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Simple Summary: We implemented a molecular and phylogenetic analysis and a comparative
karyological investigation with standard and chromosome banding methods on different taxa of
the endemic Malagasy velvet geckos of the genus Blaesodactylus. We present the description of the
karyotype of three different taxa and a characterization of the chromosomal diversity in the genus. We
show the occurrence of karyological variability in the genus Blaesodactylus in terms of chromosome
number (2n = 40–42), morphology, chromosome position of loci of NORs, and distribution pattern of
heterochromatin. Considering our results together with the available information on evolutionary
related gecko species, we hypothesize that the karyotype evolution in Blaesodactylus mostly involved
a decrease in the total number of chromosomes and the formation of biarmed elements. We also
highlight that similar pathways of chromosomal rearrangements have been previously observed in
other geckos, possibly representing a convergent karyotype evolution.

Abstract: We performed a molecular and phylogenetic analysis and a comparative cytogenetic study
with standard karyotyping, silver staining (Ag-NOR) and sequential C-banding + Giemsa, + fluo-
rochromes on several Blaesodactylus samples. The phylogenetic inference retrieved two main clades,
the first comprises B. victori, B. microtuberculatus and B. boivini, while the second includes B. sakalava,
B. antongilensis and B. ambonihazo. The available samples of B. sakalava form two different clades (here
named B. sakalava clade A and clade B), which probably deserve a taxonomic re-evaluation. We found
a karyological variability in Blaesodactylus in terms of chromosome number (2n = 40–42), morphology,
location of NORs, and heterochromatin distribution pattern. Blaesodactylus antongilensis and B. sakalava
clade A and B showed a karyotype of 2n = 40 mostly telocentric chromosomes. Pairs 1 and 6 were
metacentric in B. sakalava clade A and B, while pair 1 was composed of subtelocentric/submetacentric
elements in B. antongilensis. In contrast, B. boivini displayed a karyotype with 2n = 42 only telocentric
chromosomes. NORs were on the first chromosome pair in B. boivini, and on the second pair in
B. antongilensis. Adding our data to those available from the literature on evolutionarily related
species, we highlight that the chromosome diversification in the genus probably proceeded towards
a progressive reduction in the chromosome number and the formation of metacentric elements.

Keywords: cytogenetics; evolution; karyotype; Madagascar; Squamata

1. Introduction

Madagascar is well-known for its extraordinary biodiversity and remarkable degree
of endemism and represents a unique model region for evolutionary studies [1–3]. The
terrestrial reptile fauna of the island includes more than 450 endemic species of squamates
belonging to six families of snakes (Boidae, Elapidae, Psammophiidae, Pseudoxyrhophiidae,
Typhlopidae, Xenotyphlopidae) and six families of lizard (Agamidae, Chamaeleonidae,
Gekkonidae, Gerrhosauridae, Opluridae, and Scincidae) [4,5]. Among them, the Malagasy
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Gekkonidae include eleven different genera (Blaesodactylus, Ebenavia, Geckolepis, Gehyra,
Hemidactylus, Lygodactylus, Matoatoa, Paragehyra, Paroedura, Phelsuma and Uroplatus) and
more than 140 currently described species [5]. Nevertheless, although there has been
significant progress achieved in the last few decades, the diversity of Malagasy reptiles is
still relatively poorly known, with several new species discovered every year [4,5]. Even if
recent research began to better describe the taxonomy and the evolutionary relationships of
several different groups, only a small fraction of Malagasy reptile species has been analyzed
with cytogenetic methods, despite increasing evidence that their diversity is reflected at
the karyotypic level (see e.g., [6–9]). In fact, karyotype changes may either precede or
follow molecular evolution, directly promoting cladogenesis or deriving from phylogenetic
divergence [10,11]. In either circumstance, different karyological characteristics (e.g., differ-
ent ploidy, total haploid number of chromosomes, chromosome morphology, presence or
absence of differentiated sex chromosomes and occurrence and localization of particular
DNA sequences) represent discrete cytogenetic markers which are helpful to describe
different evolutionary trends or apomorphisms (see e.g., [12–14]).

Furthermore, squamates reptiles represent emergent model organisms in evolutionary
cytogenetics as they are characterized by a high variability in chromosome number (from
2n = 16 to 2n = 62) and morphology and by the evolution of simple (XY, ZW) and multiple
sex chromosome systems (X1X2Y and Z1Z2W) with either male or female heterogamety
(see e.g., [15]). Two different general karyotype organizations have been described in
squamates as “asymmetrical” (with macro- and microchromosomes) and “symmetrical”
(with chromosomes that gradually decrease in length). Asymmetrical karyotypes are
common in Iguania, many Scincomorpha and Platynota, while symmetrical karyotypes are
often found in Lacertidae and Gekkota (see e.g., [15]).

The genus Blaesodactylus currently includes six described species (B. ambonihazo,
B. antongilensis, B. boivini, B. victori, B. microtuberculatus and B. sakalava), which have been
recently studied with morphological and molecular methods [16–19]. In contrast, chromo-
some analyses have been performed so far only on samples ascribed to B. boivini based on
morphological characters [20], leaving the karyological variability of the genus completely
unexplored. Concerning B. boivini, Chrostek et al. [20] analyzed one male and one female
sample of the species and described a karyotype composed of 2n = 42, with only telocentric
chromosomes which gradually decrease in length. Blocks of heterochromatin were iden-
tified on the centromeres of the six largest chromosome pairs and both sexes showed the
same chromosome complement, without any evident heteromorphic sex chromosome pair.
NORs were identified on the centromeric region of the first chromosome pair and telomeric
repeats were localized at the centromeres of all chromosome pairs as well as at interstitial
positions of several pairs [20].

In this paper we performed a preliminary molecular and phylogenetic analysis, using
a segment of the mitochondrial ND4, and a comparative cytogenetic study with stan-
dard karyotyping, Ag-NOR staining and sequential C-banding on different Blaesodactylus
samples from distinct Malagasy areas. We provide the first karyotype description of dif-
ferent taxa of the genus and a characterization of their chromosomal diversity. We show
that chromosome variability in terms of total chromosome number, number of uni- and
biarmed chromosomes and a different localization of chromosomal markers (NORs loci
and heterochromatic regions) characterizes the studied taxa of the genus Blaesodactylus.

Finally, adding our newly generated karyotype data to those already available from
the literature on evolutionarily closely related species and genera, we advance a hypothesis
on the chromosome diversification in different genera of the family Gekkonidae.

2. Material and Methods
2.1. Sampling

We studied ten specimens of three species of Malagasy geckos of the genus Blaeso-
dactylus. The taxonomic attribution after the molecular analysis (see below), field number,
sex, and origin of all the samples analyzed in this study are provided in Table 1. All the
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specimens used in the molecular and cytogenetic analyses (Table 1) were collected between
1997–2002 for other research purposes and no animal was sampled during the realization
of this study. After capture, animals were injected with a 0.5 mg/mL colchicine solution
(0.1 mL/10 g body weight). Tissue samples (intestine, spleen and gonads) were incubated
for 30 min in hypotonic solution (KCl 0.075 M + sodium citrate 0.5%, 1:1), fixed and con-
served in Carnoy’s buffer solution (methanol and acetic acid, 3:1). The fixed material was
then preserved at 4 ◦C and transferred to the laboratory of University of Naples Federico II
where it was processed as described below.

Table 1. Taxonomic attribution, origin, sex, field number of the study specimens of Blaesodactylus.

Species Specimen Locality Sex

B. antongilensis GA 483 Masobe Forest, Betampona female
B. antongilensis GA 1049 Masobe Forest, Betampona female
B. boivini FGMV 3010 Montagne des Français female
B. sakalava clade A FGMV 2029 Ifaty female
B. sakalava clade A FGMV 2030 Ifaty male
B. sakalava clade A FGMV 2032 Ifaty male
B. sakalava clade B GA 80 Isalo male
B. sakalava clade B GA 376 Marofandilia juvenile
B. sakalava clade B GA 377 Marofandilia male
B. sakalava clade B GA 378 Marofandilia male

2.2. Molecular and Phylogenetic Analysis

A molecular and phylogenetic analysis was performed to ascertain the taxonomic
status and the phylogenetic position of all the samples studied and to associate DNA
sequences to the newly described karyotypes. The molecular analysis was performed
using a fragment of the mitochondrial NADH dehydrogenase subunit 4 (ND4), which has
been previously used in phylogenetic inferences in the genus Blaesodactylus [16,17,19,21].
Total genomic DNA was extracted following Sambrook et al. [22] and PCR amplification
of the chosen ND4 fragment was performed according to Bauer et al. [17]. Amplicons
were sequenced on an automated sequencer ABI 377 (Applied Biosystems, Foster City, CA,
USA) using BigDye Terminator 3.1 (ABI). Chromatograms were checked and manually
edited using Chromas Lite 2.6.6 and BioEdit 7.2.6.1 [23] and compared with available
homologous traits deposited in GenBank. All the newly determined sequences were
deposited in GenBank (accession numbers: OR113357-OR113363). A phylogenetic analysis
using the newly determined ND4 sequences along with the homologous traits presented by
Ineich et al. [19] (accession numbers: KX101035-KX101047, including those of the samples
FGMV 2029, FGMV 2030 and FGMV 2032, here used in the cytogenetic analysis) was
performed using MrBayes 3.2 [24]. The best fitting substitution model was selected using
jModeltest 2.1.7 under the corrected Akaike information criterion (AICc) [25]. We run two
independent Monte Carlo Markov Chains (MCMC) for 8,000,000 generations, sampling the
chains every 1000 generations and discarding the first 25% of the trees sampled as burn-
in. We used as the outgroup the homologous ND4 trait of Geckolepis maculata (accession
number JQ974269).

2.3. Cytogenetic Analysis

Chromosomes were obtained from preserved tissue samples and cell suspensions
using the air-drying method, as described in Mezzasalma et al. [9]. The chromosome anal-
ysis was performed with standard karyotyping (5% Giemsa solution at pH 7 for 10 min)
and different chromosome staining and banding methods. C-banding was performed
following Sumner [26], and sequential C-banding + CMA3 + DAPI according to Mezza-
salma et al. [27]. Active nucleolus organizing regions (NORs) were identified following
the Ag-NOR staining method described by Howell and Black [28]. Metaphase plates were
scored and recorded with an optical and an epifluorescence microscope (Axioscope Zeiss)
equipped with an image analysis system. Karyotype reconstruction and calculation of chro-
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mosome relative length (RL = length of a chromosome/total karyotype length) (see Table 2)
were performed after scoring at least ten metaphase plates per sample. Chromosomes were
classified following Levan et al. [29] in metacentric (m), submetacentric (sm), subtelocentric
(st) and telocentric (t).

Table 2. Chromosome morphometric parameters of the study species. RL% = Relative Length
(length a chromosome/total chromosome length × 100). m = metacentric; sm = submetacentric;
t = telocentric.

Species B. antongilensis B. boivini B. sakalava cl. A B. sakalava cl.B
Chrom. RL% RL% RL% RL%

1
9.6 ± 0.7

25.0 ± 4.0
(st/sm)

9.7 ± 0.6 (t) 9.8 ± 1.0
39.3 ± 4.5 (m)

9.1 ± 0.8
43.1 ± 3.4 (m)

2 8.7 ± 1.1 (t) 8.2 ± 0.4 (t) 8.2 ± 0.9 (t) 8.1 ± 0.9 (t)
3 7.4 ± 0.4 (t) 7.4 ± 1.2 (t) 8.1 ± 0.7 (t) 7.8 ± 0.6 (t)
4 7.3 ± 0.5 (t) 6.6 ± 0.9 (t) 7.1 ± 0.6 (t) 6.6± 0.8 (t)
5 7.0 ± 0.7 (t) 5.8 ± 0.7 (t) 6.8.1 ± 0.5 (t) 6.4 ± 0.6 (t)

6 6.7 ± 0.6
38.4 ± 3.5 (m) 5.8 ± 1.0 (t) 6.2 ± 0.8

47.0 ± 3.0 (m)
6.2 ± 0.6

46.3 ± 3.1 (m)
7 6.2 ± 0.9 (t) 5.7 ± 0.5 (t) 5.4 ± 0.6 (t) 6.1 ± 0.8 (t)
8 5.6 ± 0.8 (t) 5.6 ± 0.4 (t) 5.3 ± 0.7 (t) 5.7 ± 0.6 (t)
9 5.0 ± 0.6 (t) 5.6 ± 0.6 (t) 5.3 ±0.8 (t) 5.4 ± 0.5 (t)
10 4.9 ± 0.5 (t) 5.6 ± 0.6 (t) 5.2 ± 0,6 (t) 4.9 ± 0.4 (t)
11 4.8 ± 0.8 (t) 4.6 ± 0.5 (t) 4.2 ± 0.6 (t) 4.5 ± 0.6 (t)
12 4.6 ± 0.4 (t) 3.9 ± 0.5 (t) 4.0 ± 0.4 (t) 4.1 ± 0.7 (t)
13 4.0 ± 0.6 (t) 3.3 ± 0.4 (t) 3.8 ± 0.5 (t) 3.8 ± 0.7 (t)
14 3.3 ± 1.0 (t) 3.3 ± 0.8 (t) 3.7 ± 0.7 (t) 3.6 ± 0.9 (t)
15 3.2 ± 0.8 (t) 3.2 ± 0.6 (t) 3.7 ± 0.7 (t) 3.4 ± 0.5 (t)
16 2.8 ± 0.9 (t) 3.2 ± 0.7 (t) 3.5 ± 0.6 (t) 3.1 ± 0.8 (t)
17 2.6 ± 0.7 (t) 2.9 ± 0.5 (t) 3.3 ± 0.6 (t) 3.0 ± 0.5 (t)
18 2.3 ± 0.6 (t) 2.8 ± 0.4 (t) 2.8 ± 0.7 (t) 2.8 ± 0.4 (t)
19 2.0 ± 0.5 (t) 2.4 ± 0.4 (t) 2.7 ± 0.8 (t) 2.7 ± 0.6 (t)
20 2.0 ± 0.8 (t) 2.3 ± 0.3 (t) 2.6 ± 0.5 (t) 2.6 ± 0.7 (t)
21 1.9 ± 0.5 (t)

3. Results
3.1. Molecular and Phylogenetic Analysis

The phylogenetic analysis with the selected ND4 segment retrieved seven species-
level lineages in Blaesodactylus (Figure 1). Six of these lineages correspond to the cur-
rently described species of the genus (B. victorii, B. microtuberculatus, B. boivini, B. sakalava,
B. ambonihazo and B. antongilensis) (Figure 1). In addition, the available sequences of
B. sakalava were divided into two distinct molecular clades here named B. sakalava clade A
and B. sakalava clade B (Figure 1).

The phylogenetic relationships reported in our tree show that the seven species-
level lineages are comprised of two different main clades: the first includes B. victorii, B.
microtuberculatus and B. boivini, while the second comprises B. sakalava clade A and B, B.
ambonihazo and B. antongilensis (Figure 1). In the first clade, B. victorii is the sister group of a
clade composed of B. microtuberculatus and B. boivini (Figure 1). In the second clade, the
specimens of B. sakalava were grouped into two different clades, together representing the
sister group of the clade composed by B. ambonihazo and B. antongilensis (Figure 1).

3.2. Cytogenetic Analysis

Blaesodactylus sakalava and B. antongilensis had a karyotype of 2n = 40, mostly composed
of telocentric chromosomes (Figure 2; Table 2). However, the elements of pairs 1 and 6, were
metacentric in either B. sakalava clade A or B. sakalava clade B. In contrast, in B. antongilensis,
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the centromeric index (CI) of pair 1 (25.0%) corresponded to the transition value between a
subtelocentric and a submetacentric element (Figure 2; Table 2) [29] .
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Blaesodactylus boivini showed a karyotype of 2n = 42, composed of all telocentric
chromosomes which gradually decrease in length (Figure 2D, Table 2).

Given the quantity and quality of metaphase plates, Ag-NOR staining and sequential
C-banding + fluorochromes were successfully performed only on samples of B. boivini and
B. antongilensis. Loci of NORs were close to the centromeres of the chromosome of pair 2 in
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B. antongilensis and to the centromeres of the elements of pair 1 in B. boivini (FGMV 3010)
(Figure 2C,D).

In both B. boivini and B. antongilensis, heterochromatic blocks were mostly local-
ized on the centromeres of several chromosome pairs and were clearly evident after
C-banding + Giemsa (Figure 3). In B. boivini, the main heterochromatic blocks were positive
with either CMA3 or DAPI, while in B. antongilensis they were more visible with CMA3
(Figure 3).
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4. Discussion
4.1. Molecular Analysis

The molecular and phylogenetic analysis using the selected ND4 segment allowed us
to unambiguously assign all the studied samples to different Blaesodactylus genetic lineages
as reported in Table 1 (see Figure 1). Our phylogenetic analysis using Bayesian inference
showed similar evolutionary relationships and posterior support values to those previously
reported by Ineich et al. [19]. All the currently recognized Blaesodactylus species show a
relatively deep intraspecific mitochondrial genetic divergence (13–16% of ND4 uncorrected
p-distance). We also highlight that the two distinct genetic clades found in B. sakalava (here
named B. sakalava clade A and B) probably correspond to species-level lineages as their
genetic distance is similar to that found between other Blaesodactylus sister species (see
Figure 1) (see also [19]). This is not surprising, considering that different new Blaesodactylus
species have been described in the last years and recent studies highlighted that the species
diversity of the genus is probably still underestimated [18,19]. We also highlight that
the DNA sequences of two different species of Blaesodactylus (B. microtuberculatus and
B. victorii) are currently available from a single specimen, respectively, from the Ankarana
National Park (north Madagascar) and the Tsingy limestone outcrops in the Namoroka
National Park (northwestern Madagascar) (see [18,19]). In addition, most of the species-
level lineages in Blaesodactylus appear to be allopatric, but B. microtuberculatus is sympatric
with B. boivini and B. victori is sympatric with B. sakalava [18,19]. Further molecular analyses
using a combination of mitochondrial and nuclear markers and a wide sampling across
different Malagasy ecoregions are probably needed to better assess the molecular and
species diversity in the genus Blaesodactylus.

4.2. Cytogenetic Analysis

In this study we performed the first comparative cytogenetic study on Blaesodactylus,
providing the karyotype description of three different clades of this endemic Malagasy
genus (B. sakalava clade A and B and B. antongilensis) and re-description of the karyotype of
B. boivini (see also [20]). This contribution represents the first step in describing the kary-
ological variability occurring in the genus Blaesodactylus, as well as a new contribution to
reconstruct chromosomal evolutionary dynamics in a larger clade of the family Gekkonidae,
which also includes the genera Homopholis and Geckolepis (Figure 1) (see also [19]).

Our chromosome analysis showed the occurrence of karyological variability between
different studied species in terms of chromosome number (2n = 40–42), morphology, chro-
mosome localization of loci of NORs, and pattern of heterochromatin. In particular, B.
sakalava clade A and B and B. antongilensis showed a similar karyotype structure (with
2n = 40 and the occurrence of biarmed elements), with differences concerning the mor-
phology of pairs 1 and 6. On the other hand, a different chromosome number (2n = 42)
with only telocentric chromosomes was shown by B. boivini, as recently reported also by
Chrostek et al. [20].

To advance a comparative hypothesis on the karyotype diversification in Blaesodactylus
we superimposed all the currently available haploid karyograms of the genus, as well as
those of the closely related genera Homopholis and Geckolepis [7,30,31], on their phylogenetic
relationships ([32], this study). In particular, chromosome data are currently available for
G. typica [7], H. fasciata and H. walbergii [20,30,31] (Figure 4). Notably, G. typica displays
a karyotype structure similar to those of B. sakalava and B. antongilensis (2n = 40 and
the occurrence of biarmed elements), while H. fasciata and H. walbergii present a lower
chromosome number (2n = 36) [7,20,30,31] (Figure 4).
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haploid karyograms. h.a. = hypothesised ancestral condition, cF = centric fusion, inv = inversion.
a = present paper; b = [20]; c = [7]; d = [30]; e = [31]. Phylogenetic relationships were redrawn from
([19,32], present study).

Among the family Gekkonidae, chromosome evolution has been hypothesized to have
occurred either by an increase (as for example in the genus Hemidactylus) (see [33]) or by a
reduction in the total chromosome number (e.g., in Diplodactylinae) [34,35].

In the case of Blaesodactylus, the most parsimonious chromosomal evolutionary sce-
nario (including the lowest possible number of chromosome changes in order to generate
all the different observed karyotypes) is to consider a karyotype composed of 2n = 42 and
all telocentric chromosomes as the ancestral condition in the genus (Figure 4). In addition, a
higher total chromosome number and a higher number of telocentric elements are generally
considered ancestral karyotype characters in squamates (see e.g., [15]).

Our results show that a karyotype similar to the putative ancestral condition in Blaeso-
dactylus (of 2n = 42) has probably been conserved in B. boivini, while different centric fusions
likely occurred in B. sakalava clade A and B, reducing the total chromosome number to
2n = 40 and shaping the first and sixth chromosome pairs as metacentric. In B. antongilensis,
a pericentromeric inversion (or, alternatively, a centromere repositioning) [36] likely shaped
the first chromosome pair as a submeta-/subtelocentric chromosome (Figure 4). Similarly,
in the clade including Geckolepis and Homopholis two centric fusions probably occurred
in their common ancestor, producing a reduction in the total chromosome number (from
2n = 42 to 2n = 40) and the formation of two metacentric pairs (Figure 4). Geckolepis typica
conserved a karyotype composed of 2n = 40 chromosomes, but three inversions produced
an increase in biarmed elements (pairs 3, 5 and 8) (Figure 4). Two additional centric fusions
occurred in Homopholis reducing the chromosome number to 2n = 36 and producing two
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additional biarmed chromosome pairs (pairs 2 and 8) (2n = 36; FN = 44). During the
chromosomal diversification of this genus, H. walbergii conserved the primitive Homopholis
karyotype, while two inversions occurred in H. fasciata (2n = 36; FN = 40) (Figure 4). Other
than the hypothesized chromosome inversion, it is also possible that centromere reposition-
ing has been involved in generating the chromosomal variability currently observable in
Geckolepis and Homopholis.

Similar examples of a reduction in the total chromosome number and of a progressive
formation of biarmed elements have been observed in different gecko genera, including
Uroplatus, Lygodactylus, Matoatoa, Paroedura and Christinus [9,37–40]. In particular, all
these different gecko genera show a karyotype composed of 2n = 34–42 mostly telocentric
chromosomes and are characterized by the progressive appearance of biarmed elements by
means of chromosome fusions in karyotypes with a reduced chromosome number and/or
the translocation of small NOR-bearing chromosomes on larger chromosomes.

The repeated observation in different gecko groups of similar, independent instances of
reduction in the total chromosome number by means of chromosome fusions and inversions
suggests the possible occurrence of a convergent karyotype evolution.

Concerning the chromosome localization of NORs, they are close to the centromeres
of the chromosomes of the first pair in B. boivini (see also [20]). Probably, this configuration
is also conserved in B. sakalava clade A. In fact, this clade shows NORs on the second
(telocentric) pair, but its first (metacentric) pair likely derived from the centric fusion of
smaller telocentric chromosomes. In G. typica, NORs are close to the centromeres of the
chromosomes of pair 10, but considering the lack of information on Homopholis, as well
as on other Geckolepis species, additional data are needed to advance any hypothesis on
NOR diversification.

Analysis with C-banding did not reveal the presence of differentiated sex chromo-
somes in either B. boivini or B. sakalava clade A. Nevertheless, we cannot exclude the
possible presence of mostly pseudoautosomal sex chromosomes at an early stage of dif-
ferentiation, which are known to occur in different groups of geckos (e.g., [9,15,39,41,42]).
Alternatively, it is also possible that the sex is determined by environmental factors in
the genus Blaesodactylus (e.g., temperature-dependent sex determination) as it has been
previously documented in several gecko species (see [15]). Future research should employ
a combination of molecular and cytogenetic methods to uncover the mechanism of sex de-
termination in this group of geckos. Overall, C-banding + Giemsa produced similar results
in B. boivini and B. antongilensis, evidencing a relatively low content of heterochromatin
which is mostly localized at the centromeric regions of several chromosome pairs and
particularly evident on the largest pairs (see Figure 3). This result was expected considering
that a low content of heterochromatin generally characterizes the genome of squamate
reptiles and is asymmetrically abundant on fully differentiated sex chromosome pairs
(e.g., [15,43]). The differences between B. boivini and B. antontongilensis concerning the
results obtained with C-banding + CMA3 and C-banding + DAPI (which highlight CG-
and AT-rich regions, respectively) suggest that a different nucleotide composition might
characterize the repeated DNA content of the two species.

5. Conclusions

We performed a molecular analysis and a comparative cytogenetic study on four taxa
of Blaesodactylus, presenting the first karyotype description of three of them. We show
the occurrence of karyological variability in the genus concerning the total chromosome
number (2n = 40–42), chromosome morphology, the karyotype localization of loci of NORs,
and pattern of heterochromatin.

Our findings allowed us to hypothesize that the chromosomal diversification in the
genus involved a reduction in the chromosome number and the progressive formation
of biarmed chromosomes by means of fusions and inversions (or centromere reposition-
ing). Following this hypothesis, the ancestral karyotype condition in Blaesodactylus is
2n = 42, similar to that shown by B. boivini, while apomorphic conditions of 2n = 40 with
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the formation of different biarmed chromosome pairs were observed in B. sakalava and
B. antongilensis. Comparing our data to those available from the literature, we suggest that
comparable chromosome rearrangements might also have characterized the karyotype
evolution of the closely related Geckolepis and Homopholis. We also highlight that a similar
pattern of chromosome diversification has already been observed in other gecko genera
(e.g., Paroedura, Lygodactylus, Matoatoa, and Uroplatus), possibly representing independent
events of convergent karyotype evolution.

This contribution confirms that chromosome changes often characterize the evolution
and diversification of independent lineages of Malagasy squamates and that comparative
cytogenetics provides a useful set of tools to describe evolutionary dynamics.
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