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Simple Summary: Wenchang chickens are the only chicken breed listed in the ‘animal genetic
resources in China (poultry)’ in Hainan Province and are famous for their excellent meat quality.
Protection of this genetic resource may ensure poultry husbandry’s sustainable and successful
development. For more effective conservation, development, and utilization of this genetic resource,
we investigated the diversity, degree of inbreeding, and runs of homozygosity (ROH) patterns for
Wenchang chickens using whole-genome sequencing data. Our analysis showed that the genetic
diversity of Wenchang chickens was relatively high. Selection signal analysis of Wenchang chickens
based on ROH found some candidate genes that were putatively associated with meat quality traits
and stress resistance traits, such as disease resistance and heat tolerance.

Abstract: Wenchang chickens, a native breed in the Hainan province of China, are famous for their
meat quality and adaptability to tropical conditions. For effective management and conservation,
in the present study, we systematically investigated the characteristics of genetic variations and
runs of homozygosity (ROH) along the genome using re-sequenced whole-genome sequencing data
from 235 Wenchang chickens. A total of 16,511,769 single nucleotide polymorphisms (SNPs) and
53,506 ROH segments were identified in all individuals, and the ROH of Wenchang chicken were
mainly composed of short segments (0–1 megabases (Mb)). On average, 5.664% of the genome was
located in ROH segments across the Wenchang chicken samples. According to several parameters,
the genetic diversity of the Wenchang chicken was relatively high. The average inbreeding coeffi-
cient of Wenchang chickens based on FHOM, FGRM, and FROH was 0.060 ± 0.014, 0.561 ± 0.020, and
0.0566 ± 0.01, respectively. A total of 19 ROH islands containing 393 genes were detected on 9 differ-
ent autosomes. Some of these genes were putatively associated with growth performance (AMY1a),
stress resistance (THEMIS2, PIK3C2B), meat traits (MBTPS1, DLK1, and EPS8L2), and fat deposition
(LANCL2, PPARγ). These findings provide a better understanding of the degree of inbreeding in
Wenchang chickens and the hereditary basis of the characteristics shaped under selection. These
results are valuable for the future breeding, conservation, and utilization of Wenchang and other
chicken breeds.

Keywords: Wenchang chicken; inbreeding; genetic diversity; runs of homozygosity; selection signatures

1. Introduction

Wenchang chickens are a typical native broiler breed in China, mainly in Hainan
province, the southernmost part of the country. Being the descendants of those lines
who have lived a long time under environmental conditions with high humidity and
temperature has resulted in Wenchang chickens performing well when undergoing heat
stress and exposure to zoonotic diseases. In addition, Wenchang chickens are well known
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for their excellent meat quality and high prolificacy. Due to their superior meat quality,
Wenchang chicken possesses a large share of the poultry market in Hainan province, and
its production yields are sold in Southeast Asian countries. However, the introduction of
commercial breeds put Wenchang chickens in danger due to their subpar performance in
terms of growth traits and feed conversion ratios [1]. As a result, the number of Wenchang
chickens has been decreasing in the past few decades, which may lead to occurrences of
inbreeding. The deficient control of inbreeding may give rise to weaknesses in the genetic
variability and genetic diversity of Wenchang chickens, which have a detrimental effect
on conserving this valuable genetic resource and the sustainable development of poultry
husbandry. In addition, inbreeding may also increase the probability of genetic drift and the
frequency of autozygosity for deleterious alleles, consequently reducing performance for
individuals in the Wenchang population. Therefore, to better preserve the genetic diversity
and utilization of Wenchang chicken, we must find an effective way to characterize and
understand inbreeding and autozygosity in this valuable genetic resource.

Runs of homozygosity (ROH), the continuous homozygous segments in an individual
genome, are common in human and animal populations [2]. ROH segments are identical
haplotypes transmitted from parents to offspring, so these segments can be hereditary in
a population and provide information about the population’s history and demographic
evolution. Long ROH are generally due to recent parental relatedness, while shorter ROH
indicate more ancient common ancestors in the pedigree [3]. Thus, detecting ROH can
estimate the whole genome’s inbreeding level, which can be used to improve mating
systems and minimize inbreeding [4]. The assessment of whole-genome inbreeding based
on ROH is widely used and effectively distinguishes between recent and ancient inbreeding.
In addition, the inbreeding coefficient (F) estimation method by ROH is suitable for large
populations [4].

Besides consanguineous mating and population size reduction, selection pressure can
also result in long homozygous regions along the genome [5]. Studies have claimed that
natural and artificial animal selection has resulted in breeds with extensive phenotype
variation [1,6]. Using selection signatures to identify regions in the genome under selective
pressure may help us determine harbored genes and variants that modulate important
animal phenotypes. Nowadays, more and more researchers perform ROH to reveal genetic
mechanisms of important traits, and it has been widely used in a variety of animals,
such as cattle [7], pigs [8], and sheep [9]. For example, Li et al. detected ROH in Hu
sheep based on sequencing data and identified selected genes within the ROH islands
relevant to agricultural economic characteristics [10]. However, these types of studies
are seen less commonly in chickens, especially Chinese indigenous chickens such as the
Wenchang chicken.

Therefore, the present study aimed to estimate the diversity and detect ROH patterns
in Wenchang chicken populations, observe the degree of inbreeding in Wenchang chickens,
and identify candidate genes related to breed-specific traits of Wenchang chickens from
within ROH islands. The results of this research contribute to our understanding of
inbreeding in Wenchang chickens and help elucidate how artificial or natural selection
affects the distribution of functional variants at the whole-genome level.

2. Materials and Methods
2.1. Animals and Genotypes

In this study, 235 individual Wenchang chickens were sampled from three local con-
servation farms in Hainan province, China (Table S1). All selected individuals’ genomes
were sequenced using the Illumina Nova Seq platform (Illumina, San Diego, CA, USA) and
150-base pair (bp) paired-end sequencing [11]. For details, see Table S1. Raw data from re-
sequencing were filtered using the fastp software (a FASTQ data pre-processing tool) with
the default parameters. After filtering, the remaining reads were aligned to the chicken ref-
erence genome (bGalGal1.mat.broiler.GRCg7b, https://www.ncbi.nlm.nih.gov/assembly/
organism/9031/latest/) (accessed on 1 August 2021) using Burrows–Wheeler Aligner

https://www.ncbi.nlm.nih.gov/assembly/organism/9031/latest/
https://www.ncbi.nlm.nih.gov/assembly/organism/9031/latest/
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(BWA, version 0.7.17) [12]. GATK4 software (version 4.1.6.0) [13] was used for the single
nucleotide polymorphism (SNP) calling of each individual. STITCH [14], a software pro-
gram that can perform this task using ultra-low coverage data, was used for the imputation
of the missing genotypes. In addition, SNPs were filtered using PLINK (v1.9) [15]. SNPs
were retained for further analysis using the following criteria: (1) minor allele frequency
(MAF) ≥ 0.05; (2) missing rate ≤ 0.1; (3) calling rate ≥ 0.9; (4) the calling quality ≥ 30. After
that, the remaining SNPs were used for further downstream analysis.

2.2. Genetic Diversity and Linkage Disequilibrium (LD) Analysis

The estimation of the genetic diversity of Wenchang chickens was performed using
some indices, including expected heterozygosity (HE), observed heterozygosity (HO), the
percentage of polymorphic loci (PN), the minor allele frequency (MAF), and nucleotide
diversity (pi). HE, HO, PN, and MAF were calculated using PLINK (v1.9) [15], and pi was
calculated using VCFTOOLS (version 0.1.16) [16]. The squared correlation (r2) between pair-
wise SNPs served as a measure of the linkage disequilibrium (LD) decay using PopLDdecay
with default parameters [17].

2.3. Identification of ROH

ROH on all autosomes of each individual were identified using PLINK (v1.9) [15]
with a sliding window. In addition, according to previous studies [18,19], specific criteria
were applied based on the following: (1) Each sliding window should contain 50 SNPs
across the genome; (2) due to genotyping error, up to five SNPs with missing genotypes
and one SNP with a heterozygous genotype were allowed for each ROH; (3) each ROH
should have a sequence of more than 50 consecutive SNPs; and (4) only detect segments
with ROH length greater than 100 kilobases (kb). ROH extracted from sequence data were
further classified into three length categories: short ROH (<1 megabase (Mb)), medium
ROH (1–2 Mb and 2–3 Mb), and long ROH (>3 Mb). In addition, to further understand the
influence of different parameters, we use the detection method of adding 50 SNPs at a time
to verify the influence of different parameters.

2.4. Assessment of Inbreeding Coefficients

Three methods (FROH, FHOM, and FGRM) were used to estimate the inbreeding coeffi-
cients of Wenchang chicken populations. First, the FROH was calculated according to the
method proposed by McQuillan et al. [20], which was defined as the ratio of the total length
of ROH to the total length of the genome covered by the analyzed SNPs or sequences.
Formula (1) was used as follows:

FROH =
∑ LROH

∑ Lauto
(1)

where ∑LROH is the total length of all the ROH for one individual across the genome, and
∑Lauto is the total length of the autosomal genome covered by the analyzed SNPs, which
was 900 Mb in our study. This length is consistent with the chromosome length of chickens
reported in previous studies [21].

Second, FHOM was calculated using PLINK (v1.9) [15] to assess the number of observed
and expected autosomal homozygous genotypes for each sample [7]. Finally, the genomic
inbreeding coefficient of each individual was evaluated from the genomic relation matrix
(FGRM) according to the previous method proposed by VanRaden [22]. FGRM coefficients
were estimated using the option “--ibc” from the GCTA software. The genome relation
matrix is obtained and used by us to calculate the diagonal of the matrix to calculate each
individual’s FGRM value. The formula is as follows:

FGRMj = Gjj − 1 (2)
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where FGRMj is the genome inbreeding coefficient of each individual, and Gjj is the diagonal
element of the genome relation matrix [21].

2.5. Identification of Candidate Genes within ROH Islands

PLINK (v1.9) was first utilized to identify ROH islands with the command “–homozyg” [23].
Secondly, the frequency of each SNP that appeared in an ROH was calculated, and the
percentage of SNPs that existed within an ROH was subsequently estimated. Thirdly,
the top 1% of SNPs were defined as candidate SNPs, and the genes underwent further
identification. Finally, Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways were analyzed to identify the functions of candidate genes fur-
ther using DAVID (v6.7, https://david.ncifcrf.gov/) (accessed on 26 December 2022) [24].
Only the p-values with less than 0.05 of these enriched GO terms and KEGG pathways
were considered significant and listed in this study.

3. Results
3.1. SNP Identification

After quality control and filtration, 16,511,769 SNPs were obtained from the whole
genomes of 235 Wenchang chickens. To further understand the distribution character-
istics of these SNPs, we first categorized them into their functional classes. As a result,
73,238 (28.60%) SNPs were categorized as nonsynonymous, and 182,812 (71.40%) SNPs were
categorized as synonymous. A total of 4,857,664 (29.30%) SNPs were obtained in intergenic
regions. For the SNPs found in gene regions, a total of 257,930 (1.56%) SNPs were in exon
regions, and 694,328 (4.19%) SNPs were in untranslated regions (Figure S1). The R package
(v4.1.3) “CMplot” then calculated and visualized the density distributions of the SNPs
found in Wenchang chicken on each chromosome. This result is depicted in Figure S2. The
distribution of SNP has about one SNP site per 17.47 kb. Chromosomes 1 and 2 displayed
the largest number of SNPs, with 3,424,555 and 2,584,382, respectively, while chromosome 6
had the highest densities of SNPs. Since a region with a high density of SNPs was con-
tained in chromosome 6, this suggests that chromosome 6 may be an important target for
further research.

3.2. Genetic Diversity and LD Analysis

The results of the genetic diversity indices are shown in Table 1. HE (0.24) was found
to be slightly higher than HO (0.23). The value of PN was 0.83, and the pi value was 0.0043
(Figure 1A). The average value of MAF was 0.17, varying from 0.01 to 0.50. The MAF of
more than 10.67% of the SNPs was higher than 0.40, and the MAF of 43.90% of the SNPs
was lower than 0.10 (Figure S3).

Table 1. Genetic diversity indices of Wenchang chickens.

HE HO PN MAF pi

0.241613 ± 0.162092 0.228047 ± 0.154646 0.8264 0.170253 ± 0.143041 0.004268 ± 0.001726

LD analysis was measured with r2 values and could provide further information on
the overall diversity level of the Wenchang chicken population. Overall, the LD value
decreased with the increased distance between SNPs, and the decay was rapid in Wenchang
chicken (Figure 1B). In brief, these results indicated that most Wenchang chickens displayed
high genetic diversity.

https://david.ncifcrf.gov/
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Figure 1. The nucleotide diversity (A) and linkage disequilibrium decay (B) of Wenchang chickens.
(A) The violin plot of nucleotide diversity (pi) of Wenchang chickens, where the red dot represents
the average value. (B) The linkage disequilibrium decay of Wenchang chickens. The x-axis represents
SNP marker distance (kb), and the y-axis is the squared correlation (r2) between pairwise SNPs.

3.3. Genomic Distribution of ROH

A total of 53,506 ROH segments were identified in 235 Wenchang chickens through
ROH detection on all autosomes (Figure 2). The overall mean length of detected ROH
was 53.53 ± 9.47 Mb, with a mean number of 227.69 ± 33.65 ROH per animal. The
coverage of the identified ROH segments per chromosome ranged from 2.67% to 8.88% in
Wenchang chickens. The chromosomes of 33 (61.18%) and 31 (41.15%) had very high ROH
coverage. Summary statistics of the numbers of ROH segments across different length
classes are shown in Table 2. The average size of each segment was 0.2351 Mb, ranging
from 0.10 Mb to 4.74 Mb, and the longest fragment was found in chromosome 2 (which
contains 43,925 SNPs). In terms of the identified segments, we can find that the majority
(98.17%) of the whole ROH length was made up of the short segments (<1 Mb), while the
long ROH segments (>3 Mb) accounted for just 0.03% of the whole ROH length, indicating
that ROH covered the highest proportion of the genome (88.53%) in Wenchang chickens.
The influence of different detection parameters on the results is shown in Table S4. With
the increase of SNP in a single test, the number of short fragments decreased until the
number of short fragments (ROH < 1 Mb) accounted for 98.47%, while the number of long
fragments was still 0.03%.

Table 2. Descriptive statistics of runs of homozygosity (ROH) numbers and lengths (in Mb) by ROH
length classes (0–1 Mb, 1–2 Mb, 2–3 Mb, ROH > 3 Mb and total).

ROH Length (Mb) ROH Number Percent (%) Mean Length (Mb) Genome Coverage (%)

0–1 52,526 98.17% 0.212 ± 0.147 88.53%
1–2 853 1.59% 1.323 ± 0.264 8.97%
2–3 111 0.21% 2.302 ± 0.259 2.03%
>3 16 0.03% 3.64 ± 0.600 0.46%

Total 53,506 100.00% 0.235 ± 0.232 100.00%
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Figure 2. The distribution of ROH detected in Wenchang chicken across autosomes. (A) Length
distribution of ROH. The x-axis represents the number of ROH, and the y-axis represents the length
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ROH and ROH coverage, respectively, on each chromosome.

3.4. Inbreeding Coefficients

The results of the inbreeding coefficients calculated by different methods are shown
in Table 3. The mean value of FROH in the 235 Wenchang chicken sample population was
0.0566, with a range of 0.0267 to 0.0888, and the value of FHOM ranged from 0.0281 to
0.1527, with a general mean of 0.05614. The values of FGXM ranged from 0.02168 to 0.12298,
with a general mean of 0.05999. The inbreeding coefficient values obtained using the three
methods were roughly the same and remained low, indicating that the level of inbreeding
in the Wenchang chicken population was relatively low. Furthermore, the inbreeding
coefficients estimated based on the different physical lengths of the ROH fragments varied
greatly, of which, FROH (<1 Mb) was significantly larger than FROH (1–2 Mb), FROH (2–3 Mb),
and FROH (>3 Mb). Furthermore, a strong correlation (0.94) was found between FROH
(<1 Mb) and FROH (All), while the weakest correlation (0.15) was found between FROH
(>3 Mb) and FROH (All) (Figure 3). This result indicated that short ROH fragments might
play a major role in calculating FROH.
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Figure 3. Correlation of genomic inbreeding coefficients calculated based on different length ROH
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the color, the higher the correlation of the data. The t-test of all the data shows that the p-value
between the data is less than 0.01.
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Table 3. The average genomic inbreeding coefficient of FHOM, FGRM, and FROH for different length
categories of ROH.

FROH
(<1 MB)

FROH
(1–2 MB)

FROH
(2–3 MB)

FROH
(>3 MB)

FROH
(ALL) FHOM FGRM

0.0501 ± 0.0084 0.0051 ± 0.0027 0.0012 ± 0.0017 0.0003 ± 0.001 0.0566 ± 0.0100 0.0561 ± 0.0205 0.0600 ± 0.0144

3.5. ROH-Based Selective Signal Analysis

ROH hotspots or islands were defined as the genomic regions with the highest fre-
quency of ROH occurrence. In total, 19 ROH islands, 77,975 SNPs, and 393 genes under
selection were detected across the 39 autosomes based on their occurrence in the top 1%
of the ROH islands as possible regions for candidate genes (Figure 4 and Table S2). The
length of these genomic regions ranged from 574.6 bp on Chromosome 2 to 0.9 Mb on Chro-
mosome 1. Notably, the genomic region with a length of 1.7 kb located on Chromosome 8
contained 91 genes, which might be the most relevant region for functional expression in
the Wenchang chicken population.
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Figure 4. Manhattan plot of the frequency for each SNP within ROH regions among all individuals.
The horizontal red line indicates the threshold for top 1%. The x-axis represents positions along each
chromosome. Genes related to reproduction quality are identified.

The functional annotation of the identified genes was analyzed, and the results are
depicted in Figure 5. In total, 25 GO terms and one pathway were significantly enriched
(Table S3). GO clustering analysis revealed that the genes that contained SNPs were sig-
nificantly enriched for metabolic processes (GO:0005975-carbohydrate metabolic process;
GO:0006004-fucose metabolic process), activity processes (GO:0004556-alpha-amylase
activity; GO:0046922-peptide-O-fucosyltransferase activity), development processes
(GO:0035987-endodermal cell differentiation; GO:0098609-cell adhesion), binding processes
(GO:0005178-integrin binding; GO:0005518-collagen binding; GO:0000049-tRNA binding;
GO:0003725-double-stranded RNA binding); and collagen binding (GO:0005518). Genes
containing SNPs were significantly enriched for the KEGG pathway “ECM-receptor inter-
action (GGA04512)”.
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4. Discussion
4.1. Genetic Diversity of the Wenchang Chicken Sample Population

Numerous factors affect genetic diversity, and understanding genetic diversity is es-
sential for developing conservation and sustainable livestock management programs. Our
study used several indices to estimate the genetic diversity of Wenchang chickens. Heterozy-
gosity, including observed heterozygosity (HO) and expected heterozygosity (HE), one of
the most widely used genetic diversity parameters, was first carried out to estimate the Wen-
chang chicken population. In comparison with other chicken breeds reported in previous
research, the heterozygosity (HO) and expected heterozygosity (HE) values of Wenchang
chicken estimated in our study are relatively higher when compared to Italian local chicken
breeds (HO = 0.1626 ± 0.200) [23], Swedish chicken breeds (HO = 0.225 ± 0.023) [24],
Guangzhou chickens (HE = 0.2114), Huiyang chickens (HE = 0.2376), and Commercial
broilers (HE = 0.2337) [25]. In addition, many studies have also extensively used the MAF
index to evaluate genetic diversity [26]. The distribution of MAF may provide valuable
insights into the distinction between common and rare variants in the population. A higher
proportion of one population’s low MAF values may indicate high genetic diversity [27]. In
our study, the average value of MAF in Wenchang chickens was 0.17, and the proportion of
MAF values less than 0.1 was 43.90%. These results indicated that the genetic diversity level
of Wenchang chickens was high, consistent with heterozygosity. Likewise, the pi value in
Wenchang chickens was higher than other chicken breeds reported in previous studies,
such as Guangzhou chickens (0.00199), Beijing chickens (0.00216) [26], and Dongzhon-
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gai chickens (0.00332) [28]. The genome’s high pi value also provides evidence for the
fast-decaying LD of Wenchang chickens.

LD, an important genetic phenomenon, is a non-random association of alleles at
different loci. The pattern of LD decay between genetic markers can provide valuable
views on a population’s history and evolution. Compared to other chicken breeds, the
LD extension of the Wenchang chicken population was much smaller than commercial
chicken breeds, such as White Leghorn [28], and was at a low level among some Chinese
indigenous chicken breeds, such as Xichuan black bone chicken [29], Xianju chickens, and
Taihe chickens [26]. The degree of LD decay rapidity indicates high genetic diversity and is
associated with processes such as migration, selection, and genetic drift in one population.
Commercial chicken breeds have undergone strong artificial selection for economic traits,
which may result in a low LD decay rate and diversity decline. Altogether, Wenchang
chickens displayed a high level of genetic diversity, which indicated that the protection
strategy for Wenchang chickens used on conservation farms was effective. However, a
variety of dynamic factors influence genetic diversity. Therefore, genetic variation and
structure should be continuously monitored in the future to prevent the rapid decline of
diversity, which is significant for the sustainable development of the poultry industry.

4.2. Characteristics of the Identified ROH

Analysis of the distribution of ROH across the genome and the number of ROH
classified by their physical lengths can provide valuable information on the genetic history
and inbreeding of populations [30]. Due to the occurrence of recombination events, the
length of the ROH decreased over time. Hence, longer ROH segments indicate that
inbreeding events were recent, while shorter ROH segments were remote [31,32]. In our
study, the distribution of ROH segments across the genome of the Wenchang chicken
sample population was mostly short segments, while the percentage of long segments
was much lower, especially longer than 3 Mb. This finding suggested that ancient and
contemporary inbreeding events might impact the Wenchang chicken population, but this
population had a low level of inbreeding, and ancient ancestors were the main inbreeding
event-affected group [30].

Additionally, some researchers suggested that, in comparison to SNP chips, the higher
resolution of whole genome sequence data may lead to the identification of ROH shorter
than 1 Mb [33]. In our research, the length of identified ROH segments shorter than
1 Mb was predominant, consistent with previous research on the analysis of other chicken
breeds based on whole-genome sequencing data [3]. These short ROH segments may
reflect ancestral relationships and more ancient inbreeding events in the Wenchang chicken
sample population. In our previous research, the Wenchang chicken sample population
displayed a comparatively higher genetic diversity than other chicken breeds; the results
of the distribution of ROH segments reconfirmed that finding [11]. At the same time, we
verified the influence of different detection parameters on the results. With the increase in
the number of single SNPs detected, the number of short fragments detected decreased,
but there was almost no effect on the number of long fragments, and the change was not
noticeable. Short segments still accounted for the largest proportion of detected SNPs;
however, this did not affect the results and conclusions of this experiment.

Each individual’s average length of ROH segments identified across the genome in the
Wenchang chicken sample population was 53.53 Mb. This result was much smaller than a
previous report on a commercial broiler line, in which the length of ROH was 130.9 Mb
on average [33]. Commercial breeds have suffered strong artificial selection pressure for
genetic improvement on traits of economic interest. Zhang et al. [34] pointed out that
the reason for the difference between Chinese indigenous chicken breeds and commercial
breeds on the value of FROH might be the difference in selection pressure they have been
undergoing. Thus, in comparison with commercial chicken breeds, lower inbreeding
events and higher genetic diversity may exist in the Wenchang chicken sample population,
consistent with the results of genetic diversity and LD analysis. Moreover, the total length
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of ROH varied among individuals in the Wenchang chicken sample population, which
indicated that ROH differs among individuals, consistent with previous studies [3]. Some
scholars have suggested that this difference may be attributed to the lower length threshold
used to detect ROH and the higher density of SNPs used to perform analysis [19,34].

4.3. Inbreeding Coefficients

Estimating inbreeding coefficients based on pedigree data (FPED) has been widely
used in previous studies. However, FPED may not be considered an accurate estimation
of true inbreeding degree because of many limitations, such as errors in pedigree records
and the fact that the coefficient does not reflect the random nature of Mendelian sampling
and recombination [35]. Many studies have implemented and attested that the estimation
of the inbreeding coefficient based on ROH fragments is feasible without pedigree infor-
mation [7,36,37]. Estimating the inbreeding coefficient based on ROH does not depend
on the allele frequencies or the pedigree’s incompleteness. As a result, FROH is typically
less affected by external factors and is more precise in estimating the degree of inbreeding
than other methods [36]. The average value of FROH estimated in the Wenchang chicken
sample population was 0.0566, and the value of FROH (<1 Mb) was significantly larger
than others. A similar result was found in other chicken breeds [3]. FGRM and FHOM were
also calculated in our study to verify the correctness of the inbreeding coefficient of the
Wenchang chicken sample population. Comparisons with the values among the inbreeding
coefficients calculated by these three methods were similar (approximately 0.05), indicating
that the inbreeding degree in the Wenchang chicken sample population was again low.
Our results also implied that the estimation of FROH based on ROH lengths was reasonably
accurate in predicting the genomic inbreeding coefficient, consistent with the conclusion of
previous studies [38].

4.4. Candidate Genes within ROH Islands

ROH islands may represent regions of the genome that have undergone natural
or artificial selection. In our study, 19 genome regions with a high frequency of ROH
occurrence were identified. After annotation, we found that some GO terms were related
to digestion. For instance, GO:0004556-alpha-amylase activity has been demonstrated to
be helpful in the digestion of starch in a corn diet. Some researchers added alpha-amylase
to broiler diets and found some influence on the growth rate and the development of
digestive organs [39,40]. Hence, these GO terms may relate to the growth and development
traits of Wenchang chickens. In addition, the GO:0005518-collagen binding was also
enriched in our study. Collagen in muscle is associated with the toughness of meat and
can affect the maturation of connective tissue and the tenderness of meat [41]. Thus, this
GO term may be associated with meat-quality traits. Wenchang chickens are well known
for their juicy and tender meat and are well-received by consumers. The significant KEGG
pathway enriched in our study is Extracellular matrix-cell interactions -receptor interaction
(GGA04512), which has been reported to play a potentially central role throughout the
ovulation cycle [42]. These results could putatively explain some reproduction traits of the
Wenchang chicken breed.

For the candidate genes within ROH islands identified in Wenchang chicken, we
found some interesting genes that may be related to economically important traits. Among
these genes, the AMY1a gene has been reported to be strongly associated with growth
performance, feed intake, and body shape traits in chickens [43]. Likewise, we found
that some genes may influence stress resistance in Wenchang chickens. An example
of this would be the THEMIS2 gene, which has been previously implicated in disease
resistance based on whole-genome sequencing data in chickens [44]. The PIK3C2B gene
has been reported to play an important role in the adaptation mechanisms of ducks to
heat stress [45]. Wenchang chickens are produced in the Hainan province of China, where
the temperature is relatively high throughout the year and has driven the evolution of
strong heat tolerance over time in the local livestock and poultry populations. We also
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identified some genes related to meat traits in our Wenchang chicken sample population.
The MBTPS1 gene is associated with meat quality parameters such as shearing force [46].
The DLK1 genes are involved in fat development and differentiation, affecting muscle
growth and meat tenderness [47]. EPS8L2, a family of eps8-related proteins, is a new
protein family responsible for functional redundancy that leads to actin remodeling in
RTK-activated signaling pathways. Related research indicates that EPS8L2 may also play
an important role in muscle formation [48]. Fat deposition often has an impact on meat
quality and flavor. The LANCL2 gene, which was enriched in the Wenchang chicken sample
populations, was reported to be involved in the process of trans-activation of downstream
lipogenic genes mediated by PPARγ [49]. Thus, this gene may be linked to fat deposition
and indirectly affect the meat quality trait of Wenchang chickens. In brief, the regions
identified in this study may help explain the genetic mechanisms underlying the favorable
qualities of Wenchang chickens.

5. Conclusions

In summary, in this study, we detected the ROH across the genome of a Wenchang
chicken sample population and calculated the inbreeding coefficient to investigate the
degree of inbreeding. We also identified the candidate regions within ROH islands that
contain genes related to the economically important and identifying characteristics of
Wenchang chickens. Our findings demonstrated that historical inbreeding events had
little impact on the Wenchang chicken sample population, which displayed a relatively
low level of inbreeding. Based on the enrichment analysis of identified candidate regions
within ROH islands, we found some genes were related to the economically important
traits of Wenchang chicken, such as body shape, meat quality, disease resistance, and
heat tolerance. Overall, our research provides evidence for a better understanding of the
genetic mechanisms controlling Wenchang chicken characteristics and provides insight into
inbreeding events for preservation strategies and utilizing Wenchang chickens in the future.
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Table S1: Information on the re-sequencing data for 235 Wenchang chickens; Table S2: Details of
genomic regions of extended homozygosity detected in Wenchang chicken; Table S3: Significant GO
terms and KEGG Pathways for genes with exonic variants; Table S4: ROH detection results under
different detection parameters.
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