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Simple Summary: The hallmark changes in hypertrophic cardiomyopathy (HCM), a naturally occurring
heart disease in both humans and cats, are left ventricular hypertrophy (LVH) and myocardial fibrosis.
Key myocardial proteins, lumican, lysyl oxidase (LOX) isoenzymes and TGF-β isoforms are critical for
the development of fibrosis and cardiomyocyte hypertrophy in various cardiac diseases. The objectives
of this study were to measure the expression of these proteins in the left ventricular myocardium
and to investigate the association between their expression and alterations of the different collagenous
(primarily extracellular matrix) and non-collagenous (primarily cellular) myocardial components in feline
HCM. Lumican facilitates the cross-linking of collagen, and its myocardial expression was increased
in feline HCM and was localised to cardiomyocytes and the extracellular matrix, particularly in areas
with mononuclear cell infiltration. Increased LOX expression was detected in both cardiomyocytes
and interstitial mononuclear cells. Additionally, TGF-β2 expression was increased in cardiomyocytes
in HCM-affected cats. Based on the knowledge from publications on other species, these results
suggest potential crosstalk between different myocardial cell types, resulting in myocardial remodelling,
including expansion of the collagen and non-collagen myocardial component and alteration to collagen
structure in cats with HCM. Such remodelling may result in diastolic dysfunction and clinical signs.

Abstract: Hypertrophic cardiomyopathy (HCM) affects both humans and cats and exhibits consider-
able interspecies similarities that are exemplified by underlying pathological processes and clinical
presentation to the extent that developments in the human field may have direct relevance to the feline
disease. Characteristic changes on histological examination include cardiomyocyte hypertrophy and
interstitial and replacement fibrosis. Clinically, HCM is characterised by significant diastolic dysfunc-
tion due to a reduction in ventricular compliance and relaxation associated with extracellular matrix
(ECM) remodelling and the development of ventricular hypertrophy. Studies in rodent models and
human HCM patients have identified key protein mediators implicated in these pathological changes,
including lumican, lysyl oxidase and TGF-β isoforms. We therefore sought to quantify and describe the
cellular location of these mediators in the left ventricular myocardium of cats with HCM and investigate
their relationship with the quantity and structural composition of the ECM. We identified increased
myocardial content of lumican, LOX and TGF-β2 mainly attributed to their increased expression within
cardiomyocytes in HCM cats compared to control cats. Furthermore, we found strong correlations
between the expressions of these mediators that is compatible with their role as important components of
cellular pathways promoting remodelling of the left ventricular myocardium. Fibrosis and hypertrophy
are important pathological changes in feline HCM, and a greater understanding of the mechanisms
driving this pathology may facilitate the identification of potential therapies.

Keywords: hypertrophic cardiomyopathy; myocardial fibrosis; collagen; cross-linking; lumican; lysyl
oxidase; TGF-β
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1. Introduction

Hypertrophic cardiomyopathy (HCM) is a common and serious disease affecting the
human and feline population. The disease in both species exhibits considerable similarities
at the subcellular, cellular, and whole-organ levels [1–5]. Shared phenotypic features
include symmetrical or focal ventricular wall thickening often with associated dilation of
the left atrium [4,5]. Histologically, cardiomyocyte hypertrophy and disarray, interstitial
and replacement fibrosis, interstitial inflammatory cell infiltration and intramural vascular
wall dysplasia are commonly identified [4,6,7]. In both humans and cats, the genetic
basis of HCM is complex but can at least in part be explained by autosomal dominant
mutations in sarcomere or sarcomere-associated proteins with variable penetrance [8,9].
Likewise, similarities in clinical presentation range from no clinical signs to life-threatening
ventricular arrhythmia, heart failure and, particularly in cats, thromboembolism [5,10].

Myocardial fibrosis is a key pathological process in HCM with important clinical impli-
cations [3,6,7,11,12]. For example, in human patients, progressive increases in late gadolin-
ium enhancement (LGE) on cardiac magnetic resonance imaging (cMRI) (a surrogate for
myocardial fibrosis) is associated with adverse ventricular remodelling, arrhythmogenesis,
increased risk of heart failure and myocardial dysfunction indicative of end-stage HCM [13].
Similarly, cMRI has revealed increased interstitial fibrosis in cats with preclinical HCM and
the extent of fibrosis correlated with diastolic dysfunction [14]. Furthermore, prominent
myocardial fibrosis is associated with disease progression to an end-stage phenotype and
increases the risk of adverse outcomes in cats [15,16].

In addition to the secretion and deposition of collagen from fibroblasts, extracellular
matrix (ECM) equilibrium and adaptation requires the contribution of other ECM-related
proteins produced by different myocardial cell populations, including cardiomyocytes,
fibroblasts and resident leucocytes [17]. One such protein is lumican, a small leucine-rich
proteoglycan which attaches to fibrillar collagens, where it regulates the binding together
of individual collagen fibrils. Lumican is therefore vital for the primary organisation of
the collagen structure, which can subsequently undergo further modifications, such as
interfibrillar cross-linking, which increases collagen stiffness and resilience [18,19]. Further-
more, lumican can expedite such modifications through the upregulation of the collagen
cross-linking enzyme family of lysyl oxidases via TGF-β/SMAD signalling and therefore
influence ECM composition, since collagen with increased numbers of cross-links has
reduced susceptibility to degradation and increased stiffness [19–21]. The term “insoluble
collagen” has been used to describe collagen with increased numbers of cross-links [22].

This is clinically important, as both increased collagen mass and increased collagen
stiffness impact on cardiac function and disease progression [23–25]. For instance, in
human patients with heart failure and preserved ejection fraction (HFpEF), which shows
some similarities in haemodynamic profile to HCM, the extent of collagen cross-linking
in the heart correlated well with diastolic dysfunction and left ventricular end-diastolic
pressure [26]. Similarly, myocardial lysyl oxidase (LOX) was found to be increased in
patients with HCM and correlated with the quantity of total and cross-linked (insoluble)
myocardial collagen and indicators of left ventricular stiffness on cMRI [27]. Additionally,
increased expression of lumican was identified by proteomic analysis in myectomy samples
from human patients with HCM, and the quantity of myocardial lumican was found
to correlate with LGE on cMRI [28]. Importantly, lumican and LOX isoenzymes can
be upregulated by the release of inflammatory cytokines from leucocytes and altered
mechanical stress, both of which are important components of many cardiac diseases,
including HCM [20,26,29–33].

Cardiomyocyte hypertrophy, a characteristic finding in HCM, can also cause diastolic
dysfunction and increased susceptibility to heart failure by impairing ventricular relax-
ation [34,35]. Biological mediators such as lysyl oxidases and members of the TGF-β family,
in addition to their role in ECM remodelling, may instigate pro-hypertrophic pathways
within cardiomyocytes [36–42].
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Even though ECM changes consistent with fibrosis and cardiomyocyte hypertrophy
are recognised as an important and clinically significant pathological process in feline
HCM, there remains a sparsity of information about which factors are implicated in this
species. Therefore, given recent findings in human patients, we sought to measure the left
ventricular expression of lumican, LOX isoenzymes and TGF-β isoforms and explore their
relationship with the characteristic myocardial remodelling seen in feline HCM.

2. Materials and Methods
2.1. Study Population

Control and HCM cats were selected based on the criteria described below. The
inclusion criteria for the control group included cats that died of non-cardiac disease
with no cardiac-related abnormalities detected by clinical exam, gross/histopathological
examination + complete echocardiography or point-of-care ultrasound (POCUS). The
inclusion criteria for the HCM group included (1) cats that showed clinical signs com-
patible with HCM (congestive heart failure, aortic thromboembolism, arrhythmia, gallop
sound and murmur) and confirmed by gross/histopathological examination + complete
echocardiography or POCUS; and (2) no other disease that would result in left ventric-
ular hypertrophy including hypertension, hyperthyroidism, congenital cardiac disease,
hypersomatotropism and infiltrative disease. With reference to cardiac imaging, a complete
echocardiographic examination was performed in 3/10 controls and 7/10 HCM cats, and a
cardiac-focused POCUS examination was performed in the remaining 7/10 control cats
and 3/10 HCM cats. Gross pathology and histopathology were performed in all cats. See
Supplementary Materials Table S1 for the signalment, echocardiographic parameters and
histopathological diagnosis of each cat and Supplementary Materials Table S2 for the
clinical presentation and summary of the findings from cardiac imaging.

2.2. Echocardiography

For full echocardiographic examinations, all measurements were taken over 3 different
cardiac cycles and averaged. Measurements taken included the left-atrium-to-aortic ratio
(LA/Ao), maximal left ventricular free-wall thickness in diastole (LVFWd), maximal inter-
ventricular septum thickness in diastole (IVSd), presence of systolic anterior motion of the
mitral valve (SAM), presence of spontaneous echo contrast (SEC) and presence of a formed
thrombus in the LA or left auricular appendage. SAM was defined as anterior motion of
either septal or both mitral valve leaflets during systole toward the LVOT, using the right
parasternal long axis 5 chamber view on review of 2D cineloops [43]. The diagnosis of
HCM was defined as a diastolic LV wall thickness (LVFWd or IVSd) measuring ≥6 mm on
2-dimensional (2D) imaging [44], with or without papillary muscle hypertrophy, SAM or
dynamic left ventricular outflow tract obstruction [43]. All echocardiographic examinations
were performed by a veterinary cardiology specialist or resident under direct supervi-
sion. POCUS examinations were performed in the emergency setting by a veterinary ECC
specialist or resident in training under direct supervision and facilitated measurement
of LA/Ao, as described above, and a subjective assessment of the left ventricular wall
thickness in diastole was performed. Refer to Supplementary Materials Table S3 for more
detailed information on how the echocardiographic measurements were taken.

2.3. Heart Collection and Histopathological Examination

The heart was collected and rinsed with tap water to remove any remaining blood
within 30 min of euthanasia. A 10 × 10 mm full thickness section was removed from
the mid LVFW. Half of the section was placed into RNAlater (Qiagen, Hilden, Germany),
and the other half was snap-frozen at −80 ◦C. The rest of the heart was immersed in 10%
formaldehyde solution over 24 h before dissection and processing. The cardiac tissues
embedded in paraffin were cut into 4 mm thick sections and were stained with haematoxylin
and eosin, or Masson’s Trichrome stain for histopathological examination by a specialist
veterinary pathologist (MD and LW) [45]. Briefly, macroscopic criteria for HCM include
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LV wall hypertrophy, with or without LA or biatrial dilation [46]. Microscopic criteria
are myofiber disarray in more than 5% of the LV myocardium, with or without myocyte
hypertrophy, interstitial fibrosis, or intramural arteriosclerosis [47]. The presence or absence
of mononuclear cell infiltration in the myocardium was documented by the co-author and
specialist veterinary pathologists (MD). In brief, the same slides as described above were
firstly scanned using a 1× and/or 2× objective, and representative areas were further
examined using a 4× and/or 10× objective. These slides were not immunohistochemically
stained for the characterization of different types of mononuclear cells [45].

2.4. Collagen and Non-Collagen Quantification—Sirius Red and Fast Green

A commercially available kit (Sirius Red/Fast Green Collagen Staining Kit 9046
Chondrex) was used to semi-quantify collagen and non-collagenous proteins. Briefly, the
10-micrometer tissue sections were rehydrated and incubated with the dye solution. The
unbound dyes were washed off, and the remaining tissue-bound dyes were diluted and
read with a spectrophotometer, as per the manufacturer’s protocol.

2.5. Measurement of Cardiomyocyte Width

The width of cardiomyocyte was measured at the level of the nucleus from 40 car-
diomyocytes (4 cardiomyocytes per randomly selected field of view) from 5 HCM and
7 control cats, using an open-source software QuPath V0.1.2. The measurements were
averaged to give a representative measurement for the cardiomyocyte width of each cat.

2.6. RNA Extraction and Preparation of Complementary DNA

Full-thickness sections of LV tissue (10 × 10 mm) from the mid free wall were collected
and stored in RNAlater (Qiagen, Hilden, Germany) at 4 ◦C overnight and then transferred
to a −80 ◦C freezer for long-term storage. The LV tissue was homogenised with lysis buffer
(containing 10 µL of β-Mercaptoethanol per 1 mL of lysis buffer) and a 5 mm stainless bead,
using a high-speed shaking machine (Qiagen TissueLyser II) set at 20 Hz for 1 min. RNA
was extracted using a column-based extraction kit (Qiagen RNeasy Fibrous Tissue Mini
kit), and the complementary DNA (cDNA) was prepared with genomic DNA removed
using a commercially available kit (QuantiNova Reverse Transcription kit, Qiagen) and a
thermal cycler (DNA Engine Tetrad, Bio-Rad, Hercules, CA, USA).

2.7. Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR)

Gene expression was analysed by RT-qPCR, using a commercially available kit (Quanti-
Nova SYBR Green PCR kit, Qiagen). The template cDNA supplied reagents from the kit,
and 1 µL of forward primer, 1 µL of reverse primer, and 7 µL of RNase free water were
loaded in a 96-well plate and cycled (CFX96 Real-Time PCR Detection System, Bio-Rad)
40 times, with the following settings: denaturation at 95 ◦C for 5 s, and annealing and
extension at 60 ◦C for 10 s. The Ct number of genes of interest was normalised to a
combination of the other two housekeeping genes, RPS7 and RPL30, which encode the
small 40S subunit and the large 60S subunit of ribosomes, respectively [48]. Refer to
Supplementary Materials Table S4 for the sequence of primers used.

2.8. Western Blotting

Homogenised cat LVFW (12 µg) snap-frozen samples were electrophoresed on pre-
cast gradient gel (Bolt 4–12% Bis-Tris Plus Gels, ThermoFisher, Waltham, MA, USA) and
transferred to polyvinylidene difluoride membrane (Pierce PVDF Transfer Membrane
0.45 µm, ThermoFisher) which was later blocked with 5% milk (0.1% fat dry milk, Marvel
(Premier Foods, St Albans, UK) in Tris-buffered saline 0.1% Tween 20 (TBST), followed
by an overnight incubation in agitation with the primary antibodies TGF-β1, Santa Cruz
Biotechnology (Dallas, TX, USA) 3C11, sc-130348, 1:250; TGF-β2, Abcam (Cambridge,
UK) ab36495, 1:500; β-actin, Sigma-Aldrich (St. Louis, MO, USA), AC-74, A5316, 1:1000;
GAPDH, Novus Biologicals (Denver, CO, USA), 1D4, NB300-221, 1:1500) at 4 ◦C, a 1-h
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incubation with horseradish peroxidase-conjugated secondary antibodies (Goat anti-rabbit
IgG, Pierce, 1:1500; Goat anti-mouse IgG, Pierce, 1:1500) and enhanced chemiluminescence
substrate (Western Lightning Plus-ECL, Perkins Elmer, Pittsburgh, PA, USA) sequentially.
All the antibodies were suspended in 0.5% milk in TBST. The membrane was washed
three times in TBST between each incubation. The developed signals were detected using
photographic film (TGF-β1) or ChemiDoc MP Imaging System (Bio-Rad), and densitometry
(ImageJ) with β-actin or GAPDH as loading control was performed to semi-quantified
protein level. The use of two different loading controls was due to the availability of the
antibodies when the experiments were conducted.

2.9. Histological Immunostaining

Paraffin-embedded cardiac tissues cut into a 4-micrometre section was processed
according routine and blocked with BLOXALL and 2.5% normal horse serum (both Vector
Laboratories), followed by overnight incubation at 4 ◦C with primary antibodies (Lumican,
Thermo Fisher, PA5-14571; LOX, Novus Biologicals, NB100-2527; TGF-β1, Santa Cruz
Biotechnology, sc-130348; TGF-β2, Santa Cruz Biotechnology, sc-374658) suspended in
1.25% normal horse serum, three TBS-T washes, and 1 h of incubation with horseradish
peroxidase or alkaline phosphatase-conjugated secondary antibodies (Vector Laboratories)
at room temperature. Chromogen substrate, 3,3’Diaminobenzidine (DAB) substrate with or
without Nickel, or permanent red (Vector Laboratories) was used for colour development.
The slides were counterstained with haematoxylin, dehydrated and mounted. Quality
control of IHC on feline tissues was validated as previously described [49]. Reagent control
was performed by omitting the primary antibody. Negative control was performed by
replacing the primary antibody with non-immunised serum (Rabbit polyclonal IgG, Abcam,
Cambridge, UK).

2.10. Image Analysis

Leica DM4000B and DMRA2 with DFC550 colour microscopy camera (Leica) was used
to take photomicrographs. The microscopes and cameras were controlled through Leica
Application Suite Version 4.12. All slides were examined under 100–400× magnification
to observe and record the immunostaining pattern. For semi-quantification of the im-
munostaining for lumican and LOX, images were first colour deconvoluted using built-in
settings (H_AEC and H_DAB) and then quantified based on the subjectively determined
best threshold for the immunostaining on the freely accessible software ImageJ 1.51 23 (Fiji).
Ten images of the myocardium immunostained for lumican under 100× magnification were
acquired randomly from 4 HCM and 5 control cats. The measured 10 area fractions (%) of
lumican immunostaining per field of view were averaged and used for statistical analysis.
The 10 µm tissue sections stained with Sirius Red and Fast Green, as described above, were
examined under polarised light, using a 10× objective to record the myocardial collagen by
taking 25–30 photomicrographs of the myocardium. The area fractions (%) of collagen per
field of view were quantified using ImageJ with a subjectively determined threshold. The
averaged area fraction (%) of collagen for each cat was used for statistical analysis.

2.11. Soluble and Insoluble Collagen Quantification

The amount of soluble and insoluble collagen in the snap-frozen LV samples was mea-
sured using Sircol™ Soluble Collagen Assay and Insoluble Collagen Assay (Biocolor, Carrick-
fergus, UK). The assays were performed on our samples by the supplier tebu-bio, Peterbor-
ough, UK. In brief, pepsin soluble collagen was extracted at 4 ◦C overnight. The samples and
the pepsin solution were spun down to firstly collect the soluble collagen in the supernatant
and, secondly, to further process the insoluble collagen in the residues into water-soluble
denatured collagen. The supplied Sircol Dye Reagent was added to the final product of the
supernatant and the residue-derived water-soluble denatured collagen, thus allowing for a
colorimetric quantification of the soluble collagen and insoluble collagen, respectively.
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2.12. Statistical Analysis

Continuous data are reported as mean (SD), median (interquartile range) or median
(range) depending on the result of Shapiro–Wilk normality test and visual inspection of
the data distribution on a histogram. The difference between groups was detected using
Student’s t-test, Welch’s t-test or the Mann–Whitney test as suitable. Categorical data
are reported by percentage and were analysed using Fisher’s exact test. Correlation was
assessed using Pearson or Spearman’s test. A two-tailed analysis was used, and the results
were regarded as significant when p < 0.05. All analyses were performed using commercial
software (SPSS Version 26, and GraphPad Version 8).

3. Results
3.1. Study Population

The age, sex and breed of the 10 control and 10 HCM cats used in different parts of
this study are as follows. There were four male (six female) cats in the control group and
six male (four female) cats in the HCM group. The median age (range) of the control cats is
5.8 (1.6–18.9) years, and that of the HCM cats is 8.7 (1.7–17.0) years. The exact age in three
control cats was unknown, with one estimated to be 5–8 years and the other two between
1 and 3 years of age. Statistical analyses of age between groups were performed using
either the maximum or minimum estimated age and with the smallest p-value reported.
There was no significant difference in age and sex between groups. There were seven
DSH, two Russian blue and one Maine coon in the control group and five DSH, two
British shorthair, one Tonkinese, one Maine coon and one Bengal cat in the HCM group
(Supplementary Materials Tables S1 and S2).

3.2. Exploration of Myocardial Remodelling in HCM

To evaluate the composition of the myocardium from our HCM and control cats, we
measured the collagen and non-collagen components by using the histological stains Sirius
Red and Fast Green in the left ventricular (LV) free wall (Figure 1A). Tissue sections suitable for
analysis were available from 9 HCM cats and 10 control cats. Enlargement of the LV (defined
as an increase in the cross-sectional tissue mass of the LV section) was evident in the HCM
cats and was associated with both increased collagen and non-collagen content. Total protein
(the sum of the collagen and non-collagen content), collagen and non-collagen components
were all significantly higher in the HCM group compared to the control group, while there
were no differences in the ratio of collagen to total protein between groups (Figure 1B).
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(A) Representative image of 10 µm thick LV tissue section shows the histological staining with Sirius
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Red and Fast Green of the myocardium from control and HCM samples. The collagenous component
was stained with Sirius Red, while the non-collagenous component was stained with Fast Green.
(B) Table shows the quantity of collagen and non-collagen protein components in the LV tissue section.
Collagen (%) represents the percentage of collagen to total protein. N indicates the number of cats
with tissue sections available for the quantification. Data were analysed using Student’s t-test.

3.3. Mononuclear Cell Infiltration in the Myocardium

Since a recognised stimulus for the upregulation of mediators associated with remod-
elling of the myocardium is signalling from leucocytes, we evaluated mononuclear cell
infiltration within the myocardium (Figure 2). Infiltrating myocardial mononuclear cells
were identified in 8 of 10 HCM cats and only 1 of 10 control cats (p = 0.006).
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Figure 2. Mononuclear cell infiltration in the myocardium. Representative image showing infiltration
of the LV myocardium from a HCM cat with mononuclear cells (arrows) identified by a co-author
and specialist veterinary pathologist (MD and LW). Slide was stained with haematoxylin and eosin.
Bar = 50 µm.

3.4. Assessment of the Cardiomyocyte Width

As a characteristic finding in HCM is cardiomyocyte enlargement, we measured the
cardiomyocyte width as a surrogate measure for cardiomyocyte hypertrophy from seven
representative control and five HCM cats and found that it was greater in the HCM cats
(mean 15.4 [SD 2.3]) compared to the control cats (mean 10.6 [SD 1.4]; p = 0.001) (Figure 3).
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the nucleus (double arrowheads) from each of 7 control cats and 5 HCM cats. The averaged car-
diomyocyte width of the control and HCM cats were analysed with Student’s t-test, and error bars
represent SD. Bar = 50 µm.

3.5. Expression and Localisation of Proteins Associated with Myocardial Remodelling Based on
Other Species

We then investigated the expression, tissue localisation and spatial relationship of
lumican, LOX, LOXL2 and TGF-β isoforms within the LV myocardium.

3.5.1. Localisation of Lumican Protein in Feline Myocardium

Myocardial lumican expression was semi-quantified by immunohistochemistry in
four HCM and five control cats, with areas of replacement fibrosis excluded. HCM cats
showed an overall increase in the area staining positive for lumican (median 36.6% [IQR
26.2–55.7] versus 1.1% [IQR 0.8–2.2]; p = 0.018) for controls (Figure 4A,B,G). Attempts to
quantify lumican by Western blot were inconclusive. In the control cats, lumican was
expressed in the extracellular space between cardiomyocytes where collagen fibres are
normally present, such as in endocardium, in epicardium, around the blood vessels and
sparsely scattered between some cardiomyocytes, but there was little or no staining within
the cardiomyocytes (Figure 4D). In contrast, in the HCM cats, in addition to the pattern of
staining seen in the controls, intense lumican staining was observed in the cardiomyocytes,
in areas of fibrosis and, to a variable extent, around areas where leucocytes were identified
(Figure 4C,E–H).
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Figure 4. Myocardial expression of lumican (pink stain) is increased in cats with HCM. (A,B) LV sec-
tions were immunostained for lumican. There was minimal expression of lumican in the control cats,
whereas, in the HCM cats, there was substantial immunostaining of lumican across the myocardium.
Bar = 200 µm. (C,D) Intracellular labelling of lumican within cardiomyocytes was observed in the
HCM cats, while lumican only localised to the ECM in the control cats. (E) Some areas of myocardium
with accumulations of mononuclear cells showed a marked increase in lumican expression. (F) In
HCM cats, expression of lumican localised to cardiomyocytes (closed arrow heads) and to the ECM
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(opened arrow heads), which most likely represents strands of collagen. Lumican (pink to intense
pink). Nuclei (blue in (A–G), dark brown to black in (H)). Bar = 50 µm (G,H). Sequential sections of
LV immunostained for lumican or stained with Masson’s Trichrome showed that lumican staining
(intense pink indicated by arrows) in (G) localised to areas of increased collagen (blue) deposition
(arrows) in (H). Bar = 400 µm. (I) Averaged area immunostained for lumican per field of view (%)
was significantly higher in the HCM cats (dotted bar; N = 4) than the controls (N = 5). Data were
analysed using Welch’s t-test and expressed as individual data points with median and IQR.

3.5.2. Localisation of LOX Protein in Feline Myocardium

Myocardial LOX expression was semi-quantified by immunohistochemistry in six
HCM and five control cats with areas of replacement fibrosis excluded. The immunohisto-
chemistry revealed that LOX was primarily expressed in the cytoplasm of cardiomyocytes
with stronger staining in the HCM group. Additionally, staining was noted in some in-
terstitial cells (Figure 5A–D) (Supplementary Materials Figure S1). HCM cats showed an
overall increase in the area staining positive for LOX (median 28.2% [IQR 21.3–39.6] versus
1.7% [IQR 1.3–10.1]; p = 0.004) for the controls (Figure 5E). Attempts to explore myocardial
LOXL2 protein by immunohistochemistry were inconclusive.
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Figure 5. Myocardial expression of LOX (in brown) is increased in cats with HCM. (A,B) LV tissue
immunostained for LOX showed minimum labelling in the controls (N = 5), while increased labelling
was observed in the HCM cats (N = 6). Bar = 200 µm. (C,D) Images of higher magnification
showed that the LOX immunostaining in the cardiomyocytes was markedly stronger in the HCM
cats compared to controls. Some cardiac interstitial cells (cell type undetermined) also expressed LOX
(open arrow heads). LOX (brown). Nuclei (blue). Bar = 50 µm. (E) Averaged area immunostained
for LOX per field of view (%) was significantly higher in the HCM cats (dotted bar; N = 6) than the
controls (N = 5). Data were analysed using Welch’s t-test and expressed as individual data points
with median and IQR.

3.5.3. Quantification and Localisation of TGF-β1 and TGF-β2 Protein in
Feline Myocardium

Since TGF-β isoforms are key mediators of fibrosis and cardiac hypertrophy across
many species and upregulated by lumican and LOX in vitro, we explored their potential
role in myocardial remodelling in feline HCM. Myocardial expression of TGF-β1 and TGF-
β2 protein was confirmed by Western blot and immunohistochemistry. Both TGF-β1 and
TGF-β2 were identified at approximately 50 kDa, corresponding to the TGF-β precursor.
Cats with HCM had greater expression of myocardial TGF-β1 (median 1.47 [IQR 1.14–2.03]
(N = 10) versus 0.70 [IQR 0.57–1.31] (N = 10); p = 0.003) (Figure 6A) and TGF-β2 (median
1.33 [IQR 0.90–1.65] (N = 10) versus 0.77 [IQR 0.62–0.81] (N = 10); p < 0.001) compared
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to the control cats (Figure 6D). On the immunohistochemistry, TGF-β1 was expressed
almost exclusively in the tunica media of coronary arteries and arterioles in both the HCM
and control cats (five cats each), but the expression was noticeably stronger in the HCM
cohort (Figure 6B,C). The immunohistological pattern of TGF-β2 was markedly different
between the two groups (five cats each). No labelling was observed in the control cats
(Figure 6E,G), while in the HCM cats, the cardiomyocytes showed a variable degree of
TGF-β2 immunostaining, from minimal to intense (Figure 6F,H). TGF-β2 was also observed
in the tunica media of some coronary arteries and arterioles (Figure 6H). See Supplementary
Materials Figure S2 for the uncropped blots.
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Figure 6. Myocardial expression of TGF-β1 and TGF-β2 is increased in cats with HCM. (A) Western
blot on LVFW extracts from control (white bar; N = 10) and HCM (dotted bar; N = 10) for TGF-
β1. Bands were detected at 50 kDa. β-actin was used as a loading control for semi-quantification
of bands shown in the histogram. The quantity of TGF-β1 was greater in the HCM group com-
pared to the control group. Mann–Whitney test was used for analysis, and error bars represent SD.
(B,C) Immunohistochemistry showing TGF-β1 (black) expression (same antibody as used for Western
blot) in the tunica media (brown stain, arrow) of the coronary arteries. The expression was stronger
in the HCM cats. (D) Western blot on LVFW extracts from control (white bar; N = 10) and HCM
(dotted bar; N = 10) for TGF-β2. Bands were detected at 50 kDa. β-actin was used as a loading control
for semi-quantification. The quantity of TGF-β2 was greater in the HCM group compared to the
control group. Mann–Whitney test was used for analysis, and error bars represent SD. (E,F) Images
showed the immunostaining for TGF-β2 (black) (not same antibody as used for Western blot) in LV
tissues. No detectable immunolabelling for TGF-β2 was observed in the control cats. In the HCM
cats, expression of TGF-β2 was variable across the myocardium, with some areas showing marked
immunostaining in the cardiomyocytes (brown stain, arrows), while other areas showed minimal
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TGF-β2 labelling. (G,H) TGF-β2 also localised to the tunica media in a proportion of the arterioles
(arrow) in the HCM cats but was not observed in any of the vessels of the control cats (open arrow).
Nuclei (blue). Bar = 50 µm.

3.6. Transcription and Correlation of Genes Associated with Myocardial Remodelling

In view of our protein data, we measured the transcripts for the mRNA levels of
lumican, LOX, LOXL2, and TGF-β 1 and 2, in addition to collagen isoforms in the mid LVFW
from control and HCM cats. Apart from ACTA2, all the other genes were significantly
activated in the HCM cats compared to the controls (Figure 7A). As lumican has been
reported to promote myocardial ECM remodelling through upregulating LOX and TGF-β in
cardiac diseases, the relationship between the lumican gene and these potential downstream
targets was assessed. There was a strong positive correlation between LUM and LOX,
LOXL2, TGFB1, TGFB2, COL1A1 and COL3A1 mRNA expression levels. (Figure 7B).
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Figure 7. Relative gene expression in control and HCM samples and the association between ex-
pression of lumican, LOX, LOXL2, TGF-β1, TGF-β2 and collagen isoform genes. (A) Data were
normalised to RPS7 and RPL30. ∆CT = CT (gene of interest) − CT (housekeeping gene); N indicates
the number of samples from different cats used for reverse-transcription quantitative polymerase
chain reaction (RT-qPCR). Genes and encoded proteins: ACTA2, smooth-muscle alpha (α)-2 actin;
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LUM, lumican; LOX, lysyl oxidase; LOXL2, lysyl oxidase-like 2; COL1A1, collagen type I alpha 1
chain; COL3A1, collagen type III alpha 1 chain. (B) Graphs showing the association between LUM
(∆CT) and LOX (∆CT), LOXL2 (∆CT), TGFB1 (∆CT), TGFB2 (∆CT), COL1A1 (∆CT) and COL3A1
(∆CT). Data were analysed using Pearson’s correlation test.

3.7. Relationship between Collagen and Non-Collagen Myocardial Components and
TGF-β Isoforms

To further explore the link between HCM-associated pathological remodelling and
TGF-β isoforms, we investigated the relationship between TGF-β isoforms and myocardial
protein components (collagen and non-collagen content) in the HCM and control cats. For
TGF-β2 protein, a strong correlation existed with the collagen component of the LV and
a moderate correlation with the total protein content and the non-collagen component
of LV. In contrast, no association was detected between TGF-β1 protein and any of the
components (Figure 8).
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Figure 8. Correlations between myocardial expression of TGF-β isoforms based on Western blot data
and expansion of different protein components of the LV in cats. Graphs illustrate that total protein,
non-collagen and collagen did not show a significant positive association with (A) TGF-β1 but did
with (B) TGF-β2. Data were analysed using Pearson’s correlation test.

3.8. Exploration of Soluble and Insoluble Collagen

To further characterise the collagen component of the myocardium, we performed a
pilot investigation in two control and four HCM cats (that had previously been included
in the IHC studies) to measure the fraction of soluble versus non-soluble (a surrogate of
increased number of collagen cross-links) collagen in the LVFW. In all LV samples, over
80% of the collagen was insoluble. The insoluble collagen fraction of the two control cats
was 82.4 and 87.2 (%). The insoluble collagen fraction for the four HCM cats was greater, at
88.1, 95.1, 98.4 and 98.8 (%). See Supplementary Materials Figure S3 for quantified soluble
and insoluble collagen in the LV from these cats.

4. Discussion

The aim of this study was to explore protein mediators associated with myocardial
remodelling in cats with HCM. We measured the expression and identified the cellular
localisation of three key proteins that affect the quantity and potentially the structural
composition of collagen in the ECM, as well as potentially promoting cardiomyocyte
hypertrophy in the diseased myocardium. From a clinical perspective, the reduced ven-
tricular compliance observed in HCM is affected by both the quantity of collagen and
its organisation, including increased cross-links. Similarly, cardiomyocyte hypertrophy, a
characteristic finding in HCM, can result in impaired ventricular relaxation [50]. A stiffer
and poorly relaxing ventricle reduces diastolic function and leads to increased ventricular
filling pressure, left atrial enlargement and congestive heart failure. In addition, fibrotic
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changes in the myocardium can be arrhythmogenic and may predispose to sudden cardiac
death [45,51]. Heart failure and arrhythmogenic death are characteristic findings in feline
HCM [5].

In agreement with previous studies, we showed that the myocardium of cats with
HCM has an increased numbers of infiltrating mononuclear cells (presumed inflammatory)
and contains cardiomyocytes with increased width compared to control cats [3,7,11]. More-
over, we demonstrated that LV enlargement results from an expansion in both collagen
and non-collagen myocardial compartments, and within the collagen compartment, we
identified a trend toward a greater % fraction of mature collagen (insoluble with greater
proportion of cross-links), similar to that described in human patients with HCM [27].
Interestingly, we did not observe a difference in the percentage of collagen to total protein
between the HCM and control cats (Figure 1). This finding would suggest that, overall,
the collagen component (stained by Sirius Red) increased proportionally with the non-
collagenous component including cellular and non-collagen ECM proteins such as lumican
(stained by Fast Green). This result might be due to the different methodology used, since
in the previous publication collagen was quantified using area fraction (%) [3], whereas
in this study collagen (%) was calculated from weight (µg). Furthermore, our method
of analysis would inevitably stain and therefore quantify the collagen-rich endocardium
and epicardium in the tissue sections in both the control and HCM cats, which would be
different from the collagen (%) taken only from the myocardium.

In addition, in the HCM cats, using IHC, we observed increased myocardial deposition
of important proteins (lumican, LOX and TGF-β isoforms) that have been implicated in my-
ocardial remodelling in human HCM [27,28,52] and documented their localisation within
the cellular and/or extracellular components of the myocardium. Our findings provide
further evidence of similarities between feline and human HCM at the molecular and
cellular level, suggesting that key pathological processes are germane to both species [5].

Increased expression of lumican has been identified in myectomy samples from human
patients with HCM, using proteomic analysis, which correlated strongly with myocardial
fibrosis determined by LGE on cMRI [28]. Likewise, we confirmed an increased quantity
of lumican in myocardial samples from cats with HCM with intense immunostaining
overlying and highlighting collagen strands not only in areas with replacement fibrosis
but also with interstitial fibrosis, which is consistent with the role of lumican as a pro-
teoglycan critical for collagen organisation [53–55]. The immunostaining of lumican in
cardiomyocytes in the HCM cats was interesting, as previous reports of human HOCM
and a mice model of HCM suggested that lumican was detected in the areas between
cardiomyocytes [55]. However, our observation is supported by an in vitro study which
showed that murine-induced pluripotent stem-cell-derived cardiomyocytes exhibited a sub-
stantial upregulation of a number of ECM-associated transcripts, including lumican, when
cultured on matrices with fibrotic-like elasticity [56]. Furthermore, lumican transcripts have
been detected in mouse [57] and rat cardiomyocytes subjected to ischemia/reperfusion
injury [58]. Of interest was the intense staining of lumican within cardiomyocytes in regions
of the myocardium with increased numbers of mononuclear cells, which may suggest a
role for mononuclear-cell-derived mediators in lumican regulation. Indeed, inflamma-
tory cell cytokines have been shown to upregulate lumican expression via chemokine
regulated pathways in myocardial and corneal tissue [59,60], and previous studies have
identified macrophage-driven myocardial remodelling within a pro-inflammatory envi-
ronment in cats with HCM [7,33]. In addition to its role in collagen organisation, lumican
has numerous other biological functions. For instance, adding lumican to rodent cardiac
fibroblasts in vitro was shown to enhance the expression of LOX, TGF-β2 and COL1A2 [20].
Moreover, collagen fibres were reported to be thicker and longer in human foetal cardiac
fibroblasts exposing to exogenous lumican [55]. Therefore, it is possible that enhanced
lumican expression during disease progression could initiate lumican regulated myocar-
dial remodelling via paracrine signalling between cardiomyocytes and cardiac fibroblasts
involving downstream mediators such as TGF-β and LOX [19,40,61,62].
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There is limited information on the role of LOX, an enzyme implicated in myocardial
collagen cross-linking [63–65], in feline HCM. A recent paper identified increased expres-
sion of myocardial LOX in human patients with HCM which correlated with measures of
diastolic dysfunction and left ventricular stiffness on echocardiography and cMRI [27]. Our
findings show that the expression of LOX gene was increased in myocardial samples from
HCM cats and correlated strongly with LUM gene expression which suggests that lumican
may be an important inducer of LOX expression [19,20]. However, LOX isoenzymes can
also be directly upregulated in the myocardium by TGF-β [21,66] and other inflammatory
mediators [21,67]. We attempted to quantify the protein level of LOX isoenzymes using
immunoblotting but despite using a number of different antibodies it was not possible to
achieve optimal cross-reactivity with feline epitopes. The remaining available myocardial
samples were used for a pilot study to quantify the amount of soluble and insoluble colla-
gen. The greater mature collagen fraction (%) in the 4 HCM cats versus that in the 2 control
cats may suggest an increase in collagenous cross-links in the HCM hearts, as shown in
humans with HCM [27]. However, future studies measuring LOX enzyme activity and
further quantifying the amount of soluble and insoluble collagen in feline myocardium
using a greater number of samples are warranted for definitive conclusion to be drawn.

We also identified a significant increase in the expression of LOX in the cardiomyocytes
of HCM cats (Figure 5E) which concurs with a recent finding in human HCM patients [27].
However, without additional information from functional data, it is not possible to de-
termine the biological significance of this. Nevertheless, evidence from rodent models
suggests a possible role for LOX isoenzymes in the development of cardiomyocyte hypertro-
phy. Overexpression of human LOX in cardiomyocytes and cardiac fibroblasts in a murine
transgenic model of aggravated cardiomyocyte hypertrophy induced by angiotensin II [37]
and overexpression of LOXL1, an isoenzyme that bears 88% of homology with LOX in
cardiomyocytes in a rat model [36], was sufficient to cause cardiomyocyte hypertrophy.
In addition, stimulation with hypertrophic agonists increased LOXL1 expression in rat
cardiomyocytes in vitro and cardiac hypertrophy with fibrosis in vivo which was abro-
gated by adding a the LOXL1 inhibitor [38]. Based on these studies, it is possible that the
increased expression of LOX in the cardiomyocytes from HCM cats may at least in part be
responsible for cardiomyocyte hypertrophy in feline HCM.

A final focus of our study was the expression and spatial distribution of TGF-β
isoforms in the myocardium. TGF-β acts on multiple cell types within the diseased my-
ocardium and modulates cell–cell interactions, which result in pathological processes,
including cardiac hypertrophy and fibrosis [68]. For instance, in a mouse model of cMyBP-
C cardiomyopathy, both cardiomyocyte hypertrophy and myocardial fibrosis could be
prevented or attenuated by deleting a key TGF-β receptor (Tgfbr2) in myofibroblasts [62].
We established that TGF-β2 immunostaining was strikingly increased in cardiomyocytes
in the HCM cats and correlated with the expansion of both collagen and non-collagen
myocardial components. These findings would suggest that TGF-β2, and not TGF-β1, is
the primary isoform driving myocardial fibrosis and cardiomyocyte hypertrophy in feline
HCM, as supported by a previous feline study [6]. Additionally, in myectomy samples
from human patients with the obstructive form of HCM, TGF-β2, and not TGF-β1, is
also found to be the most transcribed TGF-β gene [69]. HCM-associated alterations in
cardiomyocyte loading conditions, together with the release of inflammatory cytokines,
may contribute to fibrogenesis and hypertrophy through the upregulation of lumican and
LOX isoforms and subsequent downstream targeting of proteins, including members of
the TGF-β family [19,20,59,60,67]. Our observation of strong associations between these
various mediators may suggest that similar pathways also operate in feline HCM. For
instance, our findings that LOX and TGF-β2 are highly expressed in cardiomyocytes in
HCM cats may indicate an interdependent role for both mediators in myocardial remod-
elling. The functional relationship between the TGF-β and lysyl oxidase protein family is
complex, but TGF-β family members can regulate the amount and activity of all five LOX
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isoenzymes [66,70–72], and it is possible that TGF-β2 upregulates the expression of LOX
and vice versa in the cardiomyocytes of the HCM cats.

We also examined the expression of TGF-β in the coronary vasculature and showed
increased immunolabelling of TGF-β1 in the tunica media of the intramural coronary
arteries in the HCM cats (Figure 6C), and this may be related to intramural coronary
artery disease (IMCD), a condition commonly recognised in HCM [73]. Although not
directly comparable to the chronic development of IMCD seen in HCM, upregulation of
TGF-β1 has also been identified in a number of acute carotid injury models, and this is
consistent with its role in vascular remodelling [74–76]. Expression of TGF-β2 was only
seen in the coronary smooth-muscle cells in the HCM cats (Figure 6H). However, there is
limited published information concerning the role of TGF-β2 in coronary artery pathology
in myocardial disease across species, and further studies into this intriguing finding are
therefore required.

Based on evidence from human patients and data from rodent and in vitro models,
we propose a possible scenario linking our results with the pathological changes seen in
cats with myocardial disease. HCM-associated mutations and mononuclear-cell-derived
inflammatory signalling are both known to induce cardiomyocyte stress through several
mechanisms [7,29,32]. These factors may lead to an increase in myocardial lumican expres-
sion [59,60] and enhanced reciprocal paracrine and autocrine signalling involving lumican,
LOX and TGF-β isotypes within and between cardiomyocytes and cardiac fibroblasts. Such
aberrant signalling could provoke both cardiomyocyte hypertrophy and expansion of the
ECM, in addition to altering the structure of its principal component, collagen, through
increased cross-linking (Figure 9).
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Figure 9. Schematic showing the proposed roles of lumican, LOX and TGF-β2 in LV remodelling
in feline HCM. Enhanced signalling involving lumican, LOX and TGF-β isotypes within and be-
tween cardiomyocytes and cardiac fibroblasts could provoke both cardiomyocyte hypertrophy and
expansion of the ECM in HCM affected hearts.

Fibrosis and hypertrophy are important pathological changes in human and feline
HCM, which can lead to impaired cardiac function, heart failure, arrhythmias and sudden
cardiac death, and a greater understanding of the mechanisms driving this pathology may
facilitate development of potential therapies. For example, inhibition of LOX isoenzymes
has shown to be of benefit in diminishing myocardial fibrosis in both volume- and pressure-
overload murine models of heart failure [26,77,78]. Furthermore, a trial on heart-failure
patients treated with the loop diuretic torasemide showed reduced myocardial LOX and
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collagen cross-linking and improved ejection fraction [24]. The therapeutic potential of
TGF-β inhibition in human HCM was illustrated in the phase-2 VANISH trial, using the
angiotensin II receptor blocker (ARB) valsartan in early stage HCM patients. Pre-clinical
studies in a mouse HCM model showed that ARBs administered before significant my-
ocardial remodelling prevented the development of hypertrophy and fibrosis by inhibiting
TGF-β activation [79]. The VANISH trial indicated that asymptomatic young people with
pathogenic sarcomeric gene mutations given valsartan had more favourable overall cardiac
structure adaptations at 2 years compared with those treated with a placebo [79]. Prospec-
tive trails using these therapeutic agents in the feline clinic may be appropriate given that
we identified a similar role for these mediators in feline HCM.

There are some limitations to the study. First, the genotypes of the cats enrolled in the
study were unknown. At present, only five mutations associated with HCM in cats have
been identified [46]. Therefore, the inclusion of genotype-positive and phenotype-negative
HCM cats could not be ruled out. Second, our conclusions are mainly derived from a
correlation analysis, which does not necessarily represent a causative relation, and an
increased expression of lumican, LOX and TGF-β isoforms does not confirm an increased
biological activity. For instance, both TGF-β isoforms detected were consistent with TGF-β
bound to a latency protein [77]. In addition, other factors, such as aldosterone, have been
shown to upregulate lysyl oxidases through various pathways, and, similarly, numerous
factors control the expression and activation of TGF-β in the myocardium [78,79]. Hence,
lumican is probably only one of many upstream factors driving ECM remodelling [21].
Third, although we identified a higher percentage of insoluble collagen in HCM cats in our
pilot study, no statistical analysis was performed due to the inadequacy of the myocardial
samples (Supplementary Materials Figure S3). Fourth, despite the increased expression of
LOX in the myocardium in the HCM cats, we did not perform functional studies measuring
the activity of the LOX isoenzymes. Moreover, it is recognised that cross-linking of collagen
can result from the activity of other enzymes, such as transglutaminase 2 [80], or due
to age-related changes, such as advanced glycation [81,82], which were not assessed in
this study. Fifth, although we identified an increased cardiomyocyte width in HCM cats,
transcriptional markers of cardiomyocyte hypertrophy, such as BNP or Myh7, were not
assessed. Sixth, the myocardial samples from the HCM cats used in this study represent
different time points in the diseases’ progression and may account at least in part for the
variation in the amount of insoluble collagen between affected cats. Seventh, despite that
mononuclear infiltrates have been previously shown to be inflammatory leucocytes in other
human and feline publications [7,29], it would have been ideal to confirm this in our study
by performing IHC. Finally, myocardial samples from the mid left ventricular free wall
were used in this study, and these are different from the myectomy samples taken from
the basilar interventricular septum in the studies we referenced from human patients with
the obstructive form of HCM. Obstructive HCM can result in a pressure load on the LV, in
addition to the impact of the HCM causing mutation, which may affect the expression of
mediators in the remodelled myocardium.

5. Conclusions

We demonstrated an increased expression and determined the localisation of key
mediators of myocardial remodelling in cats with HCM, similar to what has been shown in
human HCM patients. Our results offer further credence for the similarities between feline
and human HCM and may have future therapeutic implications for the feline population.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/ani13132112/s1, Table S1: Signalment, echocardiographic parameters and
histopathology diagnosis; Table S2: Clinical presentation and imaging summary; Table S3: Information
on echocardiography; Table S4: Sequence and source of primers; Figure S1: Immunofluorescence of
LOX and lumican; Figure S2: The uncropped images of Western blot analyses of TGF-β1 and TGF-β2;
Figure S3: Exploration of soluble and insoluble collagen; Figure S4: Comparison of immunostaining of
LOX on kidney tissues from cat and mouse; File S1: data.
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