significant differences between the models. In the Nemenyi
test, we calculated the critical distance, CD = 3.770, by which it can be inferred that our
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model CSTDNet is not significantly different from YOLOV7. A comparison of several
methods using statistical tests verified that CSTDNet is equally effective in the detection of
normal-sized goat face targets. Table 4 shows the ranking of normal-sized target detection
results based on comparative test data.

Table 3. Normal target comparison experimental results.

Module P (%) R (%) F1 AP (%)

CenterNet [31] 88.62 53.70 0.67 72.83
EfficientDet [32] 95.60 24.57 0.39 42.13

SSD [33] 88.02 49.48 0.63 71.73
FASSD [11] 92.41 31.17 0.46 48.52
FCOS [34] 93.02 90.03 0.92 94.04

RetinaNet [35] 94.69 19.85 0.33 33.79
YOLOV5 [21] 90.76 76.73 0.83 86.51
YOLOV7 [20] 95.13 89.47 0.94 95.72

Ours 94.52 88.75 0.92 94.59

Bold is the maximum value in a single column.

Table 4. Ranking of normal-sized target detection results based on comparative test data.

Module P R F1 AP Average

CenterNet [31] 6 5 5 5 5.25
SSD [33] 5 6 6 6 5.75

FCOS [34] 3 1 2.5 3 2.375
YOLOV5 [21] 4 4 4 4 4
YOLOV7 [20] 1 2 1 1 1.25

Ours 2 3 2.5 2 2.375

In Figure 8, the loss graphs obtained for each network on the goat face dataset are
presented. As shown in Figure 8, our modified loss converged faster in the overall detection
process, in addition to having a greater compensation mechanism for the detection of
small targets.

Figure 8. Loss function.

3.5. Ablation Experiments

To demonstrate the effectiveness of the proposed modules of this model, ablation
experiments were conducted and the evaluation dataset for the ablation experiments used
the goat face dataset. The experimental results are shown in Table 5. We used YOLOV7
(base) and backbone as a baseline. Row 2 (backbone + CIDM) is shown to outperform row
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1 (backbone), where AP increases by 3.52%. In addition, the third row outperforms the first
row (backbone), where AP increases by 5.73%, respectively. To investigate whether the
combination of the CIDM and the FCM plays a role in this, we looked at row 4 (backbone +
CIDM + FCM), which shows the highest performance of all settings, with an improvement
of 8.07%.

Table 5. Results of ablation experiments.

Module P(%) R(%) F1 AP(%)

backbone 85.71 69.13 0.77 77.9
backbone + CIDM 88.78 73.17 0.8 81.42
backbone + FCM 88.84 74.22 0.82 83.63

backbone + CIDM + FCM 90.42 75.93 0.83 85.97

Bold is the maximum value in a single column.

For the statistical evaluation of the ablation experiments, we also used the same
methodology described above, and Table 6 shows the sorting results of the different
modules in comparison with the backbone. A chi-square value of χ2 = 12 and a p-value
of p = 0.007 < 0.05 were obtained. This indicates that the individual modules present
statistically significant differences between them. With the Nemenyi test, we calculated the
critical distance, CD = 2.345, from which we can infer that our overall model CSTDNet is
significantly different and performs better than backbone, verifying the validity of each
module of CSTDNet. Table 6 shows the ranking of test results according to ablation
test data.

Table 6. Ranking of test results according to ablation test data.

Module P R F1 AP Average

backbone 4 4 4 4 4
backbone + CIDM 3 3 3 3 3
backbone + FCM 2 2 2 2 2

backbone + CIDM + FCM 1 1 1 1 1

Figure 9 shows the results of goat face recognition for both our method and YOLOV7.
The first column is the image to be detected; the second column is Grouth True; the third
and fourth columns are our and YOLOV7’s prediction results. It can be seen that our
method accurately detects goat faces, and YOLOV7 suffers from some missed detections
and a low detection frame IoU. This shows that, in comparison, our model can better detect
small targets and is very accurate.

Original drawing GT

YoloV7Ours

Ours YoloV7

Figure 9. Predicted results.
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4. Discussion

This study aimed to use deep learning techniques to solve the problem of difficult
localization and detection of goat faces in real livestock farm environments. First, we
constructed a dataset of Alba velvet goat facial images and then developed a small target
goat face detection network model. However, there are still some challenges and limitations
to be addressed.

First, compared with other animals, goats have fewer facial texture features, which
makes their face detection more susceptible to interference, such as complex sampling
environments, lighting conditions, and different goat poses. This poses a challenge for
accurately detecting goat faces in realistic scenarios. In addition, the lack of publicly avail-
able standardized datasets for goat face detection limits the evaluation and comparison of
different detection methods. Future research should focus on constructing comprehensive
and representative datasets specifically for goat face detection.

Furthermore, although our study demonstrated good results for goat facial detection, it
is critical to apply our method to other goat species and validate its performance. Different
goat species may exhibit differences in facial characteristics, and further investigation
and adaptation of the detection model is needed to ensure its validity across different
goat populations.

Practical applications of goat facial detection also need to consider challenges such
as occlusion and different environmental conditions. Accurate detection of goat faces
under partially obscured or challenging lighting conditions remains an important area for
future improvement.

While this research helps advance goat face detection using deep learning, it is critical
to address the above limitations and challenges. Further research should focus on devel-
oping robust detection models that can handle variations in facial features, incorporate
different datasets, and address challenges encountered in real-world livestock management
scenarios. These advances will help develop intelligent management systems that enhance
the identification, tracking, and welfare of goat in modern livestock farms.

5. Conclusions

The experimental results show that the detection accuracy is low on small-target
goat faces when directly using traditional target detection algorithms. In this paper, we
proposed a goat face detection model that combines contextual information and feature-
fusion complementary modules to solve the above problem. By using the target’s contextual
information to provide more background and semantic information, and fusing the feature
maps generated at different stages, the model performance is significantly improved and
shows good robustness, reducing the impact of small targets in goat face target detection
and providing a basis for the subsequent development of the intelligent management of
goat in modern pastures.
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