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Simple Summary: This study first reported the different occurrences of Cryptosporidium spp.,
G. duodenalis, and E. bieneusi infection between diarrheic and non-diarrheic calves in Ningxia, China.
The Cryptosporidium spp. infection rates were 54.0% and 38.3% in diarrheic and non-diarrheic calves,
which was an extremely significant difference (p < 0.01). However, there was no statistical correlation
between the prevalence of G. duodenalis infection as well as E. bieneusi infection and calf diarrhea
(p > 0.05). Four Cryptosporidium species (C. parvum, C. bovis, C. ryanae, and C. andersoni), an assemblage
E of G. duodenalis, and four E. bieneusi genotypes (BEB4, N, J, and NX1) were observed. The results
showed that Cryptosporidium spp. is closely associated with calf diarrhea, and the identification of
zoonotic species/assemblage/genotypes in calves suggests that these animals may play an important
role in the transmission of zoonosis.

Abstract: Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi are significant parasitic
gastrointestinal pathogens with global distribution in humans and domestic animals, including calves.
The main symptoms of calf infection are severe diarrhea, dehydration, growth retardation, and some-
times even death. To date, there has been limited information on the prevalence of Cryptosporidium
spp., G. duodenalis, and E. bieneusi infections in calves in Ningxia, China, especially between diar-
rheic and non-diarrheic calves. A total of 438 fecal samples were collected from diarrheic (201) and
non-diarrheic (237) calves in Ningxia. PCR and DNA sequencing were used to find the prevalence
of Cryptosporidium spp. at 46.8% (205/438), G. duodenalis at 16.9% (74/438), and E. bieneusi at 10.0%
(44/438). The prevalence of Cryptosporidium spp. infection in diarrheic and non-diarrheic calves was
54.0% (128/237) and 38.3% (77/201), respectively, and statistical analysis showed a positive correla-
tion between the prevalence of Cryptosporidium spp. infection and calf diarrhea (p < 0.01). However, in
this study, there was no statistical correlation between the prevalence of G. duodenalis infection as well
as E. bieneusi infection and calf diarrhea (p > 0.05). Furthermore, four known Cryptosporidium species
were successfully identified by comparing them with SSU rRNA gene sequences, including C. parvum,
C. bovis, C. ryanae, and C. andersoni. In addition, all 74 G. duodenalis-positive samples were identified
as assemblage E by comparative analysis of bg gene sequences. Among the 44 E. bieneusi-positive
samples sequenced in the present study, 4 distinct E. bieneusi genotypes were successfully identified
by comparative analysis of ITS sequences, including 3 known genotypes (J, BEB4, and N) and 1 novel
genotype, the latter of which was identified and designated as NX1. These findings indicated that
the high genetic diversity and complex population structures of Cryptosporidium spp., G. duodenalis,
and E. bieneusi in Ningxia diarrhea calves and non-diarrhea calves, which provide new data for
understanding the epidemiological status of Cryptosporidium spp., G. duodenalis, and E. bieneusi in
Ningxia calves.
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1. Introduction

Calf diarrhea is one of the most common and significant diseases in cattle, leading to
serious economic losses to the development of the cattle industry due to therapeutic costs,
labor, poor production performance, and deaths [1,2]. In the report of the 2007 National
Animal Health Monitoring System (NAHMS) for U.S. dairy, 57% of weaned calves died
from diarrhea [1]. The main symptoms of calf diarrhea are severe diarrhea, dehydration,
vomiting, emaciation, growth retardation, and sometimes even death. Although there are
scientific preventive measures for neonatal calf diarrhea, it still leads to high morbidity
and mortality [3]. There are many reasons why diarrhea can develop in calves, includ-
ing non-infectious factors such as genetics, age, herd and farm environment, nutrition,
poor management, and other complications, as well as pathogenic factors such as bacteria,
viruses, and parasites [4,5]. Usually, Cryptosporidium spp., Giardia duodenalis, and Enterocyto-
zoon bieneusi are ubiquitous protozoan parasites that infect a broad range of vertebrate hosts
including domestic and wild animals as well as humans, especially in children, neonatal
animals, and immunocompromised individuals [5–8].

Molecular characteristics of the genotype and species of Cryptosporidium spp., G.
duodenalis, and E. bieneusi are critical for the accurate identification and evaluation of
zoonotic transmission [9]. To date, at least 44 valid species of Cryptosporidium spp. have
been described, and at least 20 species and 5 genotypes have been detected in humans,
indicating their zoonotic character [9–11]. The most common Cryptosporidium species in
cattle are C. ryanae, C. andersoni, C. parvum, and C. bovis [10–13]. In addition, several
other species have been described in a small number of cattle. G. duodenalis consists of
eight distinct assemblages (A-H), and zoonotic assemblages A and B are infectious in both
humans and animals [14]. The most common assemblages of G. duodenalis in cattle are E
and A [15,16]. Over 600 E. bieneusi genotypes have been subdivided based on nucleotide
divergence within the ITS rRNA gene fragment in animals and humans [17]. Phylogenetic
analysis of these genotypes comprises 11 major groups [18]. Among them, group 1 is
the largest category which comprises the majority of genotypes isolated from various
hosts, including humans, and group 2 was previously thought to be a ruminant-specific
genotype, but some of these genotypes also exist in humans [16–18], which were zoonotic.
Groups 3–11 are mostly animals adapted [18]. Cattle are the potential hosts of E. bieneusi
transmission, while their public health risks have always been neglected due to their scarce
incidence rate in humans.

The fecal–oral route is the main transmission pathway of the three pathogens, and
infection can also be spread by contaminated water, food, and fomites [19,20]. It is worth
noting that an important source of contamination of water and food is cattle manure.
Identification of Cryptosporidium spp., G. duodenalis, and E. bieneusi infection situation
in cattle is essential to prevent and control the prevalence of these parasites. Previous
studies to investigate Cryptosporidium spp., G. duodenalis and E. bieneusi in Ningxia used
samples that were only from non-diarrheic adult cattle [21,22]. In this study, the prevalence
and species of Cryptosporidium spp., G. duodenalis, and E. bieneusi among diarrheic and
non-diarrheic calves in Ningxia, China were determined for the first time.

2. Materials and Methods
2.1. Sample Collection

Ningxia is one of the important provinces in northern China to raise cattle. Because
of environmental pollution and disease epidemics in traditional calf farming, from 2022
to 2023, a total of 438 fresh fecal samples were collected from calves (237 diarrheic and
201 non-diarrheic) (Figure 1). Fecal samples were placed into separate bags marked with the
geographical origin, date, age, and sample number, and the type of feces was also recorded
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and categorized as normal and diarrhea (pasty, watery, or hemorrhagic) according to its
physical characteristics. Fresh feces were collected into 15 mL fecal specimen collection
tubes immediately from the anus (diarrhea sample) or after defecation by disposable gloves,
transported to the lab under cool conditions, and stored in 2.5% potassium dichromate at
4 ◦C until the extraction of genomic DNA.
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2.2. DNA Extraction

Each fecal sample was initially washed four times with distilled water and concen-
trated by centrifugation at 12,000× g for 2 min at room temperature. Total DNA was
extracted using the E.Z.N.A® Stool DNA kit (Omega Biotek Inc., Norcross, GA, USA)
according to the manufacturer’s instructions. The quality and quantity of DNA were
determined by electrophoresis in 1% agarose gel and A260/280 with a spectrophotometer
(Thermo Fisher Scientific Inc., Waltham, MA, USA), and the extracted DNA was stored at
−20 ◦C for future use.

2.3. PCR Amplification

The identification of Cryptosporidium spp. was performed by nested PCR amplification
of approximately 830 bp of the small-subunit ribosomal RNA (SSU rRNA) gene [23]. The
identification of G. duodenalis was performed by nested PCR amplification of approxi-
mately 532 bp of the bg gene [24]. The identification of E. bieneusi was performed by nested
PCR amplification of approximately 392 bp of their internal transcribed spacer (ITS) of the
rRNA gene [25].

The amplification was performed in a 25 µL PCR reaction mixture containing 1 µL
extracted genomic DNA (for the primary PCR) or 1 µL of the first PCR amplification
product (for the secondary PCR), 2.5 µL 10× Ex Taq Buffer (Mg2+ free), 2 mM MgCl2,
0.2 mM dNTP Mixture, 0.625 U of TaKaRa Ex Taq (TaKaRa Shuzo Co., Ltd., Kyoto, Japan),
and 0.4 µM of each primer. The secondary PCR products were subjected to electrophoresis
in 1% (w/v) agarose gels.
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2.4. Sequencing and Statistical Analysis

All secondary PCR products were sent to Shanghai Sangon Biological Engineering
Biotechnology Company using secondary PCR primers for PCR amplification. If the
sequencing results were unclear, the experiment was repeated until a clear result was
obtained. All sequences were aligned by the software CLUSTAL X 2.1 (http://www.clustal.
org/, accessed on 26 April 2023). To identify different species, subtypes, or genotypes,
processed sequences were aligned with the reference sequences in GenBank using BLAST
(http://blast.ncbi.nlm.nih.gov, accessed on 26 April 2023). All statistical analyses were
performed using SPSS version 22.0 version (SPSS Inc., Chicago, IL, USA). The difference
was considered significant when the p-value was <0.05. The confidence interval of the
proportion was calculated by the Wilson method.

2.5. Nucleotide Sequence Accession Numbers

All nucleotide sequences obtained in this study were deposited in the GenBank
database under the accession numbers: accession numbers: OQ940362–OQ940371 for
the 18S rRNA gene of Cryptosporidium spp., OQ978937–OQ978940 for the bg gene of G.
duodenalis and OQ943954–OQ943957 for the ITS gene of E. bieneusi.

3. Results
3.1. The Prevalence of Cryptosporidium spp., G. duodenalis and E. bieneusi in Diarrheic and
Non-Diarrheic Calves

PCR amplification of 438 fecal samples showed 46.8% (205/438), 16.9% (74/438), and
10.0% (44/438) of the calves were positive for Cryptosporidium spp., G. duodenalis, and
E. bieneusi, respectively. In addition, diarrheic calves demonstrated a significantly higher
prevalence of infection with Cryptosporidium spp. (χ2 = 15.22, p < 0.01) compared to non-
diarrheic calves (Table 1). In contrast, both the infection rates of G. duodenalis and E. bieneusi
in non-diarrheic calves were higher than those in diarrheic calves. For G. duodenalis, non-
diarrheic calves had a higher infection rate (18.4%, 37/201) than diarrheic calves (15.6%,
37/237) (χ2 = 0.61, p > 0.05). Similarly, the prevalence of E. bieneusi in non-diarrheic calves
was 11.9% (24/201), which was higher than the prevalence in diarrheic calves, which was
8.4% (20/237) (χ2 = 1.48, p > 0.05).

Table 1. The prevalence of parasitic infections in diarrheic and non-diarrheic calves.

Species
No. Positive (%, 95%CI)

χ2 (p-Value)
Diarrheic Non-Diarrheic

Cryptosporidium spp. 128 (54.0, 47.7–60.2) 77 (38.3, 31.9–45.2) χ2 = 15.22, p < 0.01
G. duodenalis 37 (15.6, 11.5–20.8) 37 (18.4, 13.7–24.3) χ2 = 0.61, p = 0.436

E. bieneusi 20 (8.4, 5.5–12.7) 24 (11.9, 8.2–17.2) χ2 = 1.48, p = 0.224

3.2. Age Distribution of Cryptosporidium spp., G. duodenalis and E. bieneusi in Calves

The prevalence of Cryptosporidium spp. infection in calves decreases with increasing
age, with 54.1% (132/244), 40.0% (52/130), and 32.8% (21/64) for calves <20 d, 20–39 d, and
40–60 d, respectively, and the difference was statistically significant (χ2 = 12.66, p < 0.01)
(Table 2). The prevalence of G. duodenalis and E. bieneusi infection also differed significantly
among calves of different ages (Table 2). Alternatively, the prevalence of G. duodenalis and
E. bieneusi infection in calves increased with increasing age. The prevalence of G. duodenalis
infection in calves <20 d, 20–39 d, and 40–60 d was 11.1% (27/244), 20.8% (27/130), and
31.3% (20/64), respectively; the prevalence of E. bieneusi infection in calves <20 d, 20–39 d,
and 40–60 d was 4.1% (10/244), 12.3% (16/130), and 29.7% (19/64), respectively.

http://www.clustal.org/
http://www.clustal.org/
http://blast.ncbi.nlm.nih.gov
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Table 2. Prevalence and identification of Cryptosporidium spp., G. duodenalis and E. bieneusi in calves
of different ages.

Species Age No. Positive/Examined
(%, 95%CI) χ2 (p-Value)

Species/Assemblages/Genotypes (No.)

Diarrheic Non-Diarrheic

Cryptosporidium
spp.

<20 d 132/244 (54.1, 47.8–60.2)

χ2 = 12.66,
p < 0.01

C. parvum (92), C. bovis
(8), C. andersoni (1)

C. parvum (30),
C. andersoni (1)

20–39 d 52/130 (40.0, 32.0–48.6) C. parvum (16), C. bovis
(4), C. andersoni (4)

C. parvum (23), C. bovis (3),
C. andersoni (2)

40–60 d 21/64 (32.8, 22.6–45.0) C. parvum (2), C. bovis (1) C. parvum (8), C. bovis (5),
C. andersoni (4), C. ryanae (1)

G. duodenalis
<20 d 27/244 (11.1, 7.7–15.6)

χ2 = 16.69,
p < 0.01

E (18) E (9)
20–39 d 27/130 (20.8, 14.7–28.5) E (11) E (16)
40–60 d 20/64 (31.3, 21.2–43.4) E (8) E (12)

E. bieneusi
<20 d 8/244 (3.3, 1.7–6.3)

χ2 = 41.01,
p < 0.01

J (5), NXI (1), BEB4 (1) J (1)
20–39 d 17/130 (13.1, 8.3–20.0) J (7), BEB4 (1) J (9)
40–60 d 19/64 (29.7, 19.9–41.8) J (3), N (1), BEB4 (1) J (14)

Further analysis of the distribution of Cryptosporidium spp., G. duodenalis, and E.
bieneusi in diarrheic and non-diarrheic calves of different age groups showed that Cryp-
tosporidium spp. infection was found to be associated with diarrhea only in calves aged
<20 d (χ2 = 7.11, p < 0.01); however, G. duodenalis and E. bieneusi infections in all age groups
of calves were not associated with diarrhea (Table 3).

Table 3. Prevalence of Cryptosporidium spp., G. duodenalis, and E. bieneusi in diarrheic and non-
diarrheic calves of different ages.

Species Age
No. Positive/Examined (%, 95%CI)

χ2 (p-Value)
Diarrheic Non-Diarrheic

Cryptosporidium spp.
<20 d 101/169 (59.8, 52.2–66.9) 31/75 (41.3, 30.9–52.6) χ2 = 7.11, p < 0.01

20–39 d 24/51 (47.1, 34.1–60.5) 28/79 (35.4, 25.8–46.4) χ2 = 1.74, p > 0.05
40–60 d 3/17 (17.7, 6.2–41.0) 18/47 (38.3, 25.8–52.6) χ2 = 2.42, p > 0.05

G. duodenalis
<20 d 18/169 (10.7, 6.8–16.2) 9/75 (12.0, 6.4–21.3) χ2 = 0.10, p > 0.05

20–39 d 11/51 (21.6, 12.5–34.6) 16/79 (20.3, 12.9–30.4) χ2 = 0.03, p > 0.05
40–60 d 8/17 (47.1, 26.2–69.0) 12/47 (25.5, 15.3–39.5) χ2 = 2.69, p > 0.05

E. bieneusi
<20 d 7/169 (4.1, 2.0–8.3) 1/75 (1.3, 0.2–7.2) Fisher’s Test 1, p > 0.05

20–39 d 8/51 (15.7, 8.2–28.0) 9/79 (11.4, 6.1–20.3) χ2 = 0.50, p > 0.05
40–60 d 5/17 (29.4, 13.3–53.1) 14/47 (29.8, 18.7–44.0) χ2 = 0.001, p > 0.05

1 Fisher’s exact test was applied here because, in this group of data, the data matrix presented that one of the four
cells (25%) had an expected count of less than five; the same table below.

3.3. Season Distribution of Cryptosporidium spp., G. duodenalis and E. bieneusi in Calves

In the seasonal groups, the prevalence of Cryptosporidium spp. and G. duodenalis
was significantly different among different seasons. However, there was no significant
difference in the prevalence of E. bieneusi among different seasonal groups (χ2 = 3.69,
p > 0.05). Consistently, the prevalences of Cryptosporidium spp., G. duodenalis, and E. bieneusi
were all highest in autumn with 52.0%, 22.3%, and 11.7%, respectively; all were lowest in
summer, with 20.0%, 4.3%, and 4.3%, respectively (Table 4).

Further analysis of the distribution of Cryptosporidium spp. in diarrheic and non-
diarrheic calves in different seasonal groups revealed that the prevalence of Cryptosporidium
infection was significantly higher in diarrheic calves than in non-diarrheic calves in autumn
and winter, while no significant differences were found in spring and summer (Table 5).
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Table 4. Prevalence and identification of Cryptosporidium spp., G. duodenalis, and E. bieneusi in calves
in different seasons.

Species Season
No. Positive/Examined

(%, 95%CI)
χ2

(p-Value)

Species/Assemblages/Genotypes

Diarrheic Non-Diarrheic

Cryptosporidium
spp.

Spring 31/60 (51.7, 39.3–63.4)

χ2 = 24.04,
p < 0.01

C. parvum (21),
C. bovis (2) C. parvum (8)

Summer 14/70 (20.0, 12.3–30.8) C. parvum (6),
C. andersoni (1) C. parvum (7)

Autumn 133/256 (52.0, 45.9–58.0) C. parvum (70),
C. bovis (9)

C. parvum (45), C. bovis (7),
C. ryanae (1),

C. andersoni (1)

Winter 27/52 (51.9, 38.7–64.9) C. parvum (13), C. bovis (2),
C. andersoni (4)

C. parvum (1), C. bovis (1),
C. andersoni (6)

G. duodenalis

Spring 6 /60 (10.0, 4.7–20.2)
χ2 = 15.30,

p < 0.01

E (2) E (4)
Summer 3/70 (4.3, 1.5–11.9) E (3) /
Autumn 57/256 (22.3, 17.6–27.8) E (28) E (29)
Winter 8/52 (15.4, 8.0–27.5) E (4) E (4)

E. bieneusi

Spring 5/60 (8.3, 3.6–18.1)
χ2 = 3.69,
p > 0.05

J (3) J (2)
Summer 3/70 (4.3, 1.5–11.9) J (2) J (1)
Autumn 30/256 (11.7, 8.3–16.2) J (7), NXI (1), BEB4 (3) J (19)
Winter 6/52 (11.5, 5.4–23.0) J (3), N (1) J (2)

Table 5. Prevalence of Cryptosporidium spp., G. duodenalis, and E. bieneusi in diarrheic and non-
diarrheic calves in different seasons.

Species Season
No. Positive/Examined (%, 95%CI)

χ2 (p-Value)
Diarrheic Non-Diarrheic

Cryptosporidium spp.

Spring 23/38 (60.5, 44.7–74.4) 8/22 (36.4, 19.7–57.0) χ2 = 3.26, p > 0.05
Summer 7/35 (20.0, 10.0–35.9) 7/35 (20.0, 10.0–35.9) χ2 = 0.00, p > 0.05
Autumn 79/136 (58.1, 49.7–66.1) 54/120 (45.0, 36.4–53.9) χ2 = 4.38, p < 0.05
Winter 19/28 (67.9, 49.3–82.1) 8/24 (33.3, 18.0–53.3) χ2 = 6.17, p < 0.05

G. duodenalis

Spring 2/38 (5.3, 1.5–17.3) 4/22 (18.2, 7.3–38.5) Fisher’s Test, p > 0.05
Summer 3/35 (8.6, 3.0–22.4) 0/35 (0.0, 0.0–9.9) Fisher’s Test, p > 0.05
Autumn 28/136 (20.6, 14.7–28.2) 29/120 (24.2, 17.4–32.6) χ2 = 4.72, p > 0.05
Winter 4/28 (14.3, 5.7–31.5) 4/24 (16.7, 6.7–35.9) Fisher’s Test, p > 0.05

E. bieneusi

Spring 3/38 (7.9, 2.7–20.8) 2/22 (9.1, 2.5–27.8) Fisher’s Test, p > 0.05
Summer 2/35 (5.7, 1.6–18.6) 1/35 (2.9, 0.5–14.5) Fisher’s Test, p > 0.05
Autumn 11/136 (8.1, 4.6–13.9) 19/120 (15.8, 10.4–23.4) χ2 = 3.70, p > 0.05
Winter 4/28 (14.3, 5.7–31.5) 2/24 (8.3, 2.3–25.8) Fisher’s Test, p > 0.05

3.4. Molecular Analysis of Cryptosporidium spp., G. duodenalis, and E. bieneusi in Ningxia, China

Among the 205 Cryptosporidium spp.-positive samples sequenced in this study, four
known Cryptosporidium species were successfully identified by comparing with SSU rRNA
gene sequences, including C. parvum, C. bovis, C. ryanae, and C. andersoni (Figure 2). In addi-
tion, all 74 G. duodenalis-positive samples were identified as assemblage E by comparative
analysis of bg gene sequences (Figure 3).

Among the 44 E. bieneusi-positive samples sequenced in the present study, 4 distinct E.
bieneusi genotypes were successfully identified by comparative analysis of ITS sequences,
including 3 which were known genotypes (J, BEB4, and N) and 1 novel genotype, which
was identified and designated as NX1. Furthermore, all four genotypes were found in
diarrheic calves, while only one genotype, genotype J, was found in non-diarrheic calves.
Phylogenetic analysis indicated that the novel genotype NX1 and the other three known
genotypes all belonged to group 2, which has the risk of zoonotic spread (Figure 4).
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4. Discussion

Cattle are considered to be important zoonotic hosts for Cryptosporidium spp., G. duo-
denalis, and E. bieneusi, especially calves, which are more vulnerable to parasites. In the
present study, the infection rate of Cryptosporidium spp. in calves was 48.9% (205/438),
which is higher than those reported by most previous studies, for example, rates reported
in Ghana (47.8%, 86/180) [26], Western Iran (5.0%, 8/181) [27], and Madagascar (3.5%,
30/862) [28]. These differences could be related to the fact that all fecal samples used
in this study were from calves. Past studies have shown that this parasite affects calves
and weaned calves more than adults [26,29,30]. The correlation between age and Cryp-
tosporidium spp. infection was also confirmed in the present study, where the prevalence of
Cryptosporidium spp. infection in calves at 20 d, 20–39 d, and 40–60 d was 54.1% (132/244),
40.0% (52/130), and 32.8% (21/64), respectively, and the prevalence decreased with increas-
ing calf age.

Another reason for the higher occurrence rates of Cryptosporidium spp. in this study
could be that more than half of the calves investigated had diarrhea (54.1%, 237/438).
Cattle with diarrhea generally have higher rates of Cryptosporidium spp. infection [12,31].
Similarly, in this study, the infection rate of Cryptosporidium spp. in diarrheic calves (54.0%,
128/237) was significantly higher than that in non-diarrheic calves (38.3%, 77/201). In
this study, four species of Cryptosporidium were identified in calves, C. parvum, C. bovis,
C. ryanae, and C. andersoni. Additionally, C. parvum was the predominant species in calves
in the study area (83.4%, 171/205), which is consistent with some recent findings of the
dominance of C. parvum in dairy cattle in Ghana and Latvia [26,32].
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Recently, a large number of studies have reported the prevalence of G. duodenalis in
cattle in China, with a prevalence from 1.0% to 27.5% [16,33–37]. Moreover, in many other
countries, such as Turkey, Argentina, and Korea, G. duodenalis infections in cattle have also
been reported recently with a prevalence of 4.4–41.9% [15,38,39]. The overall G. duodenalis
prevalence in calves in this study was 16.9% (74/438), which is similar to recent national
and international reports. The difference may be related to differences in study design,
breed and age of cattle studied, and sampling size, especially the age of the cattle. A recent
study using the meta-analysis of the global prevalence of G. duodenalis in cattle showed
that a positive association was observed between G. duodenalis infection with pre-weaned
calves (less than 6 months of age) and cattle suffering from diarrhea [40]. Although there
was a correlation between the prevalence of G. duodenalis infection in calves and age in
this study, this correlation was reversed, the prevalence of G. duodenalis infection in calves
increased with increasing age. G. duodenalis infection in calves <20 d, 20–39 d, and 40–60 d
was 11.1% (27/244), 20.8% (27/130), and 31.3% (20/64), respectively. More interestingly, in
the present study, diarrhea was also not correlated with the prevalence of G. duodenalis; on
the contrary, the prevalence of infection was higher in non-diarrheic calves than in diarrheic
calves, although the difference was not statistically significant. This may be due to the
younger age of the calves selected for this study, with the oldest calf in this study being
only 60 d. There are relatively few reports on the prevalence of G. duodenalis in calves at a
younger age, and we need more research data to uncover the regular characteristics of the
prevalence of G. duodenalis.

To date, eight assemblages (A–H) of G. duodenalis have been identified in different
hosts [41]. Previous studies have found that assemblage E of G. duodenalis is a preponderant
assemblage in cattle [40,42], which was further confirmed in this study. In this study,
all isolates at the bg loci were identified in assemblage E, which is not considered to be
zoonotic because it is mainly detected in sheep, goats, and pigs [19]. However, some reports
also found assemblage E isolates of G. duodenalis in humans, which indicated its zoonotic
potential [43,44].

The present study showed that the infection rate of E. bieneusi in calves from Ningxia
was 10.0% (44/438), which is similar to that reported in other studies for cattle in China
and several other countries [45–49]. On the other hand, in the present study, although there
was no certain association between diarrhea and the prevalence of E. bieneusi infection,
E. bieneusi genotypes were more diverse in diarrheic calves than in non-diarrheic calves,
with all four genotypes found in diarrheic calves, while only the J genotype was found in
non-diarrheic calves. Based on the high diversity of ITS, many genotypes of E. bieneusi have
been found in cattle worldwide [45]. In earlier studies, phylogenetic analyses revealed the
existence of 11 groups; genotypes in groups 1 and 2 were associated with potential zoonotic
or cross-species infections [18]. Environmental and host isolation characteristics can lead
to differences in the distribution of E. bieneusi genotypes [50]. In this study, phylogenetic
analysis showed that three known genotypes and one novel genotype were clustered into
group 2. Thus, all four E. bieneusi genotypes identified in cattle in this study might have
zoonotic potential.

Diarrhea in newborn calves is a major problem in the cattle industry worldwide,
leading to antimicrobial use and mortality, and bringing huge economic losses. Parasites
are one of the main pathogens of cattle diarrhea, especially in calves [11]. From these
observations in this study, it appears that Cryptosporidium spp. is more harmful to calves
than G. duodenalis and E. bieneusi, not only because of its higher infection rate, but also
because of its significant correlation with diarrhea in calves, especially in calves within
20 days of age. This information can be taken into consideration by health policymakers,
veterinarians, and farmers for the scientific management of newborn calves.

5. Conclusions

The present study revealed the high occurrence of Cryptosporidium spp., G. duodenalis,
and E. bieneusi in calves in Ningxia, China. The total prevalence of Cryptosporidium spp. G.
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duodenalis, and E. bieneusi infection were 46.8%, 16.9%, and 10.0%, respectively. Cryptosporid-
ium spp. infection was closely related to diarrhea of calves within 20 days of age. Four
Cryptosporidium species (C. parvum, C. bovis, C. ryanae, and C. andersoni), an assemblage E
of G. duodenalis, and four E. bieneusi genotypes (BEB4, N, J, and NX1) were observed. The
findings in our study provided basic data for understanding the molecular epidemiology of
Cryptosporidium spp., G. duodenalis, and E. bieneusi in diarrheic and non-diarrheic calves, and
unraveling the intricate molecular epidemiology of Cryptosporidiosis, microsporidiosis,
and giardiasis in calves and its impact on human health.
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