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Simple Summary: Precision livestock farming (PLF) techniques facilitate automated, continuous, and
real-time monitoring of animal behaviour and physiological responses. They also have the potential
to improve animal welfare by providing a continuous picture of welfare states, thus enabling fast
actions that benefit the flock. Using a PLF technique based on images, the present study aimed to
test a machine learning tool for measuring the number of hens on the ground and identifying the
number of dust-bathing hens in an experimental aviary—a complex environment—by comparing
the performance of two machine learning (YOLO, You Only Look Once) models. The results of the
study revealed that the two models had a similar performance; however, while PLF was successful in
evaluating the distribution of hens on the floor and predicting undesired events, such as smothering
due to overcrowding, it failed to identify the occurrence of comfort behaviours, such as dust bathing,
which are part of the evaluation of hen welfare.

Abstract: Image analysis using machine learning (ML) algorithms could provide a measure of animal
welfare by measuring comfort behaviours and undesired behaviours. Using a PLF technique based
on images, the present study aimed to test a machine learning tool for measuring the number of
hens on the ground and identifying the number of dust-bathing hens in an experimental aviary. In
addition, two YOLO (You Only Look Once) models were compared. YOLOv4-tiny needed about
4.26 h to train for 6000 epochs, compared to about 23.2 h for the full models of YOLOv4. In validation,
the performance of the two models in terms of precision, recall, harmonic mean of precision and
recall, and mean average precision (mAP) did not differ, while the value of frame per second was
lower in YOLOv4 compared to the tiny version (31.35 vs. 208.5). The mAP stands at about 94% for
the classification of hens on the floor, while the classification of dust-bathing hens was poor (28.2% in
the YOLOv4-tiny compared to 31.6% in YOLOv4). In conclusion, ML successfully identified laying
hens on the floor, whereas other PLF tools must be tested for the classification of dust-bathing hens.

Keywords: cage-free systems; dust bathing; machine learning; YOLO; image analyses

1. Introduction

Precision livestock farming (PLF) techniques facilitate the automated, continuous, and
real-time monitoring of animal behaviour and physiological responses both at an individ-
ual level and at a group level, depending on the farmed species [1]. Under the conditions
of poultry production, PLF tools can greatly assist farmers in taking the correct action [2–5]
to guarantee the health and welfare of thousands of animals when environmental condi-
tions are unfavourable [3], illness spreads [6,7], or abnormal behaviours challenge bird
welfare and survival [8,9]. In poultry, these systems have received increased attention on a
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global scale starting from 2020. Commercial applications include several sensors for the
continuous measuring of environmental conditions (temperature, ambient dust, relative
humidity, vibration, ammonia concentration, carbon dioxide concentrations), including
a camera system (Fancom BV) to monitor the distribution and activity of chickens and a
sensor for detecting shell thickness and cracked eggs [10].

PLF tools based on images recorded by cameras have been used to obtain information
about farm/animal temperature levels, the quality of activity, and animal behaviours, as
well as performance [11]. Some of these studies used images to evaluate changes in bird
behaviour following changes in environmental conditions or stocking density, even at the
nest level in the case of laying hens [12]. The commercially available eYeNamic™ (Fancom
BV, The Netherlands) uses images of animal distribution in broiler chicken farms to alert
farmers about malfunctioning environmental control and feeding systems and has been
found to be effective in identifying 95% of the problems occurring in a production cycle [9].
As for laying hens, since the housing environment is more complex compared to broiler
chickens, the development of PLF tools needs to be specific to housing.

In Europe, more than 44% of hens are kept in enriched cages [13], which are intended
to provide additional space and resources for satisfying hen behavioural needs; however,
conventional cage-free barn systems, including aviaries and free-range and organic systems
with outdoor access, are becoming popular and are expected to replace cages soon. In fact,
the European Resolution P9_TA(2021)0295 calls for a phasing out of cages by 2027 and the
full implementation of cage-free systems, while the European Green Deal and farm-to-fork
strategies require more sustainable animal production systems. However, experience in
the field and the literature have identified weaknesses in addition to strengths of cage-free
systems for the production and welfare of hens [14,15]. As such, we require further insights
regarding the identification of on-farm solutions for the control of challenging situations,
as well as for farmers’ actions, to prevent major welfare and health issues, where PLF tools
could provide great help.

Hens are often synchronous in their behaviours (e.g., movement, dust bathing, laying),
which can lead to overcrowding in specific parts of the aviary and provoke unusual
behaviours, such as flock piling, i.e., dense clustering of hens mainly along walls and in
corners which can result in smothering and high losses [16,17]. In cage-free systems, the
possibility of monitoring hen crowding is also crucial for other behaviours, where the
expression of some comfort behaviours, such as dust bathing [18,19], may be affected by
the available space on the ground [16,20].

Image analysis is a suitable methodology that uses cameras to estimate a number of
objects (e.g., number of hens). Among the different image analysis techniques, machine
learning (ML) algorithms have proven to be the most effective for object detection. The
most-used ML methods in agriculture include dimension reduction, regressions, clustering,
k-means, Bayesian models, k-nearest neighbours, decision trees, support vector machines,
and artificial neural networks [21,22]. The foundation of artificial neural networks is a
network of interconnected nodes that are arranged in a certain topology. When it comes
to deep neural networks, there are numerous layers in addition to the single layer of the
perceptron [22]. Deep neural networks are commonly referred to as deep learning. The
latter has a higher performance and surpasses other ML strategies in image processing
according to a meta-analysis of ML by Kamilaris and Prenafeta-Boldú [21]. Convolutional
neural networks (CNN) are one of the most significant deep learning models used for
image interpretation and computer vision [21]. They can be used to analyse, combine, and
extract colour, geometric, and textural data from images. The two primary frameworks on
which object-identification models are based are as follows. The first is based on region
proposals and classifies each proposal into several object categories; the second treats object
detection as a regression or classification problem [23]. The output of object detection is
typically bounding boxes over the image, but some models produce semantic segmentation
as the result. R-CNN, Faster R-CNN, and Mask R-CNN are examples of region-proposed
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object-detection algorithms. At the same time, You Only Look Once (YOLO) [24–26] and
single shot detector (SSD) are examples of regression/classification-based models [27].

Thus, using a PLF technique based on images, the present study aimed to test an
ML tool to measure the number of hens on the ground and identify the number of dust-
bathing hens in an experimental aviary. In addition, the performance of two YOLO models
was compared, with the aim of developing an alert tool for abnormal crowding and a
monitoring tool for comfort behaviours and welfare indicators.

2. Materials and Methods
2.1. Animals and Housing

A total of 1800 Lohmann Brown-Classic hens (Lohmann Tierzucht GmbH, Cuxhaven,
Germany), aged 17 weeks, were housed at the experimental farm “Lucio Toniolo” of the
University of Padova (Legnaro, Padova, Italy) and were randomly divided into 8 pens in
an experimental aviary system (225 hens per pen; 9 hens/m2 stocking density), where they
were monitored until 45 weeks of age within a specific research project [28].

The experimental farm building was equipped with a cooling system, forced ventila-
tion, radiant heating, and controlled lighting systems. The experimental aviary specifically
set up in the farm consisted of two tiers equipped with collective nests (1 nest per 60 hens)
that were closed by red plastic curtains, and a third level with only perches and feeders.
The two tiers also included perches, nipple drinkers, and automatic feeding systems. The
whole aviary system was 2.50 m wide × 19.52 m long × 2.24 m high, and two corridors per
side were available, each 1.70 m wide. Thus, free ground space was 5.90 m wide × 19.52 m
long. Litter was based on manure of hens. The aviary was divided into 8 pens each with a
length of 2.44 m.

2.2. Video Recordings and Test Sets

The aviary was equipped with a real-time video recording system, which used 48 cam-
eras (infrared mini-dome bullet 4 mp; resolution 1080 p) (HAC-HDW1220MP, Zhejiang
Dahua Technology Co., Ltd., Hangzhou, China) and 2 full HD video recorders (NVR2116HS-
4KS2, Zhejiang Dahua Technology Co., Ltd., Hangzhou, China). The cameras were located
to record hens on the ground, hens on the three levels of the aviary, and hens in the nests.
One camera per pen was used to record the animals on the floor. Cameras were hung at a
height of 2 m with a dome angle of 180◦ in the middle of each pen. The following settings
were used: video recording frame rate at 30 fps, backlight compensation as digital wide
dynamic range, auto white balance, and video compression as H.265.

Once per week (Saturday) during the trial from 38 to 45 weeks of age, the behaviour of
hens was video recorded from 5:30 until 19:30 during the light hours when the animals were
active. Of all video-recorded data, 112 hours of video recordings of the hens on the ground
floor were used. The software “Free Video to JPG Converter (v. 5.0.101)” was used to extract
1 frame per second throughout the 112 hours, totalling 403,200 extracted frames. A limited
number of images were selected from the whole dataset to avoid autocorrelation between
frames and achieve a significant number of labels for hens on the floor and dust-bathing
hens. In addition, a sufficient but not excessive number of images makes this methodology
applicable for commercial applications by farmers and consultants. Then, 1150 images
were randomly selected for the purposes of the present study. A total of 1100 images were
used as the training set; the remaining 50 were used as the validation set.

2.3. Set up of the Object-Detection Algorithm

YOLO addresses object detection as a single regression problem, avoiding the region
proposal, classification, and duplicating elimination pipeline. In recent years, different ver-
sions of YOLO have been proposed (YOLO 9000, YOLOv2-v3-v4-v5, Fast YOLO, versions
tiny), but we used two versions of YOLO: YOLOv4-tiny and YOLOv4 [24–26]. They are
both quick convolutional neural networks that can classify images based on bounding box
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labelling [29,30]. The two versions of YOLOv4 were selected since they provide a good
trade-off between accuracy and digital effort [31].

YOLOv4 is more precise than YOLOv4-tiny [32] because it comprises a higher number
of convolutional layers (53 vs. 36). YOLOv4-tiny is expected to be faster but less accurate
in its predictions given its reduced number of convolutional layers.

Training and data analysis of YOLO were carried out using the Python programming
language. Darknet framework, an open-source neural network framework written in C and
CUDA, was installed on a virtual machine on Google Colaboratory. YOLOv4 and YOLOv4-
tiny are based on the CSPDarknet53, which includes cross-stage partial connections to the
Darknet framework [33]. The cross-stage partial connections divide the input features into
two groups: one group is processed by the convolutional layer, while the second sidesteps
the convolutional layers and is included in the input for the following layer [34].

From the whole dataset (403,200 frames), we selected a sample of 1150 images for
training. The choice of the sample size was based on the slow movement of animals,
for which the images acquired every second slightly differed from each other. Before
training, all 1150 frames were labelled by bounding boxes distinguishing between “dust-
bathing” hens (hens rotating their body in the litter on the ground) and hens on the
“ground” (all the other hens, excluding those climbing towards or landing from the aviary)
(Figure 1). The images collected from the dataset mentioned above were manually labelled,
drawing bounding boxes on each bunch in the image using YOLO_label V2 project [35].
YOLO_label allows us to create annotations (labels) for the object-detection algorithm using
the YOLO_label format, which consists of five columns for each object (object-class, x, y,
width, and height).
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2.4. Training and Validation

Using the specified dataset, the YOLOv4 and YOLOv4-tiny models were trained
individually. The pre-trained weights provided by the YOLO developers were used in the
training operations [33,36]. Each model performed a 6000-epoch training phase during
which detailed calibration of the training hyperparameters was carried out. An epoch
is defined as the duration required for one training step. For the best training results,
hyperparameters can be modified in the YOLO configuration file. The first section of a
configuration file lists the batch size (number of photos utilized each epoch) as well as
the dimensions of the resampled images used for training (width and height). An image
batch size of 64 images with a pixel size of 608 × 608 was used for training and detection.
Online data augmentation was activated in the configuration file for YOLOv4 full models.
Data augmentation techniques were introduced in the training process for unobserved
data, which were obtained from combinations and modification of the input dataset. In
YOLO models, data augmentation randomly applies graphics modification to the input
images [37]. For each training period, a different approach to online data augmentation
can be applied. In the current training, images were augmented in terms of saturation
and exposure, using a coefficient of 1.5. Hue value was randomly augmented with a
coefficient of 0.05 (Figure 2). Additionally, random blur and mosaic effects were applied to
the input photos. Because of the mosaic created by combining pieces of many photographs
to produce a new tiled image, blur increased the fuzziness of the input images. The starting
learning rate and its scheduler were chosen in the configuration file. The learning rate
controls the adaptation of the models according to the error estimation in each training
epoch. The initial learning rate was 0.002 for YOLOv4 and YOLOv4-tiny training. A total of
384,000 augmented images were used based on the batch size (64 images) and the number
of epochs (6000).
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dust-bathing hens (green boxes).

All models were trained using the stochastic gradient descent with warm re-starts
(SGDR) scheduler [38]. Following a cosine cycle, the SGDR reduces the learning rate from
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its initial value all the way down to zero. The user specifies the number of epochs for each
cycle. In order to increase the number of epochs for a cycle during training, the cycle may
be multiplied by a coefficient. The initial SGDR cycle used in this study had a multiplier
coefficient of 2- and it lasted for 1000 epochs.

The results of the training were evaluated for precision, recall, and F1-score, as well
as mean average precision (mAP) and frame per second (FPS). The F-1 score, precision,
and recall were calculated according to Equation (1): Performance metric used to evaluate
models’ performances.

F1 − score = 2 × Precision×Recall
Precision+Recall

while
Precision = True Positive

True Positive+False Negative and Recall = True Positive
True Positive+False Positive

(1)

The F-1 score represents the harmonic mean of precision and recall, and it was intro-
duced by Dice [39] and Sørensen [40]. Intersection over Union (IoU) [41] and mAP were
used as performance metrics. The IoU measures the grade of overlap between the predicted
and the labelled bounding boxes. The mAP summarizes the average detection precision
and represents the area under the precision–recall curve at a defined value of IoU. The
mAP@50 represents the area under the precision–recall curve with a grade of overlapping
bounding boxes of 50%. Performance metrics calculation was evaluated on the validation
datasets by running the object-detection algorithm obtained by the training.

Frame per second (FPS) expresses the speed achieved by the neural network, that is,
the number of images per second that the network can process. Colab provides a virtual
machine with the Ubuntu operating system (Canonical Ltd., London, UK), equipped with
an Intel Xeon (Intel Corporation, Santa Clara, CA, USA) processor with two cores at 2.3 GHz.
In Colab, 25 GB of random-access memory (RAM) is available. Training and detection tasks
were performed taking advantage of a Tesla P100 GPU (NVIDIA, Santa Clara, CA, USA)
with CUDA parallel computing platform version 10.1 and 16 GB of dedicated RAM.

3. Results

For each YOLO model, the training process (Figure 3) was conducted using the
indicated configuration. The model performance on the test dataset was automatically
estimated during training. Every 100 epochs, the mAP@50 was calculated, with the last
calculation occurring at 6000 epochs. Table 1 reports the last and the best mAP@50 achieved
during training, along with the total time spent for 6000 training epochs. YOLOv4-tiny
needed about 4.26 hours to train for 6000 epochs (final mAP@50 of 90.3%, best mAP@50
91.7%), compared to about 23.2 hours for the full models of YOLOv4 (final mAP@50 of
87.8%, best mAP@50 90.0%).

Validation of the External Dataset

Validation was carried out by running the object-detection algorithm on the validation
set (50 images randomly selected), which was not used for the training (Figures 4 and 5).
Performance of the two models regarding IoU, precision, recall, F1-score, and mAP did not
substantially differ, while FPS was largely lower in the case of YOLOv4 compared to the
tiny version (31.35 vs. 208.5) (Table 2). Mean average precision stood at 61.4% and 62.9%,
while large differences were recorded in mAP for the classification of hens on the floor,
with high values around 94%, and a poor classification of dust-bathing hens, ranging from
28.2% in the YOLOv4-tiny compared to 31.6% in the YOLOv4.
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(mAP@50) of YOLOv4-tiny training (A) and YOLOv4 training (B).

Table 1. Training time, final mAP@50, and best mAP@50 (area under the precision–recall curve with a
grade of overlapping bounding boxes of 50%) of the two trained models obtained on the test dataset.

Model Training Time Final mAP@50 Best mAP@50

YOLOv4-tiny 4.26 h 90.3% 91.7%
YOLOv4 23.2 h 87.8% 90.0%

Figure 4. Object-detection classification performed on an image of the validation set using YOLOv4-
tiny. Purple boxes identify images as laying hen with the corresponding confidence interval. Green
boxes identify images as dust-bathing hens with the corresponding confidence interval.

Figure 5. Object-detection classification performed on an image of the validation set using YOLOv4.
Purple boxes identify images as laying hen with the corresponding confidence interval. Green boxes
identify images as dust-bathing hens with the corresponding confidence interval.
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Table 2. Metrics of the two models on the validation dataset (average precision for each class) for the
classification of hens on the floor and dust-bathing hens.

Model IoU Precision Recall F1-score mAP FPS

YOLOv4-tiny 78.3% 0.94 0.93 0.92 61.4% 208.5
Hens on floor 94.5%

Dust-bathing hens 28.2%

YOLOv4 77.1% 0.90 0.93 0.92 62.9% 31.35
Hens on floor 94.1%

Dust-bathing hens 31.6%

4. Discussion

Previously, PLF tools based on images have been successfully used to detect foot
problems in broiler chickens [8], to classify sick and healthy birds based on their body
posture [6], and to classify species-specific behaviours with an overall success rate of 97%
and 70% in calibration and validation, respectively [42].

Pu et al. [43] proposed an automatic CNN to classify the behaviours of broiler chickens
based on images acquired by a depth camera under three stocking-density conditions (high,
medium, and low crowding in a poultry farm). The latter CNN architecture reached an
accuracy of 99.17% in the classification of flock behaviours.

In poultry breeders, six behaviours were classified under low- and high-stocking
density in a combined wire cage system with two pens and using the deep-learning
YOLOv3 algorithm [44]. The model always identified several behaviours with different
but always high degrees of accuracy, i.e., mean precision rate of 94.72% for mating; 94.57%
for standing; 93.10% for feeding; 92.02% for spreading; 88.67% for fighting; and 86.88%
for drinking. The accuracy of the model was lower in the high-density cages compared to
the low-density cages due to shielding among the birds. Based on these results, the same
authors succeeded in evaluating animal welfare on different observation days based on the
frequencies of mating events and abnormal behaviours, where the latter were related to
changes by ±3% in fighting, feeding, and resting compared to a fixed baseline. Recently,
Siriani et al. [45] successfully used YOLO to detect laying hens in an aviary with 99.9%
accuracy in low-quality videos.

The latest systems based on image analyses use neural network technology to obtain
information about animal health and welfare. Regarding health, [7] used CNN algorithms
as a tool to detect the emergence of gut infections based on faeces images in broiler chickens
kept in multi-tier cages by Faster R-CNN and YOLOv3, with average precisions of 93.3%
and 84.3%, respectively. Similarly, Mbelwa et al. [46] used CNN technology to predict
broiler chicken health statuses based on images of bird droppings.

In our study, according to the validation dataset results, hens on the floor and dust-
bathing hens were detected with an average precision of 61.4% and 62.9% for YOLOv4-tiny
and YOLOv4, respectively. Considering the detection of hens on the floor individually,
the average precisions were 94.5% and 94.1% for YOLOv4-tiny and YOLOv4, respectively.
These latter performance metrics are comparable to those obtained by previous studies [45,47].
On the other hand, the average precision for the classification of dust-bathing hens was only
28.2% and 31.6% for YOLOv4-tiny and YOLOv4, respectively. Thus, the main differences
found between the two versions of YOLO were related to the identification of dust bathing,
since YOLOv4 was able to achieve an accuracy higher than 3.4% compared to YOLOv4-tiny.
On the other hand, YOLOv4-tiny was able to classify hens on the floor and dust-bathing
hens much faster than YOLOv4 (208.5 FPS vs. 31.35 FPS).

In our study, although the value of precision in the classification of dust-bathing
hens was much lower than that obtained for classification of hens on the floor, this value
represents the first application of YOLO for the identification of dust-bathing behaviour.
In fact, dust bathing has a functional purpose in laying hens since it permits them to
reset their feathers and remove excess lipids from the skin, and the process contributes
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to their protection from parasites [19]. However, dust bathing is an active behaviour
that includes many actions around a litter area (e.g., bill raking, head rubbing, scratching
with one and/or two legs, side lying, ventral lying, vertical wing shaking), as well as
a synchronous behaviour (which can imply overcrowding of the litter area) [19]. Thus,
both the identification of dust-bathing hens during labelling and the classification of dust-
bathing hens by the ML algorithms were likely affected by the different positions that
dust-bathing hens assume, thus adding a considerable level of uncertainty to our findings
as the identification of the right moment when the dust bath begins is stochastic. To reduce
the effects of this uncertainty, online real-time tracking could be implemented in order to
consider the temporal variation and movements of hens [47]. Finally, a limited number of
images (1150 images, 122 MB) was sufficient to train an object-detection algorithm with
good results on hens on the floor by using an affordable and widespread platform (Google
Colaboratory), thus minimizing the digital impact [48]. In fact, it is increasingly necessary
to train suitable models with a limited number of images [49].

5. Conclusions

Under the conditions of the present study, machine learning based on the YOLO
algorithm successfully identified laying hens on the floor, regardless of their activity,
which could be useful for the control of the challenging piling behaviour of hens during
rearing and for the implementation of on-farm early alert systems. On the other hand,
while the on-farm evaluation of hens performing comfort behaviour would be useful for
measuring the general welfare condition of hens or the occurrence of any challenging
event or factors, the classification of dust-bathing hens was rather poor. Nevertheless,
this is the first application related to such a behaviour, which comprises a well-defined
sequence of different movements, for which PLF tools other than image analysis might be
more successful for the classification of dust-bathing behaviours. The peculiarity of images
of dust-bathing hens, in terms of illumination and geometry, can lead to complicated
classification. On the other hand, the present work took advantage of a relatively low
number of training images (1150), where an even further reduction would be desirable in
order to ease actual field applications.
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