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Simple Summary: We investigated the trophic ecology of the Golden Alpine salamander
(Salamandra atra aurorae), a rare and endemic amphibian found in a mixed temperate forest in north-
ern Italy. We aimed to determine the salamander’s trophic niche, prey selectivity, and individual
specialization in foraging. We analysed stomach contents from 53 salamanders obtained by stomach
flushing technique and assessed prey availability through pitfall traps. The results revealed that the
Golden Alpine salamander adopts a generalist feeding strategy at the population level but selectively
prefers certain prey categories, such as Myriapoda and Hymenoptera (except Formicidae). Factors
like prey size, movement ability, and degree of chitinization seem to influence food preference. The
study also found significant inter-individual variation in dietary preferences, which was discussed in
relation to optimal diet theory. Our research provides valuable insights into the diet of the Alpine
salamander complex, suggesting similar feeding strategies between the subspecies.

Abstract: Amphibians are considered critical species in the nutrient flow within and across ecosys-
tems, and knowledge on their trophic ecology and niches is crucial for their conservation. For the first
time we studied for the first time the trophic ecology of the rare and endemic Salamandra atra aurorae
in a mixed temperate forest in northern Italy. We aimed to define the realized trophic niche, in-
vestigate the prey selectivity and explore possible levels of individual specialization. In summer
2022 we obtained stomach contents from 53 salamanders by stomach flushing and prey availability
using pitfall traps. We used the Costello graphical method to analyse the realized trophic niche,
and the relativized electivity index to study prey selectivity. Our results show that the Golden
Alpine salamander adopts a generalist feeding strategy with positive selection of few prey categories
(e.g., Myriapoda, Hymenoptera except Formicidae). Food preference seems to be driven by size,
movement ability and chitinization of the prey. A high degree of inter-individual diet variation,
modularity and clustering was found, describing a scenario that can be framed in a Distinct Preference
model framework. This study gives new insights on the trophic ecology of the Alpine salamander
complex, whose subspecies appear to adopt similar feeding strategies.

Keywords: diet; herpetology; individual specialization; prey selectivity; optimal diet theory; distinct
preference model; predator-prey system; Salamandra atra aurorae; trophic strategy

1. Introduction

Amphibians are one of the most threatened groups of vertebrates at the global level,
with over 40% of known species listed as endangered, vulnerable, or critically endan-
gered [1], and habitat loss, fragmentation, degradation, and alien species recognised as
the main pressures [2,3]. As amphibians play a critical role in ecosystem functioning, their
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decline is expected to have severe consequences for ecological processes and even human
welfare. By preying on a diverse array of invertebrates, being subject to predation, and
utilising different environments across their life cycle, they play a pivotal role in nutrient
flow within and across ecosystems. Knowledge on the feeding ecology of amphibians is
therefore essential to inform conservation strategies and management plans to safeguard
their survival and the ecological functions they provide. Dietary studies on amphibians
have been crucial in elucidating their trophic interactions with other organisms in their
respective ecosystems. Salamanders are one of the most diverse groups of amphibians,
their feeding ecology varies greatly among species, habitats, and life stages [4], and they
play important ecological roles in many terrestrial and aquatic ecosystems [5]. In certain
environmental contexts, they have been shown to consume annually up to 5.8 kcal/m2 per
salamander, with a significant impact on soil fauna [6]. Despite their ecological importance,
the feeding ecology of many salamander species remains poorly understood.

Salamandra atra, commonly known as the Alpine salamander, is a small terrestrial
and viviparous amphibian species that inhabits the Central-Eastern Alps and the Dinaric
Alps, where some isolated populations occur [7]. This species is of particular interest to
researchers due to its unique biology and ecological adaptations [[8,9], see also par. 2.1].
Four subspecies are generally recognised: the nominal S. a. atra Laurenti 1768, S. a. prenjensis
Mikšić 1969, and the Italian endemics S. a. aurorae Trevisan 1982, and S. a. pasubiensis
Bonato and Steinfartz 2005. Some studies have investigated the feeding ecology of S. a. atra
and of S. a. prenjensis [10–12], but there is no information on the diet of S. a. aurorae
and S. a. pasubiensis. Salamandra atra aurorae, the Golden Alpine salamander, due to its
restricted geographic distribution (area of occupancy smaller than 20 km2) and its declining
population trend [13], is assessed as “Endangered” (EN) in the IUCN Red List [14], and
is included as a “priority taxon” in the European Union Directive 92/43/EEC (“Habitats
Directive”). Storm VAIA, which caused millions of trees to fall in North-Eastern Italy
in October 2018, represented a direct threat to the conservation of the Golden Alpine
salamander both due to the strong impact on its range [13], and to the urgent post-event
forest management. With the increasing use of heavy equipment, forestry practices, which
compacts the soil and eliminates cavities and potential refuges, are considered as the main
threat to this taxon [14].

We investigated the diet and feeding ecology of this subspecies of high biogeographic
and conservation value. Understanding the feeding ecology of S. a. aurorae is important for
several reasons. First, it can provide insights into the salamander’s role in the food web
and its interactions with other species in the ecosystem. Second, knowledge of the diet and
feeding behaviour can inform conservation efforts by identifying potential threats to its
survival. Finally, a better understanding of the feeding ecology of S. atra aurorae can con-
tribute to broader knowledge on the ecology of salamanders. In particular, our aims were
threefold: (i) define the realized trophic niche and trophic strategy of this salamander at the
population level (e.g., generalist or specialist); (ii) describe prey selectivity considering the
environmental food availability; (iii) investigate possible levels of individual specialization
in foraging. Specifically, we expected that the Golden Alpine salamander would show a
generalist diet, given knowledge on the other subspecies (Prediction P1). However, we
expected that it would show avoidance of certain unpalatable taxa and selection of nutrient-
rich ones, as well as avoidance of small, fast, and flying prey, and selection of slower and
bigger prey (Prediction P2). Considering previous studies about the trophic ecology of the
Alpine salamander, we expected a high degree of inter-individual diet variation with major
differences among the diets of individuals (Prediction P3).

2. Materials and Methods
2.1. Study Taxon

Salamandra atra aurorae, the Golden Alpine salamander, is an endemic subspecies of
the Alpine salamander (Salamandra atra), isolated in the south-eastern Prealps, probably
during the late Pleistocene [15]. The distribution of this salamander is limited to a restricted
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montane area located on the Sette Comuni plateau in the province of Vicenza (Veneto
region) and Trento (Trentino Alto Adige region) [16,17].

Mixed forests dominated by silver fir (Abies alba) and beech (Fagus sylvatica), and
to a lesser extent Norway spruce (Picea abies), represent the optimal habitat for this
subspecies [9,17]. Structural features of the soil surface, distance from forest edges, and the
availability of shelters are other important ecological requirements that influence its pres-
ence [9,17]. Like other Alpine salamanders, S. a. aurorae is a fully terrestrial and viviparous
taxon: females, after a 2–3 year gestation period, give birth to just one or two fully devel-
oped young [18]. The species is most active in the warmest months (May–September) and
is strictly dependent on meteorological conditions, with peaks of epigean activity during
heavy rains [17,19,20].

2.2. Study Area

The study area is located on the Vezzena plateau (Trentino Alto Adige region), at about
1450 m a.s.l., (municipality of Levico Terme; 45◦57′10′′ N, 11◦22′25′′ E). The temperate
humid climate of Trentino can be framed into the general climatic context of the other
Alpine regions: the Lavarone-Vezzena area does not deviate significantly from this climatic
panorama. However, the contiguity with the Venetian pre-Alps determines a high rainfall,
with quite humid conditions compared to the average of Trentino, without significant dry
periods during the summer [21]. At the macro-scale, alpine pastures, silver fir, beech, and
plantations of spruce dominate the forest landscape, while at the fine-scale, the study area
consists of a forest dominated by Abies alba, Fagus sylvatica, and Picea abies.

We selected a forest stand of 7.8 ha within which we drew 29 20 × 20 plots, covering a
total area of about 1.16 ha; 9 of these plots were used in a previous study [9]. The plots have
a considerably larger surface area than the home range of S. a. aurorae (mean 8 m2; [22])
and were separated by 30–50 m.

2.3. Sampling Predators

Sampling of salamanders occurred at the end of July (26–28–29 July 2022). Salamanders
were collected in conditions of high detection probability (during or after rain events) in
three nearly consecutive days. Captured animals were transported to the laboratory, 5 km
from the sampling site, and since there is a significant increase in digestion rate with
increasing temperature [23], salamanders were stored in a refrigerator at 4 ◦C in order
to slow down prey digestion [11,24,25]. Salamanders were photographed with a digital
camera situated perpendicular to the dorsal surfaces of the animals. Photographs of the
dorsal patterns, which are unique for each individual in this taxon [22], were used to
avoid recapture during subsequent sampling sessions, and to measure total length (TOTL:
distance from the tip of the snout to the tip of the tail) with ImageJ® software. Sex was
determined through secondary sexual characters: adult males have a swollen cloaca, with
a rounded outline when seen from the side, while females have a flat cloaca [26], with a
posterior part of the trunk obviously swollen in the case of pregnant females [27]. In the
present study, we only considered adult individuals (i.e., total length greater than 90 mm,
according to Klewen [27]).

Stomach contents were obtained by stomach flushing [28,29], performed always by
the same person using a 5 mL syringe (2–3 injections per salamander) connected to a
flexible plastic tube. The flushing solutions were preserved in 70% ethanol. All animals
were returned to their site of capture within a maximum of 6 h from their capture and no
mortality was observed.

2.4. Prey Availability (Potential Trophic Niche)

Prey availability within the sampling site was assessed using 20 pitfall traps, one of
the most widely used instruments for sampling soil and litter invertebrates [30,31]. This
technique may overestimate more mobile fauna [32], however, prey mobility increases
the detection probability by amphibians ([33,34]). For these reasons, it is reasonable to
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assume that such bias would not be misleading in the assessment of prey availability.
Pitfall traps (500 cm3) were placed at ground level and a net was put over the top of the
containers to prevent salamanders being trapped [11]. A sloped plastic top was placed
above each pitfall to prevent flooding of the traps by rainfall. The containers were partially
filled with a solution that prevents escape and aids conservation of trapped invertebrates
(250–300 cm3 water with an addition of 500 mg of benzoic/acetic acid) [35,36]. The traps
placed in 20 random trapping points within the salamander sampling area were active for
four days immediately after predator sampling, in weather conditions comparable to those
of salamander samplings (i.e., rainy days). The random spatial arrangement provides good
coverage of the study area and ensured statistical independence of each trap [36].

The invertebrates obtained from environmental sampling and from stomach contents
were subjected to the same identification procedure, using a dissecting microscope and
taxonomic keys. All invertebrates have generally been identified at the Order or Class level,
both partially digested invertebrates obtained from stomach flushing and those captured
in the traps. Given the objective of investigating functional and dimensional categories
(P2 prediction), we have distinguished ecologically dissimilar life stages of the same taxon
(e.g., winged adults and terrestrial larvae) and, using the same criterion, related taxa with
marked ecological differences (e.g., flying Hymenoptera were distinguished from walking
ones, e.g., ants) [11,37,38]. Adult carabids, for their markedly larger size, were distinguished
from other Coleoptera adults, while larvae were grouped into a single category. Throughout
the entire manuscript, we will use this categorization for identified invertebrates.

2.5. Data Analysis
2.5.1. Potential and Realized Trophic Niche

Prey diversity in the environment and in the diet was estimated through Simpson’s
index (1-D; [39]), which measures ‘evenness’ of the community from 0 to 1, and 95% confi-
dence limits calculated by bootstrapping [40]. Sex differentiation in diet was analysed by
analysis of similarity (ANOSIM, a non-parametric test of significant difference between two
or more groups), based on Bray–Curtis distances [41] with sequential Bonferroni correction.
Data analyses were performed with the statistical package PAST version 4.03 [42].

2.5.2. Trophic Strategy and Selectivity

The realized trophic niche was analysed with a modification of Costello’s graphical
representation [43,44]. This method plots prey categories in a graph using two different
variables: the X-axis represents the frequency of occurrence [FO], defined as the proportion
of predators feeding on prey i, while the Y-axis displays the prey-specific abundance [Pi],
defined as the relative abundance of prey item i calculated on the total items found only in
those individuals that fed on this prey category. The position of prey categories along the
vertical axis sets out the feeding strategy of the predator: specialized when prey taxa have
high Pi values and are projected in the upper part of the plot; generalist when all prey taxa
have low Pi values and are projected in the lower part of the plot. Furthermore, diagonals
of the graph allow the determination of the prey’s importance, as rare or dominant, and
the contributions of BPC (between-phenotype component, namely the variation of resource
use among individuals) and WPC (within-phenotype component, namely the variation of
resource use by each individual) to the niche breadth.

This graphical approach is widely used to study the realized trophic niche of terrestrial
and aquatic amphibians (e.g., [11,38,45–47]) and other taxa [48,49]. Costello’s graphical
representation does not provide any information on the consumption and selection of
prey in relation to their availability in the environment. Conversely, Vanderploeg and
Scavia’s Relativized Electivity Index (E*; [50]), which is strongly supported by comparative
evaluations [51], gives insights into the use of different prey types in relation to their
abundance in the environment:
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E∗ =
Wi − 1

n

Wi +
1
n

where Wi =
(ri/pi)

∑i(ri/pi)
ri is the relative abundance of prey i in the diet, pi is the relative abun-

dance of prey i in the environment, and n is the number of prey types. This index ranges
from − 1 (negative selection) to 1 (positive selection), while a value of zero suggests prey
consumption according to its availability (random feeding). As this index is particularly
sensitive to the categories of prey with low environmental abundance, E* was calculated
only for prey categories with more than three individuals sampled in the environment [47].
The 5th percentile of the absolute value of E* was set as a threshold electivity value (u),
above and below which E* was considered different from zero [52].

2.5.3. Comparison with Other Studies

For food availability comparisons between Alpine salamander subspecies, we rear-
ranged the potential availability and the consumed prey into comparable taxa (17 and 16,
respectively in our study). Since the study of Šunje et al. [12] differed in the number of pit-
falls, sampling period and number of sites, a comparison of the dominant taxa proportions
is more appropriate, as they do not change when compared with data among sampling
periods of different length [36].

2.5.4. Inter-Individual Diet Variation

We used network analysis to assess the variation of diet among individuals. We
created a network connecting individual salamanders with their prey items, and each link
represented the strength of the relationship, namely the frequency of use. We calculated the
centrality of the network nodes, and therefore, the importance covered by each node in the
web, through the Davidson-Harel simulated annealing algorithm [53]. We then calculated
four network metrics to quantify the features of this predator-prey system: degree of diet
variation, nestedness, modularity (with corresponding number of modules), and degree of
clustering. The degree of inter-individual diet variation was measured through the index
E [54]: based on the pairwise overlap of individual diets and its average in the sampled
population, the index E can go from 0 when all sampled individuals have identical diets, to 1
when diet variation is at its maximum. Nestedness in the trophic ecology of a species occurs
when the diets of some specialist individuals include only a subset of the prey consumed
by the more generalist individuals. We measured nestedness with NODF, a metric based
on overlap and decreasing fill [55], that can take a value from 0 to 100 (minimum and
maximum nestedness). Modularity Q can be recorded when it is possible to separate a
population into groups of individuals with similar diets, and we calculated it with the
Beckett’s algorithm [56]. Since this algorithm is stochastic, we repeated it 1000 times and
retained the network partitioning that maximised modularity [56]. The index Q can range
from 0, indicating that no link exists between nodes in the same module, to 1, when all
network links are interactions within modules. The degree of clustering Cws developed
by Araújo et al. [54] measures the degree to which predators tend to be grouped into
distinct clusters according to their diet niche overlap, and though mathematically different
from modularity, it is conceptually very similar. Degree of diet variation, nestedness,
and modularity/clustering can also arise for stochastic processes or sampling bias; we
therefore compared the observed values of these metrics against 10,000 bootstrapped
simulations with null models. The calculations were made in R through the packages
Bipartite and RinSp.

3. Results
3.1. Potential and Realized Trophic Niche

In 3 sampling days, 53 adult salamanders (34 males and 19 females, of which 11 were
pregnant) were captured and stomach flushed with 44 positive results, six individuals
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with no prey in their stomach and three individuals with only indeterminate prey items
(prey that could not be identified because of the high digestion level). The 199 analysable
prey items found in the stomach were divided into 19 categories belonging to 16 taxa
(n = 41 indeterminate; Figure 1), with an average of 3.98± 4.35 prey/stomach (mean± s.d.;
n = 50; range = 0–24). There was no difference in the diet composition between the sexes
(ANOSIM, n = 44; global R = −0.07, p = 0.95) and between pregnant and non-pregnant
females (ANOSIM, n = 15; global R = −0.01, p = 0.49). Environmental sampling produced
a total number of 2867 invertebrates representing 20 prey categories belonging to 17 taxa
(Figure 1).
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The diversity of prey categories in the environment and diet calculated as Simpson’s
index is shown in Table 1.

Table 1. Diversity index of the prey in environment and in the diet.

Simpson Diversity Index 1-D (95% C.I.) Taxa

Environmental availability 0.44 (0.42–0.46) 17
Stomach content 0.88 (0.86–0.90) 16
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The analysis of the Costello’s modified plot (Figure 2) clearly shows that this
Salamandra atra aurorae population behaved as a generalist predator, confirming our predic-
tion P1. In fact, the majority of prey categories are located in the lower left part of the graph
(FO and PI < 0.5), with only two (Coleoptera larvae: PI = 1, FO = 0.02; Isopoda: PI = 0.6,
FO = 0.06) in the upper left quadrant (PI > 0.5; FO < 0.5).
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Figure 2. Costello’s modified plot [43,44] describing the trophic strategy of Salamandra atra aurorae.
Legend: ACAR, Acarina; ANEL, Anellida; ANOP, Anoplura; ARAN, Araneae; CARA, Carabidae;
COLE, Coleoptera; COLEL, Coleoptera larvae; COLL, Collembola; DERM, Dermaptera; DIPT,
Diptera; DIPTL, Diptera larvae; GAST, Gastropoda; HYME, Hymenoptera (not Formicidae); ISOP,
Isopoda; LEPIL, Lepidoptera larvae; MYRI, Myriapoda; OPIL, Opiliones; PSEU, Pseudoscorpionida;
RHYN, Rhynchota.

3.2. Trophic Selectivity

The analysis of the relativized electivity index E* showed that salamanders positively
selected only Myriapoda, Hymenoptera, Gastropoda, and Coleoptera, while all other prey
categories were apparently avoided (Figure 3). Opiliones was the only prey consumed in
proportion to environmental availability, with an E* value within the significance threshold.

Salamanders operated a negative selection on two of the commonest available prey
items (Collembola and Formicidae), while, among the most abundant preyed taxa, a
positive selection was only observed on Myriapoda and Gastropoda.

3.3. Comparison with Other Studies

The diversity of prey taxa in the environment of S. a. aurorae (17 taxa) was numerically
very similar to that found both in the habitat of S. a. atra (15; [11]) and higher or similar
to S. a. prenjensis (from nine to 16 taxa across four populations; [12]). The dominant taxa
proportion, Coleoptera (22.3%), Diptera (15.8%), and Hymenoptera (15.7%) were the most
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represented taxa in the study by Šunje et al. [12], while in our study, Hymenoptera (Formici-
dae), Collembola, and Diptera were dominant. On the other hand, the total amount of prey
sampled in the environment varied markedly. For the Golden Alpine salamander, it was
almost five times greater than that detected for the nominal subspecies, which was studied
in high mountain environments [11], and almost double that detected for S. a. prenjensis
based on sampling from four different areas [12]. The average number of ingested prey by
Golden Alpine salamander (3.98 ± 4.35, N = 50) is greater than that reported for S. a. atra,
both in comparison with the north-eastern Italian population (2.78 ± 0.75, N = 45; [11]),
and in the two populations of the Austrian Alps (2.59 ± 1.85, N = 39; [10]). The mean value
is also greater than that reported for the four populations of S. a. prenjensis (3.16 ± 0.55,
N = 264; [12]). However, the Simpson index (1-D) revealed a diversity of prey in the
environment lower than that calculated for S. a. atra (0.44 vs. 0.80 respectively; [11]), and
to that recalculated for S. a. prenjensis on standardized potential prey, since the index is
sensitive to the number of taxa (i) used (0.44 vs. 0.87, all populations of Šunje et al. [12]
pooled respectively; the Simpson index among populations varied from 0.80 at Prokletije,
to 0.85 Čvrsnica). Regarding the preyed invertebrates, the number of prey taxa eaten by
S. atra aurorae (16) is higher than that found for S. atra atra (10; [11]), but it is similar to
that found for S.a. prenjensis (from 14 to 18 taxa for four populations; [12]). Indeed, by
applying to S. a. prenjensis the same categorization of prey that we applied, we verified that
the diversity of preyed taxa is very close to what we estimated for S. a. aurorae (Simpson
Index, 1-D = 0.88 vs. 0.90 for S. a. aurorae and for all pooled populations of S. a. prenjensis
respectively, [12]; the index among populations varied from 0.85 for the site Prokletije to
0.90 for the site Gorski Kotar).
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3.4. Inter-Individual Diet Variation

Myriapoda, Aranea, Diptera larvae, and Lepidoptera larvae were the prey items
that occupied the central nodes of the network, whereas Coleoptera larvae, Isopoda,
Dermaptera, and Anoplura were the most peripheral ones (Figure 4).
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Figure 4. Network of predator-prey interactions based on diet analysis of the Golden Alpine sala-
mander. Individual salamanders are represented by black squares and an identity number, while
prey taxa are shown by their silhouettes within green circles. The centrality of each node reflects the
general number and strength of connections with all the other nodes in the network, while its size
indicates the number and weight of its direct connections. The width of the edges linking the nodes
represents the number of predator-prey interactions.

The degree of diet variation indicated a strong variability among the diets of sampled
individual salamanders (E = 0.86, p < 0.001) that were also subdivided into different trophic
groups (nine modules detected, Figure 5). The network was indeed characterized by
positive modularity (Q = 0.47, p < 0.001) and degree of clustering (Cws = 0.29, p < 0.001).
Degree of diet variation E, modularity Q, and degree of clustering Cws were all markedly
higher than expected under the 10,000 bootstrap simulations with null models, whereas
nestedness was remarkably lower than expected under the null hypothesis (NODF = 6.45,
p < 0.001; see also Figure S1).
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4. Discussion

Many populations of Salamandra atra are known for living in continuous and large
forests; however, among the four recognized subspecies, the Golden Alpine salamander
is the only one restricted to forest environments, mainly mixed coniferous and deciduous
forests [57,58]. The altitudinal range is narrower in comparison with the nominal subspecies
(1200–1850 m asl). In the animal world, differences in dietary ecology may be exhibited
among subspecies (e.g., [59,60]) or populations (e.g., [61]). Considering that the Golden
Alpine salamander occurs in a different ecological context in comparison to the other Alpine
salamander subspecies, its diet could reflect this ecological uniqueness in terms of diversity
and abundance of consumed prey.

4.1. Prey Availability and Realized Trophic Niche

We did not find significant differences in trophism between the two sexes, as found in
the other subspecies of this species [11,12], and in other salamander species (e.g., [38,46,47]).
In Salamandra atra, pregnant and non-pregnant females did not show differences in feeding
(this study; [11]), probably because they have a prolonged viviparous gestation period of
2–3 years [19], which is too long to avoid feeding. Costello’s graphical method (Figure 2)
identified a generalized trophic strategy for the Golden Alpine salamander, confirming our
prediction P1. However, the position of Coleopteran larvae and Isopoda in the upper-left
part of the graph (i.e., the most abundant prey category in the diet) indicates they were
consumed in high abundances only by a few individuals, suggesting a limited within-
phenotype component with a certain degree of individual specialization. A similar pattern
was found in S. a. atra, where Diptera larvae occupied the same position of the coleopter-
ans [11]. The superclass Myriapoda represents an important trophic resource for many
individuals, both for the nominal subspecies [11] and for the Golden Alpine salamander
(this study).

Compared to other studies on Alpine salamanders, the lower Simpson Index value
of prey availability is due to the high number of ants present in our traps, which greatly
influences the equipartition of individuals among taxa and, therefore, the calculation of the
index. Conversely, the higher number of prey ingested by Golden Alpine salamander in
comparison to four populations of S.a. prenjensis could be due to the procedure followed
by Šunje et al. [12] (described in [62]) that applied only one flushing per salamander,
potentially influencing the data collection. The diet of the S. a. aurorae appears varied and
abundant compared to the other Alpine salamanders, but not equivalent proportionally to
the availability found in its natural environment. Consequently, S. a. aurorae, along with the
other subspecies, may be considered a frugal consumer, unlike other salamander species
(e.g., [47]). As suggested for the nominal subspecies [11], the limited number of food items
in the salamander stomachs cannot be merely attributed to the scarce food availability,
but probably also to the dimensional selectivity related to morphological characteristics of
the predators and their predation strategy (see Section 4.2). The avoidance of some small-
sized taxa (e.g., Collembola) by Golden Alpine salamanders may indicate a preference for
dimensional selectivity. This strategy may be more efficient, as consuming fewer but larger
prey items can provide a better energy gain per time unit compared to consuming many
smaller prey. Ultimately, this approach allows the predator to maximise the energy intake
and prioritise the most valuable food sources [63,64].

4.2. Trophic Selectivity

Many studies that have analysed the diet of salamanders have not taken account of the
prey availability in the environment. Consequently, the salamander’s ability to selectively
feed on certain prey items remains poorly understood. However, the trophic selectivity
of salamanders has been increasingly studied in recent years [11,12,25,38,47,65–67]. Our
analysis clearly shows that the Golden Alpine salamander does not prey in proportion
to environmental availability. The salamander carries out a significant positive selection
towards Myriapoda and Gastropoda, and, less markedly, towards flying Hymenoptera and
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Coleoptera (Figure 3). Myriapoda and Gastropoda seem to play a key role in the diet of
the Alpine salamander, since the nominal subspecies, in a markedly different environment,
shows the same preferences, significantly selecting these taxa [11]. Even the subspecies
S. a. prenjensis, sampled in four different environments, ingests Myriapoda and Gastropoda
more frequently than expected from their presence in the potential trophic niche [12].
Furthermore, the Myriapoda are significantly associated with the population sampled in
the Gorski Kotar site, the closest to our site in terms of habitat, with a positive selection on
Chilopoda [12]. The general trend is a positive or random selection towards relatively slow
and/or large prey items, and a negative selection towards smaller, faster and/or flying
prey, in agreement with the realized trophic niche, and partially confirming our prediction
P2. The degree of body chitinization seems to be a secondary criterion in the predatory
choice for the Golden Alpine salamander, as some of the positively selected prey have a
high degree of chitinization and are only partially or slowly digested by the salamander,
as emerged also by the observation of the stomach contents. The higher cost related to
digestion is probably compensated by the energy saving in the search and capture phase,
and by the energy intake given by the large size of these taxa (see also Section 4.1).

The distinction between the functional categories of larvae and adults has been useful
to highlight how the same taxon can represent a very different potential prey during its life
cycle for predators such as salamanders (e.g., [11,38,68]). The Golden Alpine salamander
indeed positively selects only the adult Coleoptera, while avoiding their larvae. In this
case, however, the result is unexpected: the larvae, generally slow and with non-chitinized
bodies, should be favoured according to the identified predation strategy. The difficulty of
pitfalls to sample poorly active prey [36] and the underestimation of prey composed of soft
tissues, rapidly digested and difficult to detect with the stomach flushing technique [34],
could partly explain this result. A plethora of other invertebrate taxa were not found
in stomachs or negatively selected. Excluding red ants, whose chemical defenses (e.g.,
formic acid) make them generally unpalatable [69], Collembola were the most abundant
potential prey not commonly eaten. Terrestrial or semi-terrestrial salamanders may prey on
springtails or may have a diet specialized on them (e.g., Salamandrina; [38,47]). Capturing
springtails is, however, challenging due to their possession of a furcula, which serves as
an escape mechanism enabling them to rapidly jump and evade predators [70]. They are
considered highly energetic prey because they possess a lower degree of chitinization [71].
Golden Alpine salamanders, unlike Salamandrina, do not extend the tongue to capture prey,
making the capture of springtails particularly ineffective. Collembolans are the primary
decomposers of plant matter in temperate forests, and they exist in high numbers in the
soil [72]. Probably the ingestion of Collembola by the Golden Alpine salamanders may be
the consequence of occasional consumption during foraging activity, as occurs with other
small prey, including plant material such as pine or fir needles, which was frequently found
in their stomach contents.

With regards to the remaining negatively selected prey, it is noteworthy that the
consumption of prey by amphibians is heavily influenced by their morphological and phys-
iological characteristics [33]. Additionally, there is a well-established positive correlation
between the size of Urodela predators and their prey [73]. It is possible that the salaman-
der’s relatively unsophisticated predation strategy, which may not be particularly effective
in catching agile prey, also represents a limiting factor in its ability to consume small-sized
prey. The relatively clumsy foraging style appears to be typical of Alpine salamanders
(this study; [11,12]), suggesting that significant electivity indices could reflect predatory
ability/inability, rather than actual preference or dislike. Abundance of most invertebrates
depends on the presence of dead wood on the soil surface [74]. In particular, Myriapoda are
more abundant close to wood debris [75], and they are also positively related to advanced
states of wood decomposition [76]. Hymenoptera are related to dead wood as well, with
parasitoid species more abundant near newly dead wood of fine diameter [77]. Preference
and importance of specific prey’s taxa (Myriapoda and Hymenoptera) pointed out by our
results represent useful information to proper forest management. These practices will
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have a double effect, considering that dead wood piles, in particular fine woody debris,
have been shown to play a key role for Golden alpine salamander presence [9].

4.3. Inter-Individual Diet Variation

The collective trophic niche of a population is considered to be the outcome of adding
up the trophic niche of each individual. However, the individual trophic niche can vary
greatly. This means that even a population of generalist species may consist of individuals
with varying levels of specialization, feeding on different types of prey and utilizing diverse
trophic strategies [78,79]. Although S. a. aurorae exhibited a generalist diet at the population
level, the high degree of diet variation indicates major differences among the diets of anal-
ysed individuals (confirming our prediction P3), as observed in other studies of the trophic
ecology of Alpine and other salamanders [11,12,37,68,80]. Inter-individual diet variation
can be explained in light of the optimal diet theory (ODT) [81,82] that accounts for three
different models which can explain how individual specialization arises. Concerning our
network, there are two possible suitable models: the Competitive Refuge (CR) model and
the Distinct Preference (DP) model. In the CR model, individuals share the preferred prey
and, under intraspecific competition, they expand their trophic niche to other less profitable
prey, according to the individual preference. In the DP model, individuals are clustered in
groups that exhibit different favoured food resources, according to different ethological and
phenotypical group characteristics: in case of preferred resource decline, low availability
or high intraspecific competition, foragers can expand their trophic niche and increase
diet overlap, including alternative options (e.g., [83]). Modularity and nestedness are the
most important variables that can elucidate the causes of inter-individual diet variation,
according to the different scenarios described by the ODT theory. The first is observed
when the diet of some individuals can be pooled in clearly defined subgroups, within
which individual diets are very similar. The second is observed when some more special-
ized individuals consume a group of prey that is a subset of the diet of more generalist
individuals. The diet of individual salamanders in our study is characterized by a high
degree of modularity and clustering, while nestedness is low: this condition, uncommon
in dietary studies [83], is also reported for S. atra population studied by Šunje et al. [12].
However, data obtained from a Dolomites population of the nominal subspecies indicate a
moderate nestedness, whereas modularity is still high [11]. The high modularity degree in
our network can be explained by both CR and DP models. Indeed, a significant modular
network can emerge in the CR model when food resources are limited and intraspecific
competition is intense, driving the foragers to include different prey types in realized
trophic niches, causing the rise of different clusters. A high level of modularity can also
emerge in a DP model framework: under the condition of abundant food resources and
low intraspecific competition, foragers can specialize on individual preferred items. The
low nestedness obtained from our analysis demonstrates a low overlap between individual
trophic niches belonging to different modules. The CR model predicts a nested network
when food availability is high and intraspecific competition is low, whereas in the DP
model, nestedness arises when competition increases and food availability is low. Our
results suggest little overlap between individual trophic niche and a consequent low in-
traspecific dietary competition, and the high prey availability we measured in the study
area further corroborates this conclusion (see Section 4.1). Ultimately, the modularity and
nestedness pattern observed in our framework, namely scarce trophic competition and
high prey availability, are in agreement with the DP model postulated by the ODT theory.
Indeed, the DP model predicts a modular network when competition is low and food
resources abundant, with a shift toward a nested network when competition arises and
food items are scarce. However, the inter-individual diet variation model we found derives
from a limited sampling period with only one flushing per individual. Therefore, these
limits raise a relevant question: is this the standard individual feeding habit of the Golden
Alpine salamander, or does it represent merely a snapshot? To answer this question, we
need to understand if relevant variables, like competition and trophic availability, can
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change significantly within and among the annual seasons, since changes in intraspecific
competition and in food availability can lead to a shift in dietary pattern [82,84]. Given
that population density of the Golden Alpine salamander cannot increase significantly due
to the particularly low reproduction rate [18], as well as the low spatial overlap among
individuals (mean home range = 8 m2, range 0–32; [22]), it is reasonable to assume a
stable or very low increase of competition among foragers within and among seasons.
Midsummer season represents one of the peaks of soil arthropod biomass and diversity,
both in agricultural landscapes [85] and in Alpine forest habitats [86,87]. In particular,
the period between June and July is characterized by high arthropod abundance in the
subalpine forest context [86–88]. As shown by Costa et al. [89] resource diversity, rather
than abundance, can enhance the emergence of inter-individual diet variation and mod-
ularity in salamanders’ prey-predator networks. The high inter-individual diet variation
and modularity degree in our study could then change among different moments in the
activity season. However, our sampling was performed in conditions of both soil arthropod
diversity and salamanders’ activity peak during the season. For all these reasons, and
considering data obtained by inter-individual diet variation (low diet overlap and high
modularity in DP model framework), we are confident that we sampled salamanders and
stomach contents in the most favourable dietary condition, leading thus to a description of
the Golden Alpine salamander’s diet that reflects different individual ability or preference
to different prey items. Furthermore, given that this is the third study that pointed out an
inter-individual diet network in S. atra [11,12], the pattern observed seems widespread in
different subspecies and habitats.

5. Conclusions

This is the first study on the diet of the Golden Alpine salamander, and it revealed
that this urodele displays a generalist feeding strategy at the population level, but with a
significant degree of inter-individual variation in dietary preferences that can be framed in
a DP model framework. Salamanders showed a clear preference for certain prey categories
(e.g., Myriapoda, Hymenoptera, Gastropoda, Coleoptera), while almost ignoring all other
prey categories. Interestingly, the salamanders exhibited a negative selection for two of
the most abundant prey categories, Collembola and Formicidae, despite their high trophic
availability. Such knowledge is essential for understanding the ecological role of this
salamander in its ecosystem and for developing conservation strategies. Further research
could shed light on the underlying mechanisms driving the observed inter-individual
variation in diet, and how it relates to the individual’s ecology and life history. The storm
VAIA in 2018 severely impacted the forest habitat of the Golden Alpine salamander. Our
ongoing research is trying to understand if the impact of the storm VAIA had consequences
on the trophic availability and on the feeding strategy adopted by this endemic and
rare salamander. Last but not least, diet preferences that emerged from our study can
also provide relevant knowledge for appropriate forest management implementation. The
guidelines are to make allowance for ecological requirements of Golden alpine salamanders’
prey, improving management that favours new and old dead wood piles accumulation.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ani13132135/s1, Figure S1: Results of the 10,000 boot-
strap simulations with null models for nestedness (upper left), index of diet variation (upper right),
modularity (lower left), and degree of clustering (lower right). Histograms show the distribution of
the simulated values and the vertical red dotted lines indicate the observed value for each metric.
Data derive from diet analysis of the Golden Alpine salamander.
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