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Simple Summary: Chronic inflammatory lameness is a common painful condition in dairy cows
that affects animal welfare and produces significant yield losses. Bovine chronic lameness can lead
to a chronic pain condition due to the participation of pro- and anti-nociceptive mediators and
reactive oxygen species. The results of this study revealed increased concentrations of substance P
and β-endorphin in lame dairy cows, indicating chronic pain development and sustained endoge-
nous analgesics release. Moreover, the results revealed decreased disulfide levels and α-tocopherol
concentrations in the lame group, suggesting an overproduction of reactive oxygen species, which
may indicate their involvement in the development of chronic pain in bovine lameness.

Abstract: Initial lameness inflammation leads to chronic lameness and development of chronic pain
due to the release of pro-inflammatory mediators such as reactive oxygen species (ROS), which are
implicated in the transition from acute to chronic pain, and free radical scavengers countering thiol,
substance P (SP), and β-endorphin (BE). The present study aimed to evaluate the dynamic thiol–
disulfide homeostasis, α-tocopherol concentrations and SP and BE concentrations in the spinal cord of
chronically lame dairy cows. Ten lame and 10 non-lame cows with a parity range of 2–6 were selected
for the study. Lame cows had a history of up to 3 months of lameness. Spinal cord samples were
obtained from the L2 to L4 lumbar vertebrae aspect of each animal. A thiol–disulfide homeostasis
assay was performed using absorbance, and the α-tocopherol concentration was determined by
HPLC. SP and BE concentrations were measured using ELISA kits. The results indicated that SP
and BE were significantly higher in the spinal cord of lame cows. In contrast, disulfide levels and
α-tocopherol concentrations were significantly lower in the spinal cord of lame cows. In conclusion,
disulfide levels and α-tocopherol concentrations indicated a defective antioxidant response in cows
with chronic lameness. The results of SP and BE concentrations suggested chronic pain and a defective
endogenous analgesic response.
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1. Introduction

Lameness, an abnormal gait that usually originates after injury, disease, or dysfunc-
tion of one or more feet and/or limbs, is an important and persistent problem that affects
dairy cows worldwide, negatively affecting their welfare [1]. Lameness-associated pain
results from tissue damage at the site of injury in which inflammation arises, initiating
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the release of multiple pain mediators and chemical substances that contribute to the
painful process. Inflammation causes an increase in the concentration of chemical me-
diators in the damaged tissue that leads to further activation of peripheral receptors,
leading to central and peripheral sensitization and the development of clinical entities,
including hyperalgesia and allodynia [2,3]. Chronic lameness leads to chronic painful
states and the presentation of decreased nociceptive thresholds, indicating hyperalgesia
and allodynia [4].

Considerable evidence implicates reactive oxygen species (ROS) and reactive nitrogen
species (RNS) in the development of chronic pain and the transition of acute to chronic
pain [5], as they can modulate proteins kinases [6], alter glutamatergic neurotransmissions
through increasing phosphorylation of the NR1 subunit of the N-methyl-D-aspartate
receptor (NMDA) [7], induce neuroinflammation [8], and modulate ion channels such as
the transient receptor potential cation channel, subfamily V, member 1 (TRPV1) [9]. All
these changes contribute to the development of central sensitization associated with acute
and chronic inflammatory and non-inflammatory neuropathic pain [5].

This strong tendency to produce oxidation by ROS is countered by antioxidant com-
pounds such as thiols and free radical scavengers in order to maintain an adequate balance
between ROS production and elimination [10,11]. Thiols react with ROS, producing molec-
ular disulfide bonds [12], which can be reduced to thiols again in order to maintain the
dynamic thiol–disulfide homeostasis [13]. Thiol–disulfide homeostasis is used as an image
of the oxidative stress condition in various human diseases [14–17]. Furthermore, Vitamin E
inhibits the production of ROS, acting as a free radical scavenger through the intervention of
lipid oxidation and the glutathione peroxidase pathway [18–20]. A-tocopherol is chemically
and biologically the most active isoform of vitamin E [21] that induces anti-inflammatory
effects by inhibiting protein kinase C activity [22]. Moreover, it has been reported that
vitamin E is able to reduce hyperalgesia and allodynia and to suppress neuropathic pain in
models of sciatic crush nerve injury in rats [23].

Chronic pain and central sensitization have been associated with neuroinflammation
triggered by neurotransmitter and pro-inflammatory mediator release such as glutamate
and substance P (SP) in the dorsal horn of the spinal cord [24] after glial cell activation [25].
Release of SP in the dorsal horn activates glial cells, leading to the expression and release of
inflammatory mediators [26], including nitroxidative species [24]. Moreover, it has been
confirmed that SP represents an important upstream modulator of the endocannabinoid [27]
and endogenous opioid signaling pathways [28], and that the NK1 receptor may play a
critical role in pain-induced analgesia [29].

Additionally, the sensory information transmitted from peripheral nociceptors to
the dorsal horn via afferent nerve fibers is modulated partially by β-endorphin (BE) [28].
Endogenous opioids are involved in the innate pain-relieving system via the activation of
µ-, δ-, and κ- receptors [30], which are located on neurons, axons, and dendrites intrinsic
to the spinal cord and on the terminals of primary afferents fibers [30,31]. Particularly,
BE is released in order to modulate endogenous analgesic mechanisms through the inter-
action with the specific opioid µ-receptor located in the central and peripheral nervous
system [32]. BE released via the peripheral and central systems is mediated by the pituitary
and hypothalamic pro-opio-melanocortin neurons, respectively [33].

Based on previous studies from our group, we hypothesized that chronic inflammatory
lameness in dairy cows is mediated by changes in the oxidative stress and the endogenous
opioid responses in the dorsal horn of the spinal cord. Furthermore, we aimed to evaluate
the dynamic thiol–disulfide homeostasis, α-tocopherol concentrations, and SP and BE
concentrations in the spinal cord of chronically lame dairy cows.

2. Materials and Methods
2.1. Animals

A total of 20 animals, including 10 Holstein and 10 Kiwi cross dairy cows with
a parity range between 2 and 6 and weighing between 350 and 450 Kg, were used in
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this study. Lame cows were selected according to the following criteria: history of
up to 3 months of lameness in a rear limb caused by chronic white line disease, sole
hemorrhage, and sole ulcer. Exclusion criteria for both groups included the presence of
neurological diseases, acute or chronic mastitis, reproductive or respiratory disorders,
and any other systemic disease including metabolic and mineral disorders. Control
animals (n = 10) were selected from a local slaughterhouse after official consent by the
sanitary authority according to the following criteria: No history on lameness in the
last 3 months and a mobility score of 0 in a clinical examination [34]. Lame cows were
euthanized after intravenous general anesthesia by administering intrathecal lidocaine
in the atlanto-occipital foramen. Non-lame cows were slaughtered at an abattoir by me-
chanical stunning and exsanguination according to national regulations and guidelines
following the World Organization for Animal Health guidelines. The researchers were
not involved in the decision for euthanasia or slaughter.

2.2. Lameness Assessment

Animals were grouped into lame (n = 10) and non-lame cows (n = 10). A complete
clinical examination was performed in all enrolled cows based on a detailed visual
inspection, pain reaction to palpation and evaluation of the integrity of affected tissues.
Lameness was confirmed and classified by the farm veterinarian according to the mo-
bility score previously described by Reader and colleagues (2011) [34]. Additionally,
all lame cows belonged to a flock of lame cows that was diagnosed and treated by a
veterinarian podopathologist.

2.3. Spinal Cord Processing, Protein Extraction, and Quantification

After euthanasia, spinal cord samples were obtained after carefully removing the
dorsal aspect of the L2 to L4 lumbar vertebrae following the procedure described by [3].
A segment of 20 cm of lumbar spinal cord was obtained from each animal. After gently
dissecting, the dura mater and arachnoid were removed, and spinal cord tissue samples
were snap-frozen in liquid nitrogen. Segments of 250 mg of dorsal horn spinal cord tissue
ipsilateral to the lesion were allocated into a mix of 1 mL of phosphate buffered saline (PBS)
with 10 µL of protease inhibitor. The samples were then homogenized in 1 mL of PBS using
an Ultra Turrax tissue homogenizer (T10, IKA®, Staufen, Germany) at 4 ◦C and 16,000 rpm
three times for 30 s each. All samples were immediately sonicated for 30 s and centrifuged
at 20,000 g for 10 min, and the supernatant was removed, collected, and frozen. Protein
quantification was performed using the Pierce® bicinchoninic acid (BCA) protein assay kit
(Thermo Scientific, Rochford, SD, USA).

2.4. Spinal Dynamic Thiol/Disulfide Homeostasis Assay

Determination of dynamic thiol/disulfide homeostasis was performed according to the
method described by Erel and Nesselioglu (2014) [14]. Native thiol and total thiol content
were synchronously measured as a paired test. In a single well, native thiol groups were
measured. At the parallel run, dynamic disulfide bonds were reduced to free thiol groups,
and then total thiol was measured. Briefly, the assay for total thiols was performed by
adding 10 µL of R1 (NaBH4), 10 µL of sample, and 110 µL of R2 (formaldehyde/EDTA/Tris)
sequentially to the vessel, and the first absorbance was measured. Subsequently, 10 µL of
R3 (DTNB) was added to the vessel, and after 10 min, the second absorbance was taken.
The assay for native thiols was performed similarly as previously described for total thiols,
replacing R1(NaBH4) for 10 µL R1’(NaCl). Absorbances were read at 415 nm using a
microplate reader (PHOmo, Autobio Labtec Instruments CO., Ltd., Zhengzhou, China).
Final absorbance for total thiols was obtained by subtracting the first average from the
second average absorbance for each sample. The same process was used for native thiols’
final absorbance. Concentrations of total and native thiols was obtained by correcting
absorbances with protein concentrations of each sample. The disulfide parameter value
was calculated as half of the difference of the total thiols and native thiols. Thiol/disulfide
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homeostasis was determined by calculating the ratio between disulfide and native thiol
concentrations and was expressed as spinal disulfide levels. All the experiments were
performed in triplicates for each sample and replicated three times. The totality of the
results values was included for final analysis. The coefficients of variation inter- and
intra-assay were 7.91% and 3.63%, respectively.

2.5. Spinal Substance P and β-Endorphin Immunoassay

β-endorphin concentrations were measured using an ELISA kit (#RD-bEP-b, Red Dot
Biotech Inc., Kelowna, BC, Canada) with a detection range between 15.6 and 1000 pg/mL
and a minimum detectable concentration of 4.89 pg/mL. Briefly, 50 uL of each sample was
loaded in duplicate, incubated, and read at 450 nm using a microplate reader (PHOmo,
Autobio Labtec Instruments CO., Ltd., Zhengzhou, China). Similarly, SP concentrations
were measured using an ELISA kit (#KGE007, R & D systems Inc., Minneapolis, MN, USA)
with a detection range between 78.1 and 2500 pg/mL and a minimum detectable concen-
tration of 16.8 pg/mL. Briefly, 50 uL of each sample was loaded in duplicate, incubated,
and read at 570 nm using a microplate reader.

2.6. Determination of α-Tocopherol Concentration by High-Performance Liquid
Chromatography (HPLC)

For determination of α-tocopherol concentrations, a protocol proposed by
Chihuailaf et al. [35] was used with modifications. Briefly, 1 mL of homogenate of each
sample was taken in a test tube under indirect light. Then, 100 µL of tocopherol acetate
500 ppm (Sigma) was added as an internal standard. The lipids were extracted by addition
of 1.5 mL of ethanol HPLC grade (Merck) and 2 mL of cyclohexane HPLC grade (Merck).
Each sample was vortex-mixed for 60 s, and then all samples were centrifugated at 2000× g
for 10 min. The cyclohexane top layer was taken and added in a 4 mL vial. The vials were
placed in a water bath at 35 ◦C to evaporate thee supernatant under a nitrogen stream.
Finally, the dry samples were reconstituted with 100 µL of an ether–ethanol solution (10%)
and then shaken for resuspension. All samples were submitted to HPLC for determination
of α-tocopherol concentrations in an HPLC Shimadzu equipped with a diode-array detector
and a C18 column (150 × 4.6 mm × 4.5 µm). The chromatographic condition was isocratic,
using methanol as a mobile phase delivered at a flowrate of 2 mL/min. The detection of α-
tocopherol was at 294 nm and internal standard at 285 nm. The α-tocopherol concentration
was calculated from a calibration curve adjusted previously to the recovery of the internal
standard and expressed in micrograms per milliliter. The concentrations of the standard
curve were 0.5–1–5.932–11.864–23.728–41.524 ppm, and the lower detection range was
0.5 ppm.

2.7. Statistical Analysis

For each outcome variable, normality was evaluated with the Shapiro–Wilk test.
Differences of spinal cord disulfide levels and substance P, β-endorphin, and α-tocopherol
concentrations between lame and non-lame groups were evaluated using an unpaired t-test.
A p-value lower than 0.05 was considered significant. Statistical analyses were performed
in GraphPad Prism 9.0, version 9.5.1 (GraphPad Software, San Diego, CA, USA).

3. Results
3.1. Substance P Spinal Cord Concentrations

Lame cows had a mean spinal cord concentration of SP of 66.1 ± 16.0 pg/mL, and
non-lame cows had a concentration of 36.67 ± 16.13 pg/mL (p < 0.0001) (Figure 1).
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3.3. Dynamic Thiol/Disulfide Homeostasis

Mean spinal cord disulfide levels were 4.72 ± 2.71 and 5.09 ± 2.59 µmol/L for lame
and non-lame cows, respectively. Lame cows had significantly decreased disulfide spinal
cord levels compared to those of non-lame cows (p < 0.01) (Figure 3).



Animals 2023, 13, 1620 6 of 10Animals 2023, 13, x FOR PEER REVIEW 6 of 10 
 

 
Figure 3. Mean + SD for spinal cord disulfide levels of chronically lame and control dairy cows. 

3.4. α-Tocopherol Spinal Cord Concentrations 
The mean spinal cord concentration of α-tocopherol was 0.68 ± 0.82 (µg/mL) for lame 

cows and 1.23 ± 0.79 for non-lame cows. The α-tocopherol spinal cord concentration was 
decreased in the lame group when compared with that of the non-lame group (p < 0.0001) 
(Figure 4). 

 
Figure 4. Mean + SD spinal cord concentrations of α-tocopherol of chronically lame and control 
dairy cows. 

4. Discussion 
This study looks forward for new options for approaching the pathophysiology of 

lameness in cattle as well as new targets for the treatment of chronic pain using cattle as a 
non-induced translational model. 

Figure 3. Mean + SD for spinal cord disulfide levels of chronically lame and control dairy cows.

3.4. α-Tocopherol Spinal Cord Concentrations

The mean spinal cord concentration of α-tocopherol was 0.68 ± 0.82 (µg/mL) for lame
cows and 1.23 ± 0.79 for non-lame cows. The α-tocopherol spinal cord concentration was
decreased in the lame group when compared with that of the non-lame group (p < 0.0001)
(Figure 4).
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4. Discussion

This study looks forward for new options for approaching the pathophysiology of
lameness in cattle as well as new targets for the treatment of chronic pain using cattle as a
non-induced translational model.
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The results of this study showed an increased concentration of SP in the spinal cord
of lame cows. The role of SP in chronic pain has been associated with its release from
primary afferent fibers during inflammation, leading to upregulation of NK1 receptors
in dorsal horn neurons [36]. Additionally, increases in SP/NK1 expression have been
associated to microglial activation and NMDA receptor phosphorylation, both well-known
events involved in central sensitization and chronic pain [26]. The activation of the NK1
receptor mediated by SP leads to increased glutamatergic transmission in the dorsal horn,
spinal hyperexcitability, hyperalgesia, and allodynia [37]. Mechanical hyperalgesia and
allodynia have been confirmed in lame dairy cows using mechanical algometry [4], and it
is well known that higher expression of SP in the spinal cord induces nociceptive sensiti-
zation, hyperexcitability, and hyperalgesia, conditions that have been associated with the
development of chronic pain [38]. Central sensitization has also been described in lame
cows, observing a hyperalgesic response to measurements of the pain threshold [39,40]
represented as a threshold reduction in nociceptive neuron activation [41].

Actual evidence supports the hypothesis that chronic pain is partially mediated by a
dysregulation of endogenous endorphin signals [42]. Here, spinal BE showed increased
concentrations in the lame group compared to those in the non-lame group, contrary
to plasma BE concentrations reported in lame dairy cows [2]. Considering that chronic
lameness represents a chronic pain state [4], the mechanism behind the impaired response of
the endogenous opioid system could be due to sustained release of BE in earlier stages that
leads to desensitization of the µ opioid receptor and the subsequently negative feedback of
BE release [32], suggesting that BE release in lame cows is affected by the chronicity of the
painful stimulus.

Furthermore, the continuous release of endorphins can induce long-lasting and latent
pain hypersensitivity through a NMDA-dependent process, resulting in an exaggerated
pain response to a further noxious stimulus [43]. Due to the aforementioned, we sug-
gest that the spinal cord concentration of β-endorphin observed in this study could be
a consequence of a defective response of the endogenous opioid pathway, which may
represent a dysfunction of the descending modulatory pathway that produces reduced
inhibition/enhanced facilitation, resulting in enhanced pain observed in many chronic pain
conditions [38].

Decreased disulfide levels were observed in the spinal cord of chronically lame dairy
cows compared with those of non-lame cows. Dynamic thiol–disulfide homeostasis repre-
sents an image of the oxidative stress condition and is a novel method for oxidative stress
evaluation [14–17]. Our results indicate that thiol/disulfide homeostasis had shifted to the
reduction phase as there was increased reduction of disulfides to thiols [44]. This could
represent a solid response to the increased augmented ROS activity described recently [3] in
dairy cows with chronic inflammatory lameness, confirming the potential effect of oxidative
signaling over the regulation of several mechanisms involved in central sensitization [3].
The altered thiol/disulfide homeostasis observed in this study is also in agreement with
previous reports that have associated abnormal thiol/disulfide homeostasis with the ox-
idative stress-related pathogenesis of various chronic conditions and diseases including
diabetes [45], cancer [46], Parkinson’s disease [47], and fibromyalgia [44].

α-tocopherol is considered the major lipid-soluble antioxidant, preventing oxidative
damage of membrane lipids by scavenging free radicals [20]; however, our results showed
that α-tocopherol concentrations were also reduced in the spinal cord of lame dairy cows,
which could represent an ongoing oxidative reaction [48]. This assumption agrees with
the results presented recently [3] showing that cows with chronic lameness have increased
levels of ROS and increased levels of lipid and protein oxidation. Moreover, it has been
described that the treatment with α-tocopherol prevents changes in oxidative stress status in
rats with neuropathic pain related to antioxidants effects [49]. Interestingly, this discrepancy
could indicate a relation between the increased ROS levels described previously [3] and the
decreased α-tocopherol concentrations in chronically lame cows suggesting an impaired
antioxidant response.
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Central sensitization is an inherent feature of chronic pain, and its development has
been associated to increased ROS and RNS in experimental models of neuropathic and
inflammatory pain [5,50]. The decreased concentrations of α-tocopherol and disulfide
levels along with the increased concentrations of substance P and β-endorphin observed in
our study suggest that chronic pain development was associated with increased ROS.

Some limitations in our study include a low number of cows, which can increase the
chance for an associated beta error, decreasing the power of the statistical tests. Addition-
ally, euthanasia has been indicated as a factor that could modify plasma biomarkers of
pain. Nonetheless, no information regarding livestock could be found. Furthermore, the
use of different methods of euthanasia between the groups could have caused unquantifi-
able spontaneous changes in the study variables. Despite several limitations, the results
suggested that early increases of SP and BE could facilitate pain detection in lame cows
and allow for newer pharmacological approaches to control lameness-associated pain in
dairy cows.

5. Conclusions

In conclusion, the results presented for disulfide levels and α-tocopherol concentra-
tions indicated a non-enzymatic antioxidant response to an oxidative stress state in cows
with chronic lameness. Otherwise, the results of SP and BE concentrations indicated a
chronic pain process as there was a direct relation of SP with microglial activation and
pain maintenance, and an impaired endogenous analgesic response due to pain-induced
long-lasting BE release.
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