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Simple Summary: In this study, multi-omics techniques were used to reveal the effects of actual
temperature and humidity index (THI) on intestinal microbe, function and serum metabolism of Ira
rabbits. The increase of THI had a significant effect on the intestinal microbial structure of meat rabbits.
In response to environmental THI changes, intestinal microorganisms with similar functions were
replaced with each other, harmful bacteria were increased, heat-sensitive factors were upregulated,
and disease-related biomarkers were increased in serum. In addition, the potential biomarkers of
serum metabolism could be predicted with high predictive accuracy. In future production, the rapid
detection of biomarkers, which has guiding significance for scientific meat rabbit production, can be
attempted to determine whether the use of THI in the small environments of meat rabbits is suitable.

Abstract: This study investigates the effects of different THI values on growth performance, intestinal
microbes, and serum metabolism in meat rabbits. The results showed that there were significant
differences in THI in different location regions of the rabbit house. The high-THI group (HG)
could significantly reduce average daily gain and average daily feed intake in Ira rabbits (p < 0.05).
The low-THI group (LG) significantly increased the relative abundance of Blautia (p < 0.05). The
HG significantly increased the relative abundance of Lachnospiraceae NK4A136 group and reduced
bacterial community interaction (p < 0.05). The cytokine–cytokine receptor interactions, nuclear
factor kappa B signaling pathway, and toll-like receptor signaling pathway in each rabbit’s gut were
activated when the THI was 26.14 (p < 0.05). Metabolic pathways such as the phenylalanine, tyrosine,
and tryptophan biosynthesis and phenylalanine metabolisms were activated when the THI was
27.25 (p < 0.05). Meanwhile, the TRPV3 and NGF genes that were associated with heat sensitivity
were significantly upregulated (p < 0.05). In addition, five metabolites were found to be able to predict
THI levels in the environment with an accuracy of 91.7%. In summary, a THI of 26.14 is more suitable
for the growth of meat rabbits than a THI of 27.25, providing a reference for the efficient feeding of
meat rabbits.

Keywords: temperature and humidity index; Ira rabbits; colon microbiota; growth performance;
serum metabolites

1. Introduction

Rabbit meat consumption is widely distributed around the world. According to data
from FAOSTAT, in the period 2011–2021, Asian rabbit meat production accounted for 69.9 %
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of the world’s total [1]. The Ira rabbit is an ideal meat rabbit breed that is valued for its
rapid growth rate and high-quality meat [2]. One of the main challenges for the growth of
meat rabbit farming is hot environment [3,4]. The prolonged exposure of domestic animals
to unusual air temperature and relative humidity values can cause major problems that
threaten their comfortable and healthy living and negatively impact their productivity [5].
The primary purpose of the temperature and humidity index (THI) is to measure the
changes in environmental conditions [6]. The optimal THI for rabbit growth should be
less than 27.8 [7]. When exposed to a THI of 30 or higher, rabbits are no longer able to
control their normal body temperature, and develop heat exhaustion [7]. In addition, the
artificial simulation environment of an environmental control house cannot accurately
reflect the actual environmental conditions in a closed livestock house [8]. The distribution
of THI values in the real environment is not uniform [9]. Therefore, the impact of the actual
production environment on the health of animals is also worthy of attention.

Rabbits are sensitive to ambient heat because of their lack of sweat glands. Rabbits
commonly use increased respiratory rates and vasodilation of the ears as the primary
device for thermolysis [3]. As the temperature rises, there is a limit in the heat beyond
which a rabbit can be exhausted [10]. The balance of protein, water, energy, and minerals in
rabbits is impacted by the thermal environment. In previous studies, heat stress resulted
in significant decreases in superoxide dismutase activity, which disturbed the oxidative
homeostasis in rabbits [11]. The negative effect of high THI values on the intestine is
also obvious. The gut microbiota may account for 10.42% of the difference in Ira rabbits’
weaning weights [12]. Intestinal barrier failure induced by thermal stress may be related
to gut microbial imbalance [13]. Chlamydia, Staphylococcus, and Bacteroides are among
the bacteria with high THI enrichment that have been identified to be most linked with
inflammatory diarrhea [14]. Pathogens in intestinal injuries translocate through tight
junction barriers. Animals under thermal stress have activated cytokines, TLR signaling,
and heat shock proteins in their intestinal tissues [14]. The average daily gain [15], feed
conversion ratio (FCR), and meat quality of a rabbit can all suffer as a result of physiological
changes brought on by heat stress [16].

Currently, the knowledge of how the THI affects the health of Ira rabbits remains
limited. In this study, the effects of environmental THI on intestinal microorganisms,
function, and metabolism in Ira rabbits were studied in a typical closed rabbit house in the
southeast coastal area of China. The aim of this paper is to provide ideas and theoretical
bases for a judgment index of environmental THI level, which has production guidance
significance for scientific meat rabbit breeding.

2. Materials and Methods
2.1. Animals Feeding

This study was conducted in accordance with, and reviewed by, the Institutional
Animal Care and Use Committees at Fujian Agriculture and Forestry University
(NO. PZCASFAFU22020, Fuzhou, China).

The present study utilized a total of 648 weaned Ira rabbits (aged 28 days, 0.70 ± 0.072 kg).
The rabbits in this experiment were purchased from Fujian Laidewang Animal Husbandry
Co., LTD, Sanming, China. The rabbits were randomly divided into 24 replicate groups
and housed in the same closed rabbit house (57.7 m long, 6.6 m wide, and 3.8 m high;
Figure 1A). All rabbits were reared in 216 cages (the dimensions of the upper cages were
0.5 × 0.55 × 0.35 m and those of the lower cages were 0.5 × 0.9 × 0.4 m, there were
3 animals per cage, and the sexes were randomly distributed). During the experimental pe-
riod, all the rabbits received freely available water and were fed a fattening diet (Jinjiuwang
Feed Co., Ltd., Anqiu, China; Table S1) twice a day. The healthy weaned rabbits had not
been given any antibiotics, anticoccidial medications, or prebiotics. This experiment was
carried out in Laidewang Animal Husbandry Co., LTD., Sanming, Fujian, China (latitude
25◦73′ N; longitude 117◦84′ E).
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Figure 1. Front view and top view of the rabbit house structure. (A) Distribution map of
24 replicate groups. (B) Distribution map of environmental factor detectors. G: group.

2.2. Data Collection

The rabbit house environment was regulated by an integrated rabbit environmental
control system (Sifangxinyu Co., Ltd., Weifang, China). A portable air velocity meter
(PCE-VA 20, PCE, Meschede, Germany) was used to measure the house’s temperature
(T), relative humidity (RH), and air flow rate every day at intervals of three hours. The
amounts of ammonia gas (NH3), hydrogen sulfide (H2S), and particulate matter were
measured using several gas sensors (MultiRAE IR Lite, RAE systems, San Francisco, CA,
USA; Figure 1B). Every day from the start to the end, the device recorded concentrations
for 12 h (6:00 a.m. to 6:00 p.m.). The temperature and humidity indices of the 24 replicate
groups were calculated. A high-THI group (HG) and low-THI group (LG) were formed by
choosing the top six duplicate groups with the highest THI values and the bottom six with
the lowest THI values. The formula for calculating THI is as follows [17]:

THI = T − [(0.31 − 0.31 × RH) (T − 14.4)]

where THI is the temperature and humidity index, T is the temperature (°C), and RH is the
relative humidity (%).

At 28 days of age and 70 days of age, the body weight of each group was recorded.
The amounts of food fed to the rabbits and left over were weighed daily. Finally, ADG,
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ADFI, and feed conversion rate (FCR) were calculated. The growth performance index was
calculated by using the following formulae:

ADG = (Average final weight—average weaning weight)/42

ADFI = (Feed quantity—surplus)/42

FCR = ADFI/ADG

where ADG is the average daily gain (kg/d), ADFI is the average daily feed intake (kg/d),
and FCR is the feed conversion rate.

2.3. Sample Collection

Rabbits were raised to 73 days of age, at which point six rabbits were randomly selected
in order to collect samples from each group (LG and HG). In the beginning, experimenters
wore long-sleeve experimental suits to avoid being bitten or scratched by rabbits during
operation. They would grab the skin of each rabbit‘s neck and take the animal out of
the cage, then quickly transfer the rabbit‘s head under their arms to the operating table.
Through spinal traction, the rabbit would be placed in a supine position until it became
relaxed [18,19]. After the rabbit was prepared well, clear auricular veins were exposed
in it, its hair was removed, and alcohol was used to rub and disinfect it. When its veins
were filled, 5 mL of blood would be collected in the coagulant collection vessels after vein
collection needles were stabbed into the auricular veins against the direction of blood flow.
After standing for 1 h, at a blood collection rate 3000 r/min for 10 min, a supernatant would
be taken and 3 tubes packed separately [20].Then the rabbit would be killed by the acute
blood loss method, its whole abdominal cavity would be opened, and a small colon would
be cut. The colon contents would be dipped with a cotton swab, which would be placed in
a sterile centrifuge tube. Colon tissue with a length of 1–2 cm would be taken and placed in
a sterile centrifuge tube, with 3 samples taken from the rabbit [21]. Prior to experimental
analysis, all samples would immediately be submerged in liquid nitrogen. This process
was repeated for all six rabbits.

2.4. Colon Microbiome Analysis

Using the CTAB/SDS technique, the total genomic DNA of the microorganisms in
the colon content samples was extracted. Then, using the barcoded fusion primers 515F
(5′-GTGCCAGCMGCCGCGG-3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′), the
V4 region of the bacterial 16S rDNA gene was amplified. The Phusion® High-Fidelity
PCR Master Mix (New England Biolabs Co., LTD, Beijing, China) was used to conduct the
PCRs. Then, sequencing libraries were created using the TruSeq® DNA PCR-Free Sample
Preparation Kit (Jinao Biotechnology Co., LTD., Wuhan, China), and the NovaSeq6000
(Damai Biotechnology Co., LTD., Shanghai, China) was used to perform the sequencing.

To combine high-quality paired-end readings into tags, FLASH (v.1.2.7) was uti-
lized [22], and QIIME (v.1.9.1) was used to check the quality of these tags. The specific
steps of the operation were as follows. (1) Tagging: the first low-quality base site of the
original sequence was truncated from a continuous low-quality base number to length 3.
(2) Filtering sequence: after the sequences were intercepted, the continuous high-quality
sequences with overly small base lengths in the sequence data set (less than 75% of the full
length) were filtered out. Finally, each sequence was compared with the species annotation
database to detect a chimera sequence, and the chimera sequence was removed to obtain
the final high-quality effective sequence.

Using the software UPARSE (v7.0.1001), tags were grouped into operational tax-
onomic units (OTUs) at 97% sequence identity [23]. OTUs were given a taxonomic
categorization using the Mothur technique using the SSUrRNA database of SILVA138
(http://www.arb-silva.de/) accessed on 3 December 2020 [24,25]. Using QIIME (v.1.9.1),
the alpha and beta diversity indices were determined. Using the Ape4 software (v.1.7.13),

http://www.arb-silva.de/
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principal coordinates analysis (PCoA) plots were used to assess beta diversity. Using the
Vegan package (v.2.5.4), an analysis of similarities (ANOSIM) was carried out based on
Bray–Curtis dissimilarity [26]. The R package vegan portrayed the rarefaction curves. At
the phylum, class, and genus levels, the relative abundances of bacteria were expressed
as percentages. Using Galaxy (http://huttenhower.sph.harvard.edu/galaxy) accessed on
22 June 2022, linear discriminant analysis effect size (LEfSe) analysis was done to identify
different bacterial taxa and find species with significantly different abundances [27].

The relationships between bacterial taxa were calculated using the SparCC algorithm.
A network with edges linking nodes (bacterial taxa) with a Pearson correlation coefficient
of over or below 0.8 was drawn using the Igraph package (v.1.2.6). Based on betweenness
centrality, as determined by the GirvanNewman algorithm, clusters were created [28].

2.5. Colon Transcriptome Analysis

The sequencing of the transcriptome was done on each sample of colon tissue. Utilizing
TRIzol® Reagent, total RNA was isolated from the colon (Invitrogen, Waltham, MA, USA).
Using a NanoPhotometer® spectrophotometer (Thermo Fisher, Waltham, MA, USA), the
total RNA’s purity was evaluated. Using the Bioanalyzer 2100 system’s RNA Nano 6000
Assay Kit (Agilent Technologies, Palo Alto, CA, USA), the integrity and quantity of the
total RNA were calculated. The Illumina HiSeq PE150 was used to sequence high-quality
libraries. High-quality clean reads were selected from the raw sequences. Then, the HISAT2
software (Version 2.2.0) was used to individually align each clean read to the reference
genome in the orientation mode [29]. The approach of fragments per kilobase per million
mapped fragments (FPKM) was used to calculate the gene expression level [30].

Using the DESeq2 software (1.32.0), the differential expression analysis of two groups
was carried out. To find differentially expressed genes (DEGs) in the LG and HG, the
p < 0.05 and |log2 > 1| thresholds for substantial variations in gene expression were chosen.
KOBAS (http://bioinfo.org/kobas/) was used to carry out the KEGG pathway analysis of
the DEGs accessed on 30 July 2022 [31]. When the Bonferroni-corrected p-values were less
than 0.05, the KEGG pathway enrichment results were considered significant. To determine
the relationship between gut bacteria (relative abundance > 0.5%) at the genera level and
the host’s DEGs, Pearson correlation analysis was used. The p-values, with Bonferroni
correction, were less than 0.05, and the correlation coefficient was not fixed. Using the
pheatmap package (v.1.0.12), the link between bacteria and genes was demonstrated.

2.6. Serum Metabolomics Analysis

100 µL of each serum sample was used to extract metabolites using methanol and
2-chlorobenzalanine after each sample had been thawed in the environment at 4 ◦C. Around
20% of each metabolite sample was set aside for quality control (QC), and the remaining
80% was used for LC-MS detection [32]. A Thermo Ultimate 3000 system with an ACQUITY
UPLC® HSS T3 (150 2.1 mm, 1.8 m, Waters) column kept at 40 ◦C was used to perform
liquid chromatographic separation. The Thermo Q Exactive Plus mass spectrometer was
used for mass spectrometry experiments [33]. HCD scans were used in data-dependent
acquisition (DDA) MS/MS investigations. Dynamic exclusion was used to exclude some
extraneous information from the spectra [33].

The Proteowizard program (v3.0.8789) transformed the original data into the mzXML
format. For the purpose of peak detection, filtration, and alignment, the R XCMS package
(v3.1.3) was utilized [34]. Base peak chromatograms (BPCs) were created by continuously
describing the ions in each mass spectrogram with the highest intensity. Metabolite identifi-
cation (the molecular weight error was = 30 ppm) was done using the Human Metabolome
Database (http://www.hmdb.ca, accessed on 16 March 2022), METLIN (http://metlin.
scripps.edu, accessed on 16 March 2022), Massbank (http://www.massbank.jp/, accessed
on 16 March 2022), LipidMaps (http://www.lipidmaps.org, accessed on 16 March 2022),
and mzClound (https://www.mzcloud.org, accessed on 16 March 2022). Using the SIMCA
software (v.14.1), orthogonal partial least squares discriminant analysis (OPLS-DA) of the

http://huttenhower.sph.harvard.edu/galaxy
http://bioinfo.org/kobas/
http://www.hmdb.ca
http://metlin.scripps.edu
http://metlin.scripps.edu
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http://www.lipidmaps.org
https://www.mzcloud.org
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metabolomics data was carried out after standardization via Pareto scaling. The statistical
significance was calculated using univariate analysis (t-test). Differential metabolites (DMs)
between the LG and HG were those with variable importance in projection (VIP) > 1 and
p < 0.05. Metaboanalyst (www.metaboanalyst.ca, accessed on 16 March 2022) annotated
the DMs with KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis. The
relationship between gut bacteria and serum DMs was identified using Pearson correlation
analysis. Bonferroni-corrected statistics were deemed significant at p < 0.05. Using the R
random Forest package (v.4.7-1), regression-based random forest models were created to
find metabolites that associated with THI.

2.7. Statistical Analysis Method

The statistical analysis of ADG was performed using the student’s t-test (SPSS V.26.0).
Results were presented as the mean standard deviation, and statistical significance was set
at p < 0.05.

3. Results
3.1. Group Performance

There were no significant differences in weaning weight, final weight, and FCR
between the LG and HG (p > 0.05). The ADG and ADFI of the LG were significantly
higher than those of the HG (p < 0.05; see Table 1).

Table 1. The effects of THI on the growth performance of meat rabbits.

Items
Groups

p-Value
LG HG

Weanling weight (kg) 0.73 ± 0.01 0.70 ± 0.01 0.14
Final weight (kg) 2.33 ± 0.10 2.05 ± 0.08 0.09

ADG (g) 46.99 ± 3.10 39.52 ± 2.25 0.01
ADFI (g) 183.34 ± 4.01 151.48 ± 8.37 <0.01

FCR 3.94 ± 0.32 3.87 ± 0.37 0.82

3.2. Environmental Factors Data Statistics

Between the HG and LG, there were no appreciable variations in NH3, H2S, PM2.5,
and WS (wind speed) (p > 0.05, Table S2). However, the temperature, relative humidity,
and THI were obviously higher (p < 0.001) in the HG than in the LG (Figure 2).

3.3. Colon Microbiota Changes

Bacterial clean readings totaled 992,533, with 82,711 being the average number of clean
reads (Supplementary Table S3). The rarefaction curve analysis of the sequencing coverage
was satisfactory (Supplementary Figure S1). Between the estimations of alpha diversity,
there were no differences (p > 0.05; Supplementary Table S3). Further PCoA was carried
out to confirm the separation of the intestinal bacteria between the LG and HG (Figure 3).
The bacterial populations in the rabbits’ guts exhibited a clustering by THI (Bray–Curtis
ANOSIM, statistic = 0.6778, p = 0.005; Figure 3) which would account for the variation and
distinction between two groups.

39 phyla, 98 classes, and 399 genera of bacteria were found in total, of which 7 phyla,
8 classes, and 16 genera were deemed to be the most prevalent bacterial taxa (relative
abundance > 0.5% and prevalence > 20%; see Supplementary Table S4). There were no
variations in the relative abundances of these dominant phyla and classes (Figure 4A,B).
At the genus level, the abundance of Lachnospiraceae NK4A136 group was significantly
increased in the HG (p < 0.05), while that of Blautia was significantly increased in the LG
(p < 0.05; see Figure 4C).

www.metaboanalyst.ca
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LEfSe LDA showed nine and three genera enriched in the LG and HG, respectively.
Specifically, Blautia, Luedemannella, Candidatus Xiphinematobacter, unidentified Gem-
matimonadaceae, Herpetosiphon, ADurb Bin063 1, Nitrosospira, Rhodanobacter, and
Sandaracinus were enriched in the LG, and Acidibacter, Rhizorhapis, and Lachnospiraceae
NK4A136 group were enriched in the HG (Figure 5).

The network analysis of the SparCC method found correlations between genus charac-
teristics (Figure 6). Six and five main subnetworks were detected with THI-associated
features in the HG and LG, respectively. Thirty-four connections were found in the
HG. The primary subnetwork was created by NK4A214 group (pink cluster), UCG.005,
Ruminiclostridium, and Candidatus Saccharimonas (green cluster), and Marvinbryantia,
Bacteroides, Solibacillus, Psychrobacillus, and Mrthanosphaera (yellow cluster), which showed
strong relationships with other members of the HG community (Figure 6A). Forty-two
connections were found in the LG. The three clusters were connected by Solibacillus in the
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light green cluster, Sphingomonas and Bacillus in the violet cluster, and Monoglobus in the
light blue cluster (Figure 6B).
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node designates a certain genus, and each line (edge) depicts a substantial coefficiency connection
(|Pearson correlation coefficient| > 0.8).

A microbial co-occurrence network with the relative abundances of the top 300 gen-
era was constructed (Figure 7). Microbial structure was significantly different across the
two models (HG and LG). Genera significantly enriched in the HG (LDA > 2) include
Lachnospiraceae NK4A136 group, Acidibacter, and Rhizorhapis. Candidatus Xiphinematobacter,
Luedemannella, Nitrosospira, Sandaracinus and unidentity gemmatimonadaceae were signif-
icantly enriched in the LG (LDA > 2). The microbial interaction network consisted of
183 nodes and 534 edges. The ratio of positive correlation to negative correlation in the
network was 165:13.
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3.4. Colon Transcriptome Analysis

After optimization and quality control, RNA-Seq analysis of the Ira rabbit intestine
from the two groups provided 549,499,536 total clean reads and 82,424,930,400 clean bases,
totaling 575,438,988 total raw reads and 86,315,848,200 total raw bases. The results of the
analysis ranged from 94.12% to 96.33% for clean reads. The mapped rate for the clean reads
in the Ira rabbit genome was between 85.07% and 88.65% (Supplementary Table S5).

Between the LG and HG, 178 DEGs were found in the rabbits’ intestines, with
71 upregulated and 107 downregulated genes (Figure 8A). The upregulated and down-
regulated DEGs were analyzed separately by using KEGG pathway analysis. In the LG,
these pathways were designated within five primary categories (Supplementary Table S6)
including “Human Diseases” (58.53%), “Organismal Systems” (17.07%), “Environmental
Information Processing” (17.07%), “Cellular Processes” (4.89%), and “Metabolism” (2.44%).
The most enriched pathways were “Cytokine-cytokine receptor interaction”, “Viral protein
interaction with cytokine and cytokine receptor”, “Rheumatoid arthritis”, “Malaria”, and
“Chemokine signaling pathway” (Figure 8B).
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These KEGG pathways were designated within six primary categories in the LG
(Supplementary Table S7), including Organismal Systems (41.67%), Metabolism (33.33%),
Human Diseases (16.67%), and Cellular Processes (8.33%). The most enriched pathways
were “inflammatory mediator regulation of TRP channels”, “nicotine addiction”, “signaling
pathways regulating pluripotency of stem cells”, “amphetamine addiction”, and “axon
guidance” (Figure 8C).

3.5. Serum Metabolome Analysis

Metabolomic analysis was used to explore the alterations in serum metabolic profiles
between low and high THI values. The serum included a total of 491 metabolites, and
differences between the two groups were further demonstrated using OPLS-DA score plots
and permutation tests (Figure 9). Ten DMs were identified between the LG and HG with
the VIP > 1 combined with p < 0.05. Among them, 1-palmitoyl-glycerophosphocholine,
N-Alpha-acetyllysine, Acetylphosphate, 16-Hydroxy hexadecanoic acid, and 11-Dehydro-
thromboxane B2 were higher in the HG, while Uracil, Kynurenic acid, Inosine, GMP, and
beta-Alanine were higher in LG (Table 2).

The THI-associated metabolites were chosen using Spearman correlation analysis from
a total of 491 metabolites. Based on Spearman correlation (p < 0.05), a total of 60 metabolites
were identified as THI-associated metabolites and employed in the random forest model
to forecast changes in THI. The mean decrease accuracy (MDA) scores were used to
illustrate the importance of metabolites in the model. The random forest model chose
five of the THI-associated metabolites with MDAs > 3, including 15-Deoxy-d-12,14-PGJ2,
Dihydrotestosterone, L-Valine, L-Leucine, and cis, cis-Muconate (Figure 10A). Together
with the inset confusion matrix, the receiver operating characteristic curve [35] exhibited a
maximum area under the curve (AUC) of 0.917. The metabolites in five of the six rabbits
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in the HG were successfully predicted, and the metabolites in all of the LG rabbits were
successfully predicted (Figure 10B).

Animals 2023, 13, x FOR PEER REVIEW 13 of 22 
 

Inosine 38,334,884.30 91,956,808.77 1.0915  0.0049 
GMP 464,681,530.15 709,621,428.81 1.6793  0.0000  

beta-Alanine 644,361,176.34 727,140,676.69 1.6930 0.0053 

 
Figure 9. Rabbit serum LC-MS metabolite profiles were used to generate OPLS-DA score plots and 
accompany permutation testing. (A) OPLS-DA score plot. (B) Permutation testing. 

 

Figure 9. Rabbit serum LC-MS metabolite profiles were used to generate OPLS-DA score plots and
accompany permutation testing. (A) OPLS-DA score plot. (B) Permutation testing.

Table 2. The differential metabolites identified in the serum metabolomes in Ira rabbits.

Metabolites HG-Mean LG-Mean VIP p-Value

1-palmitoylglycerophosphocholine 5,156,691,973.42 3,276,134,737.27 7.2196 0.0053
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3.6. Correlation between the Intestinal Microbiota, DEGs and DMs

The relationship between gut microbes (relative abundance > 0.5%) and DEGs was
revealed by using Pearson correlation analysis. The heatmap showed the top 30 DEGs
(Figure 8A) that were significantly different (p.adjust < 0.01) from the listed genera.
Psychrobacillus and Solibacillu were positively correlated with DNASE1L3. Tyzzerella and
Blautia were positively correlated with many genes such as MMP10, MMP3, SELP, ADAMTS4,
C1orf162, IL1A, ARG1, CXCL5, CLEC4E, ACOD1, CXCL8, CLEC4D, IL1B, TREM1, FAM20A,
CCR2, SELL, STEAP4, MUC13, CCL19, and CP. Monoglobus was positively correlated
with the FAM20A gene; NK4A214 group was positively correlated with MMP10, MMP1,
SELP, and ADAMTS4. In addition, Christensenellaceae R-7 group was positively correlated
with MMP3, CXCL5, CLEC4D, and STEAP4, but negatively correlated with DNASE1L3
(Figure 11A).

The relationship between gut microbes (relative abundance > 0.5%) and DMs was
revealed by using Pearson correlation analysis. Tyzzerella positively correlated with changes
in Inosine. Blautia positively correlated with inosine but negatively correlated with N-
Apha-acetylltsine. Christensenellaceae R-7 group positively correlated with inosine but
negatively correlated with 1-palmitoyl-glycerophosphocholine. Lachnospiraceae NK4A136
group positively correlated with changes in 11-Dehydro-thromboxane B2 and 1-palmitoyl-
glycerophosphocholine. Methanobrevibacter positively correlated with Kynurenic acid
and N-Alpha-acetyllysine. Ruminococcus negatively correlated with Uracil. However,
Psychrobacillus negatively correlated with 11-Dehydro-thromboxane B2 (Figure 11B).



Animals 2023, 13, 1971 14 of 22

Animals 2023, 13, x FOR PEER REVIEW 13 of 22 
 

Inosine 38,334,884.30 91,956,808.77 1.0915  0.0049 
GMP 464,681,530.15 709,621,428.81 1.6793  0.0000  

beta-Alanine 644,361,176.34 727,140,676.69 1.6930 0.0053 

 
Figure 9. Rabbit serum LC-MS metabolite profiles were used to generate OPLS-DA score plots and 
accompany permutation testing. (A) OPLS-DA score plot. (B) Permutation testing. 

 

Figure 10. Prediction of key THI-related metabolites based on the random forest model. (A) The
MDAs of metabolites and five chosen metabolites (shown in red dot) whose MDAs were greater than
3. (B) The ROC curve and the confusion matrix.



Animals 2023, 13, 1971 15 of 22

Animals 2023, 13, x FOR PEER REVIEW 14 of 22 
 

Figure 10. Prediction of key THI-related metabolites based on the random forest model. (A) The 
MDAs of metabolites and five chosen metabolites (shown in red dot) whose MDAs were greater 
than 3. (B) The ROC curve and the confusion matrix. 

3.6. Correlation between the Intestinal Microbiota, DEGs and DMs  
The relationship between gut microbes (relative abundance > 0.5%) and DEGs was 

revealed by using Pearson correlation analysis. The heatmap showed the top 30 DEGs 
(Figure 8A) that were significantly different (p.adjust < 0.01) from the listed genera. 
Psychrobacillus and Solibacillu were positively correlated with DNASE1L3. Tyzzerella and 
Blautia were positively correlated with many genes such as MMP10, MMP3, SELP, 
ADAMTS4, C1orf162, IL1A, ARG1, CXCL5, CLEC4E, ACOD1, CXCL8, CLEC4D, IL1B, 
TREM1, FAM20A, CCR2, SELL, STEAP4, MUC13, CCL19, and CP. Monoglobus was 
positively correlated with the FAM20A gene; NK4A214 group was positively correlated 
with MMP10, MMP1, SELP, and ADAMTS4. In addition, Christensenellaceae R-7 group was 
positively correlated with MMP3, CXCL5, CLEC4D, and STEAP4, but negatively 
correlated with DNASE1L3 (Figure 11A). 

The relationship between gut microbes (relative abundance > 0.5%) and DMs was 
revealed by using Pearson correlation analysis. Tyzzerella positively correlated with 
changes in Inosine. Blautia positively correlated with inosine but negatively correlated 
with N-Apha-acetylltsine. Christensenellaceae R-7 group positively correlated with inosine 
but negatively correlated with 1-palmitoyl-glycerophosphocholine. Lachnospiraceae 
NK4A136 group positively correlated with changes in 11-Dehydro-thromboxane B2 and 1-
palmitoyl-glycerophosphocholine. Methanobrevibacter positively correlated with 
Kynurenic acid and N-Alpha-acetyllysine. Ruminococcus negatively correlated with 
Uracil. However, Psychrobacillus negatively correlated with 11-Dehydro-thromboxane B2 
(Figure 11B). 

 
Figure 11. (A) Significant correlations between genera and differential expression genes. (B) 
Significant correlations between genera and differential metabolites. Different colors are used to 
show the correlation coefficients; red indicates a positive relationship and blue indicates a negative 
relationship. * p.adjust < 0.05; ** p.adjust < 0.01; *** p.adjust < 0.001. 

4. Discussion 
Rabbits are highly sensitive to temperature and relative humidity conditions [3]. The 

environment within a rabbit house has an enormous impact on rabbit production [5]. This 
study determined the changes in group performance, colon microbiota, and serum 
metabolic profiles in Ira rabbits with different THI values. 

  

Figure 11. (A) Significant correlations between genera and differential expression genes. (B) Signifi-
cant correlations between genera and differential metabolites. Different colors are used to show the
correlation coefficients; red indicates a positive relationship and blue indicates a negative relationship.
* p.adjust < 0.05; ** p.adjust < 0.01; *** p.adjust < 0.001.

4. Discussion

Rabbits are highly sensitive to temperature and relative humidity conditions [3]. The
environment within a rabbit house has an enormous impact on rabbit production [5].
This study determined the changes in group performance, colon microbiota, and serum
metabolic profiles in Ira rabbits with different THI values.

4.1. Group Performance

Daily feed intake (DFI), average daily gain, and feed conversion rate (FCR) are the
most important performance parameters used to evaluate the production efficiency of
rabbit farms [36]. According to the growth performance of the rabbits in this study, THI
26.14 was more suitable for the growth of meat rabbits than THI 27.25. Inadequate feed
intake (FI) caused by heat stress was the main reason for the decreased growth rate. The
thermal environment triggered peripheral heat receptors and promoted the secretion
of leptin and adiponectin. Leptin stimulated the appetite center of the hypothalamic-
pituitary-adrenal axis, and adiponectin regulated eating behavior, resulting in decreased
feed intake and ultimately decreased ADG [37]. In addition, extreme reactive oxygen
species (ROS) oxidized and destroy cell biomolecules and inhibited ATPase activity in
the thermal environment. Finally, intestinal tissue was damaged in the rabbits, and feed
utilization efficiency and growth performance were reduced [2]. In addition, the effect of
the THI on meat rabbits of different genders was not determined in this study because male
and female rabbits had been randomly assigned. Notably, the meat rabbits (28–73 days old)
in this experiment had not reached sexual maturity. It is normal for the gender of rabbits to
have no effect on production parameters [38], which constitute the physiological moments
when the male and female technical indicators begin to differentiate [39].

4.2. Colon Microbiota Changes

Alpha diversity indicators of the microbiota in this investigation did not reveal any
appreciable differences (p > 0.05); this finding was similar to that of Wen [40]. Changes in
physiological parameters do not necessarily lead to changes in specific gut microbiota [41].
In agreement with earlier research, this study discovered that Firmicutes and Bacteroidetes
were the most represented intestinal phyla and existed in co-exclusion [42]. Firmicutes
are essential for the degradation of dietary fiber and metabolism of lipids during the
growth stage in rabbits [43]. Bacteroidetes can increase carbohydrate metabolism and
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enhance gastrointestinal immunity [44,45]. It has been found that with an increase of THI,
the abundance of Bacteroidetes in the rumen of goats significantly increases [41], while
the abundance of Bacteroidetes in broilers significantly decreases [46]. In this study, the
abundance of Bacteroidetes in meat rabbits increased in the high-THI group, but the change
was not significant; this may be due to the differences in physiological characteristics within
the species.

Previous studies have shown that THI affects animal gut microbiota composition
and function [47]. Blautia and Lachnospiraceae NK4A136 group were significantly enriched
(p < 0.05) in the LG and HG, respectively. According to earlier findings, Blautia abundance
declines as the THI increases. By generating SCFA and increasing intestinal regulatory T
cells, Blautia plays a critical function in preserving the equilibrium of the gastrointestinal
environment and reducing inflammation [48]. Intestinal health has been preserved by
the butyrate-producing bacteria of the Lachnospiraceae NK4A136 group [49]. One of the
primary SCFAs generated by the microbiota, butyrate, is essential for preserving epithelial
barrier integrity and inhibiting inflammation [50]. The results of this study revealed that
intestinal microbial phylogeny differs among individuals with environmental THI changes.
It can be speculated that intestinal microorganisms that are not suited to grow in this THI
environment may be replaced by intestinal microorganisms with similar roles in response
to environmental THI changes and play a role in protecting intestinal health.

The co-occurrence networks in this study, which suggest potential interactions, re-
vealed different core community structures of genera among rabbits in different THI
environments. The high-THI animals had fewer connections than the low-THI animals did
(42 vs. 34), indicating that there were fewer microbe–microbe interactions in the former. The
core genus of intestinal bacteria in the HG, NK4A214 group, was thought to play crucial roles
in the fermentation of dietary cellulose and the synthesis of SCFA [12]. Marvinbryantia is
involved in the conversion of primary bile acids to secondary bile acids and the production
of butyric acid [51]. In addition, we found that Candidatus saccharimonas, Ruminiclostridium,
and Methanosphaera were core members of the interaction network in the high-THI group.
It was found that the bacterial communities of Candidatus saccharimonas in the ceca of the
meat rabbits increased significantly due to heat stress [52]. Candidatus saccharimonas is asso-
ciated with inflammatory diseases [53]. Ruminiclostridium changes are positively correlated
with obesity and can aggravate inflammation in mice [54,55]. Methanosphaera has been
significantly associated with hypercholesterolemia and decreased intestinal trimethylamine-
n-oxide (TMAO) concentration [56]. In this study, it was found that high-THI environments
affected the colon microbial structure in meat rabbits, and that pathogenic bacteria be-
came the core microflora in the rabbits, possibly inducing intestinal inflammation and
other diseases.

4.3. Colon Transcriptome Analysis

Using RNA-Seq technology, the impact of THI on the rabbit gut transcriptome was
investigated. In this study, IL1A, IL1B, CCR1, CXCL8, CXCR2, and CXCR1 were signifi-
cantly upregulated in low-THI (26.14) environments. It has been found that immunological
response and heat stress are both impacted by the overexpression of CCR1 and IL1B [57].
CXCL8 is a chemokine family member that acts on CXCR1 and CXCR2 receptors. CXCL8
and its receptors contribute to eliminating pathogens and significantly contribute to dis-
ease processes and tumorigenesis [58]. This study found a favorable correlation between
alterations in intestinal immune-related genes (IL1A, IL1B, and CXCL8) and increasing
levels of Blautia, indicating that Blautia might affect the immunity of rabbits. The afore-
mentioned genes were strongly abundant in pathways like the cytokine–cytokine receptor
interaction, NF-κB signaling pathway, and toll-like receptor signaling pathway. During
inflammatory and immune reactions to illness, cytokine–cytokine interactions are essential.
When cytokine interactions occur, they may have additive, antagonistic, or synergistic
effects on physiological processes like eating, body temperature regulation, and sleep [59].
NF-κB activation during recovery from thermal stress is linked to thermotolerance of the
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NF-κB·IκBα complex, and also with inhibition of ROS accumulation [60]. Antigen detec-
tion, dendritic cell maturation, and the beginning of antigen-specific adaptive immune
responses are all regulated by toll-like receptors (TLRs). TLR-generated signals are sent
through the NF-κB signaling and MAP kinase pathways, which attract co-stimulatory
molecules and pro-inflammatory cytokines to sites of inflammation [61]. Thus, the upreg-
ulation of these genes and activation of these pathways revealed that THI 26.14 induced
immune and inflammatory responses in the rabbit colon. It has been reported that bovine
thermal stress first activates HSF1 (heat shock transcription factor 1), then subsequently
increases the expression of heat shock proteins, increases glucose and amino acid oxidation,
decreases fatty acid metabolism, activates the stress-responsive endocrine system, and
finally activates the immune response system [62]. We speculate that immune response
pathways are activated in low-THI environments because rabbits are more sensitive to
thermal-environmental changes than bovines.

We found that TRPV3 and NGF were significantly upregulated in high-THI (27.25)
environments. The TRPV family includes members that encode a dynamic range of ther-
mal sensitivities of sensory neurons. Previous research found that TRPV3-null animals
exhibit much less susceptibility to unpleasant temperatures [63]. When there is tissue
injury, metabolic stress, and inflammation, NGF is released. NGF enhances the nociceptor
response to noxious stimuli, which in turn enhances the experience of pain [64]. Thus, the
upregulated expression of TRPV3 and NGF revealed increased sensitivity to environmental
THI in rabbit intestines.

We discovered that increased THI also had an impact on the metabolism of pheny-
lalanine and the production of tryptophan, tyrosine, and phenylalanine. The aromatic
amino acids (AAA) for protein synthesis include phenylalanine, tyrosine, and tryptophan.
Numerous secondary metabolites that are essential for the survival of animals are also pro-
duced during the biosynthesis and breakdown of AAA [65]. Phenylalanine, tyrosine, and
tryptophan play regulatory roles under heat stress through their co-expression network [66].
Phenylalanine could be metabolized to tyrosine with the help of the enzyme phenylalanine
hydroxylase. It has been shown that tyrosine, a chemical that is the precursor of dopamine,
norepinephrine, and catecholamine neurotransmitters, can protect against the effects of
heat stress [67]. The enhanced metabolism of phenylalanine to tyrosine in bovine mam-
mary epithelial cells (BMECs) was previously reported as a self-defense mechanism against
thermal stress [68]. Moreover, the phenylalanine, tyrosine, and tryptophan biosynthesis
indole participates in intestinal barrier function and prevents intestinal inflammation [69].
Therefore, we speculate that the induction of tryptophan, tyrosine, and phenylalanine
biosynthesis, as well as phenylalanine metabolism, is a self-protective mechanism for the
adaptation of the rabbit gut to changes in the THI.

4.4. Serum Metabolome Analysis

Serum metabolomics analysis further proved that the THI changes rabbits’ metabolic
function. In this study, beta-Alanine, inosine, uracil, and GMP were significantly increased
in the LG. Beta-alanine is one of the components of carnosine [70]. The aforementioned
compounds have indirect (beta-Alanine) and direct (carnosine) antioxidants, immune
boosters, and neurotransmitter actions [71]. Inosine has an anti-inflammatory action and is
a member of the class of chemical substances known as purine nucleosides [72]. Elevated
levels of beta-alanine and inosine indicate that a low-THI environment affects the immune
response in rabbits. The finding in this study of a positive correlation between Blautia and
inosine suggests that Blautia too may affect immunity. In addition, GMP is catalyzed by
guanylate cyclase to produce 3′,5′-cyclic guanylate (cGMP). cGMP has critical physiological
functions and acts as an intracellular messenger [73]. Uracil, a unique base component
of RNA, is a coenzyme for many critical biochemical reactions, such as beta-alanine and
pyrimidine metabolism. Uracil is also involved in antioxidant response and the biosynthesis
of polysaccharides [74]. According to earlier research, heat stress causes the uracil level
in the blood of aquatic animals to drop [75]. In this study, the elevated concentrations of
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these metabolites suggest that the metabolism of nucleic acids is affected, and the immune
function is enhanced, in low-THI environments.

In this study, Acetylphosphate, 1-palmitoylglycerophosphocholine, 11-Dehydro-
thromboxane B2, and N-alpha-acetyllysine were significantly increased in the HG.
Acetylphosphate (AcP) is a high-energy donor of acetyl and phosphoryl groups that
controls the activity of proteins. Studies have demonstrated that AcP can control bac-
terial pathogenicity by acetylating key transcription factors and decreasing their activ-
ity [76]. Besides, environmental variables like pH and temperature seem to have an
impact on the condition of the AcP pool [77]. 1-Palmitoylglycerophosphocholine is a cell
membrane compound that continuously accumulates during stress responses and con-
tributes to stress tolerance [78]. In this study, a positive correlation was found between
1-palmitoylglycerophosphocholine and Lachnospiraceae NK4A136 group. Therefore, it is
speculated that 1-palmitoylglycerophosphocholine may contribute to strengthening the
intestinal barrier and regulating glucose homeostasis by influencing the abundance of
Lachnospiraceae NK4A136 group.

N-alpha-acetyllysine is an organic compound classified among the N-acyl-alpha amino
acids. N-alpha-acetyllysine may be a biomarker for identifying various nephropathy [79]. In
our study, there was a notable negative correlation between Blautia and N-apha-acetylltsine,
indicating that Blautia plays a very important role in host health. 11-Dehydro-thromboxane
B2 is a stable metabolite of TXA2, produced in blood and urine, that is used to monitor
TXA2 production in vivo [80]. TXA2 is involved in a number of allergy-related illness
processes [81]. Therefore, from the elevated levels of these metabolites, it can be inferred
that high-THI environments significantly increase the susceptibility of meat rabbits to
certain diseases. In addition, changes in intestinal microorganism composition are closely
related to host health, and can cause host metabolic dysfunction and increase the risk of
disease [82]. Association analysis in this study found that the changes in colon microbes
and serum metabolites affected by THI were consistent.

The rapid advancement of machine-learning techniques encourages the use of the
metabolome and microbiome to forecast growth and disease risk in various animal species [83].
The interactions between metabolites and environment THI were also investigated in this
study using metabolomics. We found that five metabolites could theoretically predict THI
adaptation in meat rabbits with an accuracy of 91.7%. These metabolites need to be further
verified in more specific production practices.

5. Conclusions

In conclusion, THI 26.14 is more suitable for the growth of meat rabbits than THI
27.25. In order to adapt to changes in environmental THI, the stress protection mechanism
initiated in meat rabbits is related to the upregulation of immune function and heat-stress-
related gene expression, the balance of intestinal microorganisms, and the increasing of
some serum metabolites. In future production, markers can be rapidly tested to determine
the suitability of specific THIs in the environments of meat rabbits.
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