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Simple Summary: Marine mammal welfare research of professionally managed species has primar-
ily focused on enrichment, habitat usage, and activity, as well as the impacts of human-oriented
training sessions. However, the importance of sound in the welfare of marine mammals has rarely
been mentioned. In this review, methods for acoustic welfare monitoring are discussed, including
hearing tests, the incorporation of listening systems to monitor noise and communication, and cat-
aloguing vocalizations in various health contexts. Examples from the US Navy Marine Mammal
program are provided, as well as opportunities for facilities to initiate acoustic welfare monitoring.
Suggested future directions of study, such as research examining the impact of sound on cognition,
are also discussed.

Abstract: Research evaluating marine mammal welfare and opportunities for advancements in the
care of species housed in a professional facility have rapidly increased in the past decade. While
topics, such as comfortable housing, adequate social opportunities, stimulating enrichment, and a
high standard of medical care, have continued to receive attention from managers and scientists, there
is a lack of established acoustic consideration for monitoring the welfare of these animals. Marine
mammals rely on sound production and reception for navigation and communication. Regulations
governing anthropogenic sound production in our oceans have been put in place by many countries
around the world, largely based on the results of research with managed and trained animals, due to
the potential negative impacts that unrestricted noise can have on marine mammals. However, there
has not been an established best practice for the acoustic welfare monitoring of marine mammals in
professional care. By monitoring animal hearing and vocal behavior, a more holistic view of animal
welfare can be achieved through the early detection of anthropogenic sound sources, the acoustic
behavior of the animals, and even the features of the calls. In this review, the practice of monitoring
cetacean acoustic welfare through behavioral hearing tests and auditory evoked potentials (AEPs),
passive acoustic monitoring, such as the Welfare Acoustic Monitoring System (WAMS), as well as
ideas for using advanced technologies for utilizing vocal biomarkers of health are introduced and
reviewed as opportunities for integration into marine mammal welfare plans.

Keywords: marine mammal welfare; acoustic welfare; anthropogenic sound

1. Introduction

In the past decade, research investigating animal welfare of species living in profes-
sional care at zoological facilities has increased rapidly [1–4]. While farm animal welfare has
long been a topic for legislators and farmers, more thorough investigations of the welfare of
species in zoological facilities has been welcomed by researchers, animal care professionals,
and the general public. Ethical concerns, such as the animals being free from prolonged fear
and pain and being able to function well using their natural capabilities, have motivated
many of the welfare models that have been adopted [5]. Widely accepted as the current
welfare framework, the Five Domains [6] expanded upon the original Five Freedoms [7]
and provided a more systematic means to evaluate welfare for human-managed animals [8].
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The domains continue to be updated following advances in welfare research, such as a
shift in focus from solely negative affective experiences [6] to the inclusion of positive
experiences in the measure of welfare [8,9]. Currently, the domains consist of nutrition,
physical environment, health, behavioral interactions, and mental states, with the impacts
of human interactions included [10].

Marine mammal welfare, specifically in cetaceans, has become a focus of recent
studies that aimed to establish measures to evaluate and improve the welfare of dolphins
in professional care [11–17]. The Cetacean Welfare Assessment (C-Well©) established
welfare measures based on the four welfare principles of good feeding, good housing, good
health, and appropriate behavior [18]. Within the 36 measures used in C-Well©, neither
acoustic environment nor acoustic behavior beyond the ability of dolphins to echolocate
in more complex environments were included. While an environment that encourages
the use of echolocation would be an important feature for odontocetes in terms of good
housing, the necessity of an acoustically appropriate environment (i.e., sufficiently low
levels of anthropogenic noise) was not considered [18]. Additionally, acoustic welfare (i.e.,
an appropriate acoustic environment and the ability to express natural acoustic-related
behavior, such as communication) has not been mentioned in other reviews of marine
mammal welfare [19], despite the importance of the species’ natural capabilities [5] relating
to sound production and processing, which certainly impact welfare.

While the importance of acoustic welfare was discussed in 2015 [20], only a recent
review of cetacean acoustic welfare has reinvigorated the conversation of incorporating
acoustic information when evaluating the welfare of cetacean species [21]. This review
echoes the call from Stevens et al. [21] and takes the current review one step further to
focus on how acoustic welfare monitoring has been implemented, primarily at the US
Navy’s Marine Mammal Program (MMP), provides an overview of recent technological
advancements in applied tools for acoustic monitoring of cetaceans in human care, and
outlines some proposed next steps for continued advancement in this area (see Table 1).

Table 1. Suggested acoustic welfare monitoring practices.

Welfare
Monitoring

Practice
Timeline Animal Training

Investment
Potential Welfare

Benefit Example

Annual sound
level recordings

Annual, with
supplemental
measurements

None Mitigation of noise
impacts on hearing

A change in filtration
system results in an
increase in noise in a

habitat, which is able to be
reduced upon discovery.

Hearing tests
(behavioral or

AEP)

Periodic
(Bi-annual to every

three years)

Behavioral: extensive; AEP:
can range from none (e.g.,

during medical procedure) to
minimal (e.g., desensitization
to equipment) to extensive

(e.g., animal trained
to participate)

Monitoring for hearing
changes related to age,

health, and/or
environmental impact

A dolphin with age-related
hearing loss is transitioned
to a visual cue for correct

behaviors, resulting in
improved performance
during training sessions

Underwater
Acoustic

Monitoring
System

Constant None

Real-time information
regarding noise levels

and animal
acoustic output

Early notification regarding
an impending birth is

provided due to changes in
population whistle rate.

Establish Vocal
Catalogue for
Individuals

Weekly

Moderate; training animal to
produce sounds on cue (e.g.,

signature whistle
in dolphins)

Early detection of
behavioral and medical

changes within
individuals

A machine learning model
detects and predicts an
abnormal health status,

resulting in early
identification and

treatment and a better
health outcome
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2. Monitoring Anthropogenic Sound Levels

The impact of sound on terrestrial mammals has received attention from zoos, with
research evaluating the impact of anthropogenic noise relating to guest traffic [22–25],
events, such as concerts [26], as well as periods of construction [27–29] on various species.
The focus on noise impacts at zoos has resulted in facilities taking steps to mitigate noise
during periods of construction for the sake of welfare [30], as well as testing the impact of
signage to encourage quieter behavior from guests [25]. Despite the consistent interest in
anthropogenic and environmental sounds in terrestrial mammals, there is comparatively
little research examining the acoustic soundscapes of marine mammals in aquaria. There
are likely multiple reasons for this oversight, such as the lack of awareness of sound sources
that are occurring underwater compared to those that are audible to humans in air, the
sensitivity of toothed whales to ultrasound, and the additional efforts it takes to record and
monitor these sounds. Regardless of the environment in which marine mammals are housed
(e.g., sea pens or closed system facilities), animals are exposed to anthropogenic sound
sources, for example, from shipping traffic (see [31]) or from life support systems [32,33].
Therefore, facilities housing marine mammals ideally should monitor the level of sound
the animals are exposed to [21] so that proper mitigation measures can be put in place
or anomalies rectified [31]. Given the dependance cetaceans in particular have on sound
production and reception for both navigation and communication, this is an area of welfare
that deserves more attention [21].

2.1. Anthropogenic Sound in the Wild

The ocean is filled with biological, geologic, and anthropogenic sounds that can impact
wild marine mammal welfare and alter health and behavior (see [34] for review). The rapid
rise in vessel noise has become of increasing concern related to the management of wild
marine mammals (see [35] for a review). The reliance on shipping as a primary means of
transporting goods globally has resulted in higher noise levels in more areas of the ocean,
and researchers have modeled the expansion of these operations as they expand into new
environments [36]. As the noise level in the oceans has increased, some regulations have
arisen to protect the marine environment.

The acoustic welfare of wild marine mammals, in terms of minimizing the negative
impact of noise on health, has received attention from governmental agencies globally and
has resulted in legislation and regulations aimed at minimizing the impact of sound on
wild populations (e.g., the Marine Mammal Protection Act of 1972 in the United States
(U.S.)). In the U.S., commercial and military activity is required to follow these regulations,
and any instances in which regulations will not be followed (e.g., military exercises) must
be approved by U.S. governmental agencies. Naval exercises have established guidance
regarding impacts to marine mammals (see [37] for review). The existence of guidelines
highlights the interest in the acoustic welfare of marine mammals from both scientific and
ethical standpoints. In 2021, the National Marine Fisheries Service (NMFS) instituted new
regulations in the Gulf of Mexico that require visual and acoustic observations for marine
mammal detection, as well as other limits placed on the proximity of the equipment and
vessels to the animals and the amount of time the vessels are allowed in areas of impact [38].
Much of the understanding of marine mammal hearing and the impacts of noise are the
results of efforts of professional facilities investigating the topic, and further research will
continue to result in meaningful changes in the monitoring and mitigation of noise for
at-risk wild populations.

2.2. Impacts of Anthropogenic Sound on Marine Mammals

Hearing thresholds are the lowest perceptible sounds an organism can hear based on
the minimum sound pressure level (SPL) required to stimulate an auditory response. Expo-
sure to intense noise sources can result in physical injury and/or impairment of hearing in
the form of threshold shifts, which can be either permanent (PTS) or temporary (TTS). TTS
is a noise-induced threshold shift (NITS) that eventually returns to normal. Understanding
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the levels at which TTS and PTS occur is crucial to ensuring health, welfare, safety, and
other possible noise impacts on species. The initial studies of TTS in marine mammals took
place at facilities in the U.S., sponsored in large part by the Office of Naval Research [39].
For a review of marine mammal TTS studies conducted from 1996 to 2015 and a thorough
discussion of the testing parameters when evaluating TTS, see [39]. These studies, in
conjunction with observations of the detrimental impacts of intense sounds in the marine
environment, have resulted in regulations in the U.S., Canada, and the European Union, as
well as the involvement of regional organizations in monitoring oceanic noise [40]. The
evaluation of damage and subsequent welfare impacts has been a focal point of regulations,
as establishing the threshold at which such sound results in harassment or injury is the
basis for many of the laws guiding military and commercial sound exposure [41]. Auditory
weighting functions to determine at which levels sound will become injurious to marine
mammals have been formulated, though these are based on limited information from a
handful of marine mammal species (see [42] for review). Exposure thresholds for TTS and
PTS based on the type of noise exposure have been proposed [43,44] and are updated as
new information is acquired [44,45]. While additional research regarding marine mammal
hearing will continue to form the basis of future regulations protecting wild populations,
this knowledge should also result in a more comprehensive welfare monitoring framework
for animals in professionally managed settings.

2.3. Suggested Welfare Monitoring Measure: Annual Sound Level Recordings

Because underwater noise sources are typically inaudible to humans in air, oftentimes,
they end up going undetected and, therefore, unmitigated. Human hearing only extends
up to about 20 kHz, whereas bottlenose dolphins (Tursiops truncatus) have excellent hearing
and can potentially be affected by sound sources up to approximately 140 kHz [46]. Com-
ments from critics of professional management of marine mammals have often focused on
the acoustic environment of the habitats as being inadequate or harmful [47]. A recent col-
laborative effort was undertaken to examine the presence of underwater noise at 14 marine
mammal facilities in the U.S., Bermuda, and Singapore [31]. Acoustic measurements in
both land-based pools and natural seawater enclosures found that the risk of noise masking
of animal communication was low. The experts found that noise levels in these enclosures
were typically low-level and unlikely to cause concerns for the masking of echolocation
or communication signals. However, infrequent and, in all cases, correctable noise lev-
els that could be mitigated were identified. The authors recommended periodic sound
level measurements as best practice for animal welfare [31]. In an evaluation of activity
budgets of bottlenose dolphins, time periods in which construction noise was present
resulted in behavioral changes, such as significantly faster swimming as well as decreased
performance in training sessions [14]. Recently, an assessment of the anthropause due to
COVID-19 found that dolphins that had become habituated to the anthropogenic sounds
related to marine activity (e.g., jetskis and cruise ships) prior to the anthropause were more
sensitive to playbacks following the reintroduction of human recreational activity near their
lagoon [48]. At the MMP, an around-the-clock hydrophone array records the soundscape
of the San Diego Bay where dolphins are housed in natural sea water environments [49]
and “weights” the sound by the mid-frequency (MF)-cetacean hearing curve [44]. The user
can set mid-frequency and high-frequency thresholds that, when exceeded, will trigger
an alert to the stakeholder [49]. The possibility of TTS, and potentially PTS, is present
at all facilities, regardless of structure. For example, sea pens can be subjected to boat
traffic and sonar of recreational and military vessels, while closed facilities may experience
elevated noise levels during periods of construction or malfunctioning life support systems
generating abnormal noises. We echo Houser and colleagues’ [31] suggestion that facilities
home to marine mammals should conduct periodic underwater sound-recording sessions
to mitigate any sources that could be of detriment to the animals housed there (Figure 1).
Periods of change, such as new construction or integration of new life support systems,
should similarly ensure that sound levels have not significantly changed.
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mammal aquatic living environments.

3. Behavioral Hearing Tests and Auditory Evoked Potentials

One aspect that we believe falls under the topic of acoustic monitoring of managed
marine mammals is establishing the hearing threshold records of individuals [50–54].
Behavioral hearing tests have been successfully trained in bottlenose dolphins, (e.g., Tur-
siops sp. [55]; killer whales (Orcinus orca, [56,57]); false killer whales (Pseudorca crassi-
dens, [58]); Pacific white-sided dolphins (Lagenorhynchus obliquidens, [59]); Tucuxis (Sotalia
fluviatilis, [60]); harbor porpoises (Phocoena phocoena, [61]); California sea lions (Zalophus
californianus, [62,63]); Stellar sea lions (Eumetopias jubatus, [64,65]); harbor seals (Phoca vit-
ulina, [62,63]); Harp seals (Pagophilus groenlandicus, [66]); spotted seals (Phoca largha, [63]);
ringed seals (Pusa hispida, [67]); bearded seals (Erignathus barbatus; [68]); northern ele-
phant seals (Mirounga angustirostris, [62]); northern fur seals (Callorhinus ursinus, [69]);
Hawaiian monk seals (Neomonachus schauinslandi, [70]); Pacific walrus (Odobenus rosmarus
divergens, [71]); belugas (Delphinapterus leucas, [72]); Florida manatees (Trichechus manatus
latirostris, [73]); polar bears (Ursus maritimus, [74]); and sea otters (Enhydra lutris, [75]).
Behavioral hearing tests are the “gold-standard” of tests to determine individual animal
sensitivity and range. Animals can be trained to voluntarily participate in sessions using
different psychophysical procedures, such as a go/no-go paradigm, or a two-alternative
forced choice (2AFC) design. For a go/no-go test, the animal is trained to signal the detec-
tion of a sound by touching a paddle or target [55,63,73], vocalizing [53,72], or producing
another behavior (e.g., bubble-emitting vocalization; [56]). In instances of no sound de-
tection, the animal remains in the listening position until cued to receive a reward. In a
2AFC task, the animal is presented with two stimuli and must make a choice. 2AFC tasks
are arguably more challenging to train, given the paucity of studies that incorporate this
strategy for hearing threshold research in marine mammals. However, this paradigm is
often used to study echolocation [76,77]. Behavioral hearing tests result in not only data
acquisition but also the opportunity for animals to be cognitively stimulated through the
learning and testing process. While training such a behavior (particularly a go/no-go
paradigm) through operant conditioning can be easily accomplished in most settings if the
time and resources are dedicated to conceptual training, there may be situations in which
animal hearing tests are more urgently needed or required in contexts in which training is
not possible (e.g., rehabilitation cases).

As marine mammals age, hearing deteriorates [51,53,78,79]. Additionally, dimin-
ished hearing ability was noted as a factor in unsuccessful outcomes following release in
rehabilitated cetaceans [80]. Following researcher suggestions in the assessment of rehabili-
tation cases [80,81], government regulations in the U.S. established that cetaceans showing
severely compromised hearing are unsuitable for release [82]. Because these animals are not
able to undergo training for behavioral hearing tests, the use of auditory evoked potentials
(AEPs) emerged as a rapid and non-invasive way to monitor the electrical responses of an
animal’s brain to auditory stimuli. Rather than train the animals to behaviorally respond to
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auditory cues, the process of training for AEP participation in dolphins simply requires
training the animals to accept wearing surface electrodes and remain stationary while
sounds are played either through a jawphone (i.e., a transducer embedded in a suction cup)
or through an underwater sound projector, or the tests can be performed while a dolphin
is out of water during a physical exam. Because AEPs are a more rapid means to collect
hearing data compared to behavioral tests, this is the method that is primarily used with
Navy dolphins. For pinnipeds, however, AEP tests have involved anesthesia and the use of
subdermal needle electrodes in order to obtain accurate measurements [79].

During these AEP tests, stimuli at different frequencies are played, and the sound
pressure level (SPL) is lowered until detection of an AEP is no longer achieved. By placing
a jawphone on the dolphin’s lower jaw and playing stimuli, such as clicks or sinusoidal
amplitude-modulated (SAM) tones, the audiogram (i.e., a plot of the hearing thresholds
across frequencies) shape is estimated both in air and underwater [83]. Auditory steady-
state response (ASSR) measurements are gathered by presenting stimuli at a fast enough
rate that transient AEPs form overlapping signals, generating a quasi-steady-state re-
sponse [84,85]. SAM tones are commonly used in ASSR measurements and have shown a
strong correlation with behavioral results, albeit the AEP hearing thresholds generally un-
derestimate (are higher than) behavioral thresholds to some degree [46,51,58,86]. Statistical
relationships between click-evoked auditory brainstem responses (ABRs) and ASSRs have
allowed for ABRs to serve as a more rapid means of hearing screening in dolphins in very
time-limited situations, with click-evoked ABR test assessment being completed in as little
as one minute [87]. However, this method relies on the establishment of defined norms
of hearing, which are species-specific. Thus, expanding the number of individuals and
species for which data are available would provide a more accurate means of interpreting
the test. The development of portable, rugged systems with the capacity to test frequency
ranges of marine mammals has resulted in more easy-to-administer tests [88,89].

Suggested Welfare Monitoring Measure: Regular Hearing Tests

For facilities caring for marine mammals, investing time and effort to train the popula-
tion to participate in semi-annual or annual behavioral hearing tests (see Figure 2) would
be a straight-forward means to monitor the auditory health of the individuals and detect
changes in hearing that could be due to age, illness, or even environmental causes, the latter
two reasons negatively impacting welfare and, thus, necessitating intervention and mitiga-
tion. At the MMP, hearing assessments are conducted periodically to ascertain dolphins’
ability to perform military tasks, such as intruder detection and object recovery [51,55], and
to monitor age-related changes in hearing. A population-wide evaluation of hearing was
undertaken at the MMP in 2006, and the authors noted that genetics may play a role in
susceptibility to hearing loss. Thus, understanding of an individual’s hearing might impact
the prevalence of hearing loss within a breeding program in professional care facilities [51].

Additionally, as some medications are noted to produce ototoxic effects (e.g., aminogly-
coside antibiotics, such as amikacin: [72]; gentamicin: [51]), evaluation of hearing following
administration of such medications is crucial to monitoring for medication-caused hearing
degradation. Given the resistance of some infections to treatment, the utilization of ototoxic
antibiotics might be the only viable option [72]; however, monitoring for changes in hearing
following treatment is an important consideration when managing the long-term care of
the animal post-recovery.

Facilities willing to train a staff member to operate and process data from systems
would not only allow for rapid and accurate evaluation of the hearing of the managed
population but could enable hearing tests of marine mammals that strand nearby. Often,
opportunities to collect data on cryptic species that are only seen when they strand are
missed due to the time it takes for trained researchers to travel to the location [88,90].
The MMP and National Marine Mammal Foundation (NMMF) continue to host training
opportunities for stranding networks to learn how to operate programs such as EVREST to
be used in stranding scenarios, resulting in increased data for common dolphins (Delphinus
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delphis), as well as the first audiograms of Atlantic white-sided dolphins (Lagenorhynchus
acutus) [90]. Collaborations between facilities and scientists remain viable options to connect
animal managers to opportunities to evaluate their marine mammal populations’ hearing.
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Figure 2. (a) A Navy dolphin voluntarily participates in an AEP session in which the animal is
wearing electrodes inside soft suction cups that are connected to a computer to record the responses
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4. Acoustic Behavior Monitoring

Acoustic welfare-monitoring strategies in terrestrial animals, specifically livestock,
have recently seen a rapid increase in their application [91]. Acoustic monitoring of
vocalizations [92] and other acoustic signals, such as coughing [93], has been successfully
implemented and shown to be useful welfare biomarkers that can lead to reductions
in disease spread in herds. In laboratory rats (Rattus norvegicus), analysis of ultrasonic
vocalizations has been used to monitor instances of positive social affiliation [94] as well as
anxiety [95,96]. Technological advancements have allowed for an increase in automated
techniques that have made these systems more maintainable. For example, Mao and
colleagues [97] reported a 55.88% faster detection speed when using automated monitoring
systems for chicken distress calls compared to manual observations. Extensive literature
for multiple species exists on the association of vocal behavior and maladaptive behaviors
associated with distress, stress, aversion, aggression, and stereotypy [91,93,98–100], but the
utilization of vocal biomarkers for welfare monitoring has, to our knowledge, yet to be
implemented for animals in professional care outside of livestock contexts.

Numerous studies have identified changes in the acoustic behavior of odontocetes that
may be associated with changes in contexts related to their welfare. For instance, Lilly [101]
was the first to report on a whistle emitted by a dolphin in distress, possibly to elicit aid
from another animal. Similarly, Kuczaj and colleagues [102] observed an ‘incessant’ whistle
emission from a wild bottlenose dolphin that could not maintain buoyancy in the water
column. The whistle production was associated with helping behavior from conspecifics
that provided support to the ill animal at the surface. When a dolphin was in distress,
signature whistles were emitted more frequently and with greater intensity [103], and in
other studies, a high rate of stereotyped whistle emissions was also reportedly produced
by an unwell female dolphin [104]. Capture–release events (i.e., a potentially stressful
context) have been associated with a significant increase in the whistle rate and number of
whistle loops for dolphins [105,106]. Eskelinen, Richardson, and Tufano [107] found that
out-of-water medical procedures were also associated with a significant increase in whistle
rate for dolphins, which correlated with an increase in blood cortisol levels. In contrast, in
belugas, transport and introduction of another species were associated with a significant
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and prolonged decrease in vocalization rate [108], suggesting that reductions in acoustic
output may also be meaningful. Together, these findings provide a compelling argument
that the whistle behavior of cetaceans may provide insights into welfare-related events,
such as distress and illness.

Suggested Welfare Monitoring Measure: Underwater Acoustic Monitoring

Despite the welfare potential of acoustic monitoring for odontocetes in managed care,
there has been limited implementation of such systems [108]. However, researchers at the
MMP and NMMF have made notable progress by deploying a ‘welfare acoustic monitoring
system (WAMS)’ that operates around the clock using a stationary hydrophone array [49].
This system utilizes PAMGuard with a suite of modules, such as the recorder, whistle and
moan detector, NMMF WAMS, and alarm module, to create a real-time alert system for
abnormal whistle behavior of a group of bottlenose dolphins [48,109]. An example of such
an email notification is presented in Figure 3. The audio input is analyzed in real time to
identify, localize, and count the whistles emitted by a focal group of dolphins. When the
whistle rate surpasses a user-defined threshold within a specified time frame, an email
alarm is triggered, complete with the whistle count, a screen grab of the spectrogram,
and radar display with localization information, which is immediately sent to a desig-
nated email address. Therefore, an animal care lead, night watch, curator, or researcher
can receive real-time detailed email alerts when whistle rates reach an abnormal thresh-
old. Abnormally high whistle rates in cetaceans have been reported in multiple contexts
that would be of interest to animal care and management, such as distress and dolphin
labor [101–104,110,111].
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system is installed, WAMS can be utilized to monitor the whistle behavior of the focal group of
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animals around the clock. The user defines a threshold of number of whistles per minute that would
be considered abnormal for that group based on the number of dolphins and typical whistle behavior.
If the present whistle rate surpasses that threshold, an email alert is sent to the user-defined email
address. Included in the email is a screenshot of the WAMS module (i.e., spectrogram, historical
whistle rates, and radar display) from the time the threshold was surpassed. The color boxes on the
Radar Display correspond to different whistle contours that have been identified by the program.
Additional information on the time of the alarm and the whistle rate recorded are summarized in the
body of the email.

Although this implementation is a step towards using acoustics to monitor welfare
changes in bottlenose dolphins, thresholds of meaningful whistle rates are needed. Ar-
guably, each group of dolphins will have different rates of whistle behavior that are consid-
ered normal for that group. Additionally, there is little acoustic data to date on dolphins that
are in labor, distress, critically ill, dying, and those that recover from an emergency, such as
entanglement or stranding. Collaborations among managed-care facilities and stranding
networks to record critically ill dolphins are warranted to help inform these systems and
optimize the alarm thresholds to be able to detect these critical changes without a high
false-alarm rate.

5. Acoustic Biomarkers of Health

While whistle rate has been the most documented vocal biomarker of distress in
bottlenose dolphins, some data suggest that the acoustic features of animal vocalizations
may encode biomarkers of health and welfare. Recent technological improvements in
acoustic analyses software are allowing for feature analyses to provide even more insights
into animal communication systems. For example, goats showed different fundamental
frequency and frequency modulation of calls during positively valanced contexts compared
to negative ones [112]. Recently, Sadeghi and colleagues [113] found that a model was
able to successfully classify what chickens were infected with Clostridium perfringens from
those that were healthy based solely on the features of their vocalizations. Devi et al. [114]
similarly found that five call features were significantly different between the vocalizations
of bison calves with and without pneumonia. The authors suggest that bioacoustic fea-
tures can serve as a non-invasive diagnostic tool for early identification of pneumonia in
bison calves.

Suggested Welfare Monitoring Measure: Establish Vocal Catalgoue

Given these recent successes, it is possible that marine mammal calls may also encode
information about health and welfare within the features of the vocalizations. Preliminary
research suggests that acoustic biomarkers exist that can be used to classify dolphin health
status from their whistles [115]. Early detection of illness is invaluable for improved
outcomes and reduced medical costs. Acoustic recordings of marine mammal vocalizations
with a known health status (e.g., pulled out of water, transports, medical pools, strandings,
rehabilitation centers, etc.) are, therefore, valuable for the future development, application,
and generalization of this work. For professionally managed marine mammals, training
the individual to provide a vocalization (e.g., a signature whistle by a bottlenose dolphin)
and cataloguing the whistle parameters and health status when obtained will help to build
a library of examples to train a machine learning model for more accurate predictions
of health status (Figure 4). Trainers are able to “capture” an offered signature whistle by
reinforcing spontaneous production of the whistle and pairing it with a hand signal or
another discriminative stimulus. The trainers can then ask the dolphin to produce the
whistle when providing the signal, and the audio can be recorded for analysis.
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Figure 4. Example of a whistle repertoire for one dolphin. In this example, we depict a spectrogram
and waveform (all spectrograms and waveforms were created in RavenPro 1.6; 0–36 kHz on y axis,
8-s time window on the x-axis, Hann window, 2100 window size, 50% overlap, DFT 2048) recorded
from a time when Dolphin A was isolated from conspecifics, which is the highest probability of being
the dolphin’s signature whistle (distinctive identifier). In the upper-right panel is an example of
Dolphin A’s whistle that was recorded when it was produced spontaneously by the dolphin and then
paired to a hand signal. The captured whistle is then confirmed to be the same whistle contour as the
probable signature whistle in the first panel. The bottom two spectrograms show examples of whistles
recorded from the dolphin on a day when it was healthy and a day when it was experiencing an
abnormal health status. Whistle catalogues for individual animals during different health conditions
can be used to train machine learning classifiers to detect changes in health status from dolphin
whistles in the future.

6. Current Acoustic Monitoring Best Practices in Zoos and Aquaria

One of the greatest benefits of acoustic monitoring is the capability to receive infor-
mation about animals during times that human presence is impossible, dangerous, or
difficult (e.g., darkness, late hours, many animals housed together, underwater). While
the cost of equipment and a qualified technician for passive acoustic monitoring systems
still remains high, potential savings associated with early indication of illness or incident
and reductions in medical and caretaker expenses associated should also be considered.
Below, we summarize the practices of acoustic welfare monitoring that are currently in
place at the MMP (see also Table 1). These tools may be of interest for application at other
professionally managed facilities:
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1. Annual sound level recordings and supplemental measurements when overt changes
are made to the environment (e.g., changes to filtration systems, nearby construction,
etc.) to prevent and mitigate potential for hearing impacts [21,46].

2. Hearing tests conducted periodically on the population [51,55]
3. Installation of an underwater acoustic-monitoring system. This system can be utilized

for both noise level measurements in the habitats and around-the-clock monitoring
(WAMS) of the acoustic behavior of the animals [59]

4. Establishing a vocal catalogue for each animal during different contexts (e.g., positive
and negative valence) and health conditions (i.e., normal and abnormal) for machine
learning applications of behavioral and health monitoring.

7. Future Directions

The continuous acoustic data collected from an acoustic monitoring system allow for
enhanced observations in times of interest, such as introductions [108], social interactions,
and births [111]. As more research is conducted regarding the whistle rates of various
species during different environmental and social contexts, on-board machine learning
models can be developed to classify and notify management of behavioral events of
interest. The association between burst pulsed sound production and aggressive behavior
in bottlenose dolphins has also been well described [116]. Brando et al. [19] identifies rake
marks as a physical indicator of aggression. Future research should attempt to correlate
burst pulse production and rake mark occurrence to validate burst pulses as an acoustic
indicator, leading to a tangible negative health outcome. This is another opportunity
for acoustic monitoring to potentially alert animal caretakers to potentially aggressive
interactions around the clock, which can be valuable for making management decisions
about social groupings, especially overnight. Establishing a better understanding of vocal
behavior indicative of positive welfare contexts (e.g., rest, positive social interactions, play)
is also important [117].

Understanding how noise might impact cognitive processes is another opportunity
for future research. Studies on wild marine mammals suggest that the presence of noise
impacts foraging and migration decisions [118,119]. Many dolphin species participate in
cooperative feeding strategies [120,121], and there is some evidence of the impairment
in this ability in the wild, as well as in controlled cooperative tests [122], due to noise.
Navy dolphins experienced a decline in vigilance performance during an echolocation
detection task when exposed to vibratory pile-driver noise [123]. The development of a new
technological system that provides cognitive enrichment and testing provides a unique
opportunity to test, monitor, and compare cognitive skills and performance across animals
and species [124]. Utilizing this tool, future research can examine the impact that sound has
on additional cognitive processes that can impact life history functions. Additionally, using
metrics such as cognitive bias tests in the presence of noise could provide insight on the
welfare impacts that various levels of sound have on species [125]. The percentage of correct
response, latency to success, or gameplay strategy [126] could be compared between trials
in which different levels or types of anthropogenic sound are played. Increased latency,
decreased performance, and/or increased use of less efficient strategies could inform the
impacts that sound has on marine mammal cognition.

8. Conclusions

There is increasing evidence of the impact of anthropogenic sound exposure on
marine mammal hearing loss [37,39,42,81], behavioral changes (see [127] for a review),
impaired communication [128,129], and reduced foraging efficiency [130,131]. Robust
welfare-monitoring protocols for marine mammals in managed care have yet to regularly
incorporate acoustic monitoring into their recommendations. We provide evidence that
technological advancements have made applied tools for acoustic welfare monitoring acces-
sible. Facilities that are able to invest in these applications through sound level recordings,
periodic hearing tests, installation of an underwater acoustic-monitoring system, and/or
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the establishment of a vocal catalogue will be better able to care for their populations as well
as contribute to the continued understanding of the impacts of sound on marine mammal
health and welfare in professional care and in the wild.
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