CSN1S1 and LALBA Polymorphisms and Other Factors Influencing Yield, Composition, Somatic Cell Score, and Technological Properties of Cow’s Milk
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Genotyping
2.2. Milk Performance and Quality
2.3. Statistical Analysis
- (a)
- For milk yield and composition:Yjlk = geni + farmj + breedk + sirel + eijkl,
- (b)
- For milk quality:Yogurtijklmno = geni + farmj + lacsk + seasonl + proteinm + pen + sireo + eijklmno,
- (c)
- For rennetability:Rennetabilityijklmno = geni + farmj + seasonk + proteinl + NFSm + pen + sireo + eijklmno,Ethanolijkl = geni + farmj + pek + sirel + eijkl,
- (d)
- For SCS:SCSijklmn = geni + farmj + lacsk + monthl + pem + siren + eijklmn,
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Radišić, R.; Sredojević, Z.; Perišić, P. Some economic indicators of production of cow’s milk in the Republic of Serbia. Ekon. Poljopr. 2021, 68, 113–126. [Google Scholar] [CrossRef]
- Zavadilová, L.; Kašná, E.; Krupová, Z.; Klímová, A. Health traits in current dairy cattle breeding: A review. Czech J. Anim. Sci. 2021, 66, 235–250. [Google Scholar] [CrossRef]
- Acosta-Balcazar, I.C.; Quiroz-Valiente, J.; Granados-Zurita, L.; Aranda-Ibáñez, E.M.; Hernández-Nataren, E.; Rincón-Ramírez, J.A.; Granados-Rivera, L.D. Effect of genotype, lactation and climatic factors on fatty acid profile of bovine milk. Czech J. Anim. Sci. 2022, 67, 167–175. [Google Scholar] [CrossRef]
- Amalfitano, N.; Cipolat-Gotet, C.; Cecchinato, A.; Malacarne, M.; Summer, A.; Bittante, G. Milk protein fractions strongly affect the patterns of coagulation, curd firming, and syneresis. J. Dairy Sci. 2019, 102, 2903–2917. [Google Scholar] [CrossRef]
- Amalfitano, N.; Stocco, G.; Maurmayr, A.; Pegolo, S.; Cecchinato, A.; Bittante, G. Quantitative and qualitative detailed milk protein profiles of 6 cattle breeds: Sources of variation and contribution of protein genetic variants. J. Dairy Sci. 2020, 103, 11190–11208. [Google Scholar] [CrossRef] [PubMed]
- Bittante, G.; Penasa, M.; Cecchinato, A. Invited review: Genetics and modeling of milk coagulation properties. J. Dairy Sci. 2012, 95, 6843–6870. [Google Scholar] [CrossRef]
- Gustavsson, F.; Buitenhuis, A.J.; Glantz, M.; Stålhammar, H.; Lindmark-Månsson, H.; Poulsen, N.A.; Larsen, L.B.; Andrén, A.; Paulsson, M. Impact of genetic variants of milk proteins on chymosin-induced gelation properties of milk from individual cows of Swedish Red dairy cattle. Int. Dairy J. 2014, 39, 102–107. [Google Scholar] [CrossRef]
- Cecchinato, A.; Chessa, S.; Ribeca, C.; Cipolat-Gotet, C.; Bobbo, T.; Casellas, J.; Bittante, G. Genetic variation and effects of candidate-gene polymorphisms on coagulation properties, curd firmness modeling and acidity in milk from Brown Swiss cows. Animal 2015, 9, 1104–1112. [Google Scholar] [CrossRef]
- Sanchez, M.P.; El Jabri, M.; Minéry, S.; Wolf, V.; Beuvier, E.; Laithier, C.; Delacroix-Buchet, A.; Brochard, M.; Boichard, D. Genetic parameters for cheese-making properties and milk composition predicted from mid-infrared spectra in a large data set of Montbeliarde cows. J. Dairy Sci. 2018, 101, 10048–10061. [Google Scholar] [CrossRef]
- Kyselová, J.; Tichý, L.; Jochová, K. The role of molecular genetics in animal breeding: A minireview. Czech J. Anim. Sci. 2021, 66, 107–111. [Google Scholar] [CrossRef]
- Caroli, A.M.; Chessa, S.; Erhardt, G.J. Invited review: Milk protein polymorphisms in cattle: Effect on animal breeding and human nutrition. J. Dairy Sci. 2009, 92, 5335–5352. [Google Scholar] [CrossRef]
- Farrell, H.M.; Jimenez-Flores, R.; Bleck, G.T.; Brown, E.M.; Butler, J.E.; Creamer, L.K.; Hicks, C.L.; Hollar, C.M.; Ng-Kwai-Hang, K.F.; Swaisgood, H.E. Nomenclature of the proteins of cows’ milk—Sixth revision. J. Dairy Sci. 2004, 87, 1641–1674. [Google Scholar] [CrossRef]
- Gallinat, J.L.; Qanbari, S.; Drögemüller, C.; Pimentel, E.C.G.; Thaller, G.; Tetens, J. DNA-Based identification of novel bovine casein gene variants. J. Dairy Sci. 2013, 96, 699–709. [Google Scholar] [CrossRef]
- Miluchova, M.; Gabor, M.; Trakovicka, A. Analysis of genetic structure in Slovak Pinzgau cattle using five candidate genes related to milk production traits. Genetika-Belgrade 2014, 46, 865–875. [Google Scholar] [CrossRef]
- Ozdemir, M.; Kopuzlu, S.; Topal, M.; Bilgin, O.C. Relationships between milk protein polymorphisms and production traits in cattle: A systematic review and meta-analysis. Arch. Anim. Breed. 2018, 61, 197–206. [Google Scholar] [CrossRef]
- Cardak, A.D. Effects of genetic variants in milk protein on yield and composition of milk from Holstein-Friesian and Simmentaler cows. S. Afr. J. Anim. Sci. 2005, 35, 41–47. [Google Scholar]
- Kučerová, J.; Matějíček, A.; Jandurova, O.M.; Sørensen, P.; Němcová, E.; Štípková, M.; Kott, T.; Bouška, J.; Frelich, J. Milk protein genes CSN1S1, CSN2, CSN3, LGB and their relation to genetic values of milk production parameters in Czech Fleckvieh. Czech J. Anim. Sci. 2006, 51, 241–247. [Google Scholar] [CrossRef]
- Ketto, I.A.; Knutsen, T.M.; Oyaas, J.; Heringstad, B.; Adnoy, T.M.; Devoid, T.G.; Skeie, S.B. Effects of milk protein polymorphism and composition, casein micelle size and salt distribution on the milk coagulation properties in Norwegian Red cattle. Int. Dairy J. 2017, 70, 55–64. [Google Scholar] [CrossRef]
- Ardicli, S.; Soyudal, B.; Samli, H.; Dincel, D.; Balci, F. Effect of STAT1, OLR1, CSN1S1, CSN1S2, and DGAT1 genes on milk yield and composition traits of Holstein breed. Rev. Bras. Zootecn. 2018, 47, e20170247. [Google Scholar] [CrossRef]
- Stănciuc, N.; Râpeanu, G. An overview of bovine α-lactalbumin structure and functionality. Ann. Univ. Dunarea Jos. 2010, 34, 82–93. [Google Scholar]
- Zhang, J.; Sun, D.X.; Womack, J.E.; Zhang, Y.; Wang, Y.C.; Zhang, Y. Polymorphism identification, RH mapping and association of alpha-lactalbumin gene with milk performance traits in Chinese Holstein. Asian Austral. J. Anim. 2007, 20, 1327–1333. [Google Scholar] [CrossRef]
- Soyudal, B.; Ardicli, S.; Samli, H.; Dincel, D.; Balci, F. Association of polymorphisms in the CSN2, CSN3, LGB and LALBA genes with milk production traits in Holstein cows raised in Turkey. J. Hell. Vet. Med. Soc. 2018, 69, 1271–1282. [Google Scholar] [CrossRef]
- Tyulkin, S.V.; Vafin, R.R.; Gilmanov, K.K.; Rzhanova, I.V.; Galstyan, A.G.; Bigaeva, A.V.; Khurshudyan, S.A.; Nurmukhanbetova, D.E. DNA markers—A prediction criterion for yield and quality of raw milk. News Natl. Acad. Sci. R. 2019, 6, 177–183. [Google Scholar] [CrossRef]
- Roin, N.R.; Larsen, L.B.; Comi, I.; Devold, T.G.; Eliassen, T.I.; Inglingstad, R.A.; Vegarud, G.E.; Poulsen, N.A. Identification of rare genetic variants of the αS-caseins in milk from native Norwegian dairy breeds and comparison of protein composition with milk from high-yielding Norwegian Red cows. J. Dairy Sci. 2022, 105, 1014–1027. [Google Scholar] [CrossRef]
- Mioduszewska-Czyczyn, U.; Czarnik, U.; Walawski, K.; Rusc, A. Levels of some blood diagnostic indices in young cattle with different genotypes at the alpha-lactalbumin locus. Bull. Vet. Inst. Pulawy 2007, 51, 97–103. [Google Scholar]
- Lien, S.; Kamiński, S.; Aleström, P.; Rogne, S. A simple and powerful method for linkage analysis by amplification of DNA from single sperm cells. Genomics 1993, 16, 41–44. [Google Scholar] [CrossRef]
- ISO 5765-2:2002|IDF 79-2:2002; Dried Milk, Dried Ice-Mixes and Processed Cheese—Determination of Lactose Content—Part 2: Enzymatic Method Utilizing the Galactose Moiety of the Lactose. International Organization for Standardization: Geneva, Switzerland, 2002.
- ČSN EN ISO/IEC 17025; Conformity Assessment—General Requirements for the Competence of Testing and Calibration Laboratories. Czech Accreditation Institute: Prague, Czech, 2005. (In Czech)
- Industry, S.M. Milk Fermentation Ability Determination. Standard Milk Industry Prague: Prague, Czech, 1986. (In Czech) [Google Scholar]
- Haynes, W. Tukey’s Test. In Encyclopedia of Systems Biology; Dubitzky, W., Wolkenhauer, O., Cho, K.H., Yokota, H., Eds.; Springer-Verlag: New York, NY, USA, 2013. [Google Scholar]
- Ardicli, S.; Samli, H.; Soyudal, B.; Dincel, D.; Balci, F. Evaluation of candidate gene effects and environmental factors on reproductive performance of Holstein cows. S. Afr. J. Anim. Sci. 2019, 49, 379–394. [Google Scholar] [CrossRef]
- Caroli, A.; Rizzi, R.; Luhken, G.; Erhardt, G. Short communication: Milk protein genetic variation and casein haplotype structure in the Original Pinzgauer cattle. J. Dairy Sci. 2010, 93, 1260–1265. [Google Scholar] [CrossRef]
- Heck, J.M.L.; Schennink, A.; van Valenberg, H.J.F.; Bovenhuis, H.; Visker, M.H.P.W.; van Arendonk, J.A.M.; van Hooijdonk, A.C.M. Effects of milk protein variants on the protein composition of bovine milk. J. Dairy Sci. 2009, 92, 1192–1202. [Google Scholar] [CrossRef]
- Kim, S.; Ng-Kwai-Hang, K.F.; Hayes, J.F. The relationship between milk protein phenotypes and lactation traits in Brown Swiss and Canadienne. Asian Austral. J. Anim. 1998, 11, 311–317. [Google Scholar] [CrossRef]
- Ketto, I.A.; Abdelghani, A.; Johansen, A.G.; Oyaas, J.; Skeie, S.B. Effect of milk protein genetic polymorphisms on rennet and acid coagulation properties after standardisation of protein content. Int. Dairy J. 2019, 88, 18–24. [Google Scholar] [CrossRef]
- Devold, T.G.; Brovold, M.J.; Langsrud, T.; Vegarud, G.E. Size of native and heated casein micelles, content of protein and minerals in milk from Norwegian Red Cattle—Effect of milk protein polymorphism and different feeding regimes. Int. Dairy J. 2000, 10, 313–323. [Google Scholar] [CrossRef]
- Poulsen, N.A.; Bertelsen, H.P.; Jensen, H.B.; Gustavsson, F.; Glantz, M.; Mansson, H.L.; Andren, A.; Paulsson, M.; Bendixen, C.; Buitenhuis, A.J.; et al. The occurrence of noncoagulating milk and the association of bovine milk coagulation properties with genetic variants of the caseins in 3 Scandinavian dairy breeds. J. Dairy Sci. 2013, 96, 4830–4842. [Google Scholar] [CrossRef]
- Jensen, H.B.; Poulsen, N.A.; Andersen, K.K.; Hammershoj, M.; Poulsen, H.D.; Larsen, L.B. Distinct composition of bovine milk from Jersey and Holstein-Friesian cows with good, poor, or noncoagulation properties as reflected in protein genetic variants and isoforms. J. Dairy Sci. 2012, 95, 6905–6917. [Google Scholar] [CrossRef]
- Ketto, I.A.; Øyaas, J.; Ådnøy, T.; Johansen, A.G.; Schüller, R.B.; Narvhus, J.; Skeie, S.B. The influence of milk protein genetic polymorphism on the physical properties of cultured milk. Int. Dairy J. 2018, 78, 130–137. [Google Scholar] [CrossRef]
- Jõudu, I.; Henno, M.; Kaart, T.; Püssa, T.; Kärt, O. The effect of milk protein contents on the rennet coagulation properties of milk from individual dairy cows. Int. Dairy J. 2008, 18, 964–967. [Google Scholar] [CrossRef]
- Bonfatti, V.; de Freitas, D.R.; Lugo, A.; Vicario, D.; Carnier, P. Effects of the detailed protein composition of milk on curd yield and composition measured by model micro-cheese curd making of individual milk samples. J. Dairy Sci. 2019, 102, 7863–7873. [Google Scholar] [CrossRef]
- Niero, G.; Franzoi, M.; Manuelian, C.L.; Visentin, G.; Penasa, M.; De Marchi, M. Protein profile of cow milk from multibreed herds and its relationship with milk coagulation properties. Ital. J. Anim. Sci. 2021, 20, 2232–2242. [Google Scholar] [CrossRef]
- Cipolat-Gotet, C.; Cecchinato, A.; Malacarne, M.; Bittante, G.; Summer, A. Variations in milk protein fractions affect the efficiency of the cheese-making process. J. Dairy Sci. 2018, 101, 8788–8804. [Google Scholar] [CrossRef]
- Čítek, J.; Brzáková, M.; Hanusová, L.; Hanuš, O.; Večerek, L.; Samková, E.; Křížová, Z.; Hoštičková, I.; Kávová, T.; Straková, K.; et al. Technological properties of cow’s milk: Correlations with milk composition, effect of interactions of genes and other factors. Czech J. Anim. Sci. 2020, 65, 13–22. [Google Scholar] [CrossRef]
- Gai, N.; Uniacke-Lowe, T.; O’Regan, J.; Faulkner, H.; Kelly, A.L. Effect of protein genotypes on physicochemical properties and protein functionality of bovine milk: A review. Foods 2021, 10, 2409. [Google Scholar] [CrossRef] [PubMed]
- Čítek, J.; Brzáková, M.; Hanusová, L.; Hanuš, O.; Večerek, L.; Samková, E.; Křížová, Z.; Hoštičková, I.; Kávová, T.; Straková, K.; et al. Gene polymorphisms influencing yield, composition and technological properties of milk from Czech Simmental and Holstein cows. Anim. Biosci. 2021, 34, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Hanuš, O.; Kučera, J.; Samková, E.; Němečková, I.; Čítek, J.; Kopec, T.; Falta, D.; Nejeschlebová, H.; Rysová, L.; Klimešová, M.; et al. Raw cow milk protein stability under natural and technological conditions of environment by analysis of variance. Foods 2021, 10, 2017. [Google Scholar] [CrossRef] [PubMed]
- Fedotov, S.V.; Belozertseva, N.S.; Udalov, G.M. Peculiarities of protein composition of milk of black-motley cows with subclinical mastitis. Veterinariya 2018, 2, 34–37. (In Russian) [Google Scholar]
Gene | Genotype | n | % | χ2 | Allele Frequencies | ||
---|---|---|---|---|---|---|---|
All cows | CSN1S1 | BB | 167 | 87.4 | 0.456 ns | B | C |
BC | 24 | 12.6 | 0.937 | 0.063 | |||
CC | 0 | 0 | |||||
LALBA | AA | 0 | 0 | 32.938 *** | A | B | |
AB | 103 | 73.0 | 0.365 | 0.635 | |||
BB | 38 | 27.0 | |||||
Simmental | CSN1S1 | BB | 99 | 81.82 | 49.000 *** | B | C |
BC | 22 | 18.18 | 0.909 | 0.091 | |||
LALBA | AB | 67 | 82.72 | 34.679 *** | A | B | |
BB | 14 | 40.37 | 0.413 | 0.586 | |||
Holstein | CSN1S1 | BB | 68 | 97.14 | 62.229 *** | B | C |
BC | 2 | 2.86 | 0.986 | 0.014 | |||
LALBA | AB | 36 | 60.00 | 2.4 ns | A | B | |
BB | 24 | 40.00 | 0.300 | 0.700 |
Trait | Gene and Genotype | |||
---|---|---|---|---|
CSN1S1 BB | CSN1S1 BC | LALBA AB | LALBA BB | |
First lactation | ||||
n | 149 | 21 | 95 | 34 |
Milk yield (kg) | 8195 ± 134 | 8000 ± 283 | 8351 ± 169 | 8039 ± 250 |
p-value | 0.493 | 0.233 | ||
Crude protein (%) | 3.44 ± 0.02 | 3.45 ± 0.04 | 3.43 ± 0.03 | 3.51 ± 0.04 |
p-value | 0.836 | 0.058 | ||
Protein (kg) | 279.6 ± 4.1 | 274.3 ± 8.8 | 284.4 ± 5.3 | 279.9 ± 7.8 |
p-value | 0.551 | 0.580 | ||
Fat (%) | 4.14 ± 0.04 | 4.20 ± 0.08 | 4.12 ± 0.05 | 4.24 ± 0.07 |
p-value | 0.417 | 0.067 | ||
Fat (kg) | 338.3 ± 5.2 | 336.0 ± 11.2 | 342.0 ± 6.9 | 342.7 ± 10.2 |
p-value | 0.840 | 0.952 | ||
Second lactation | ||||
n | 137 | 19 | 82 | 35 |
Milk yield (kg) | 9135 ± 185 a | 8383 ± 334 b | 9049 ± 223 | 8760 ± 295 |
p-value | 0.021 * | 0.337 | ||
Crude protein (%) | 3.46 ± 0.03 | 3.44 ± 0.05 | 3.45 ± 0.03 | 3.53 ± 0.04 |
p-value | 0.780 | 0.085 | ||
Protein (kg) | 313.2 ± 5.9 A | 286.5 ± 10.0 B | 309.5 ± 7.0 | 307.3 ± 9.0 |
p-value | 0.005 ** | 0.807 | ||
Fat (%) | 4.14 ± 0.04 | 4.14 ± 0.09 | 4.11 ± 0.05 a | 4.28 ± 0.07 b |
p-value | 0.982 | 0.037 * | ||
Fat (kg) | 375.7 ± 7.4 a | 346.4 ± 13.4 b | 369.3 ± 9.0 | 373.5 ± 11.8 |
p-value | 0.026 * | 0.722 |
Farm | Breed | |||
---|---|---|---|---|
CSN1S1 | LALBA | CSN1S1 | LALBA | |
Trait | First lactation | |||
Milk yield (kg) | *** | *** | *** | ** |
Crude protein (%) | * | ns | * | ** |
Protein (kg) | *** | *** | * | * |
Fat (%) | *** | ** | ns | ns |
Fat (kg) | *** | *** | ** | ** |
Second lactation | ||||
Milk yield (kg) | ** | *** | ns | ns |
Crude protein (%) | ns | ns | ns | * |
Protein (kg) | *** | *** | ns | ns |
Fat (%) | * | ns | ns | ns |
Fat (kg) | *** | *** | ns | ns |
Trait | Gene and Genotype | |||
---|---|---|---|---|
CSN1S1 BB | CSN1S1 BC | LALBA AB | LALBA BB | |
Milk fermentation ability (ml NaOH) | 14.78 ± 0.19 | 15.01 ± 0.45 | 14.59 ± 0.23 | 14.88 ± 0.37 |
n | 290 | 45 | 185 | 69 |
p-value | 0.620 | 0.469 | ||
Renneting subjectively (sec) | 497.49 ± 21.03 | 501.07 ± 48.87 | 494.27 ± 29.42 | 485.56 ± 53.52 |
n | 296 | 42 | 186 | 69 |
p-value | 0.942 | 0.878 | ||
Renneting instrumentally (sec) | 309.60 ± 11.62 | 307.97 ± 25.97 | 315.88 ± 14.47 | 289.11 ± 26.35 |
n | 316 | 47 | 195 | 71 |
p-value | 0.950 | 0.338 | ||
Ethanol test (ml of ethanol) | 0.973 ± 0.094 | 0.874 ± 0.173 | 0.946 ± 0.106 | 0.969 ± 0.155 |
n | 297 | 46 | 187 | 72 |
p-value | 0.541 | 0.881 | ||
Somatic cell score | 2.936 ± 0.135 | 3.018 ± 0.297 | 3.091 ± 0.192 | 3.042 ± 0.294 |
n | 308 | 47 | 189 | 69 |
p-value | 0.781 | 0.876 |
Trait | Model with CSN1S1, Effect of | |||||
---|---|---|---|---|---|---|
Farm | Season | DIM 1 | Protein (%) | Breed | NFS 2 | |
Milk fermentation ability (ml NaOH) | *** | *** | *** | *** | ns | n/a |
Renneting subjectively (sec) | ** | * | ns | *** | ns | *** |
Renneting instrumentally (sec) | *** | * | ns | *** | ns | *** |
Ethanol test (ml of ethanol) | ns | ns | ns | ns | ns | ns |
SCS3 | *** | ns | ** | * | ns | n/a |
Model with LALBA, effect of | ||||||
Farm | Season | DIM 1 | Protein (%) | Breed | NFS 2 | |
Milk fermentation ability (ml NaOH) | *** | *** | * | ** | ns | n/a |
Renneting subjectively (sec) | * | ** | ns | *** | ns | *** |
Renneting instrumentally (sec) | ** | ns | ns | *** | ns | *** |
Ethanol test (ml of ethanol) | ns | ns | ns | ns | ns | ns |
SCS 3 | ns | * | ns | * | ns | n/a |
n | Correlation | p-Value | |
---|---|---|---|
Milk yield (kg) | 354 | −0.187 | <0.001 ** |
Crude protein (%) | 355 | 0.147 | 0.006 ** |
Casein (%) | 151 | 0.016 | 0.846 |
Fat (%) | 354 | 0.075 | 0.159 |
Lactose (%) | 355 | −0.320 | <0.0001 ** |
Citric acid (%) | 354 | −0.034 | 0.521 |
Acetone (mmol/L) | 354 | −0.058 | 0.280 |
Ketones BHB (mmol/L) | 351 | −0.062 | 0.247 |
Urea (mg/100 mL) | 355 | 0.037 | 0.486 |
Non-fat solid (%) | 272 | 0.023 | 0.707 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čítek, J.; Samková, E.; Brzáková, M.; Hanuš, O.; Večerek, L.; Hoštičková, I.; Jozová, E.; Hasoňová, L.; Hálová, K. CSN1S1 and LALBA Polymorphisms and Other Factors Influencing Yield, Composition, Somatic Cell Score, and Technological Properties of Cow’s Milk. Animals 2023, 13, 2079. https://doi.org/10.3390/ani13132079
Čítek J, Samková E, Brzáková M, Hanuš O, Večerek L, Hoštičková I, Jozová E, Hasoňová L, Hálová K. CSN1S1 and LALBA Polymorphisms and Other Factors Influencing Yield, Composition, Somatic Cell Score, and Technological Properties of Cow’s Milk. Animals. 2023; 13(13):2079. https://doi.org/10.3390/ani13132079
Chicago/Turabian StyleČítek, Jindřich, Eva Samková, Michaela Brzáková, Oto Hanuš, Libor Večerek, Irena Hoštičková, Eva Jozová, Lucie Hasoňová, and Karolína Hálová. 2023. "CSN1S1 and LALBA Polymorphisms and Other Factors Influencing Yield, Composition, Somatic Cell Score, and Technological Properties of Cow’s Milk" Animals 13, no. 13: 2079. https://doi.org/10.3390/ani13132079
APA StyleČítek, J., Samková, E., Brzáková, M., Hanuš, O., Večerek, L., Hoštičková, I., Jozová, E., Hasoňová, L., & Hálová, K. (2023). CSN1S1 and LALBA Polymorphisms and Other Factors Influencing Yield, Composition, Somatic Cell Score, and Technological Properties of Cow’s Milk. Animals, 13(13), 2079. https://doi.org/10.3390/ani13132079