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Simple Summary: With the increased development of pig farming intensification, air quality and 
odor emissions in pig houses are gradually attracting attention. Among them, ammonia is consid-
ered to be an important environmental indicator of pig house. Excessive accumulation of ammonia 
can seriously affect the growth status of pigs and also cause a potential health risk to farm workers. 
Therefore, it is very important to recognize the changes of ammonia in pig houses and to discharge 
ammonia in time for the welfare farming of pigs. In this study, three traditional machine learning 
algorithms and three deep learning algorithms were selected to predict the ammonia concentration 
in a pig house. Based on them, important environmental parameters and promising algorithms were 
screened out and the algorithms were evaluated for optimization. The results of the study can pro-
vide a reference for air quality regulation in pig houses. 

Abstract: Accurately predicting the air quality in a piggery and taking control measures in advance 
are important issues for pig farm production and local environmental management. In this experi-
ment, the NH3 concentration in a semi-automatic piggery was studied. First, the random forest al-
gorithm (RF) and Pearson correlation analysis were combined to analyze the environmental param-
eters, and nine input schemes for the model feature parameters were identified. Three kinds of deep 
learning and three kinds of conventional machine learning algorithms were applied to the predic-
tion of NH3 in the piggery. Through comparative experiments, appropriate environmental param-
eters (CO2, H2O, P, and outdoor temperature) and superior algorithms (LSTM and RNN) were se-
lected. On this basis, the PSO algorithm was used to optimize the hyperparameters of the algo-
rithms, and their prediction performance was also evaluated. The results showed that the R2 values 
of PSO-LSTM and PSO-RNN were 0.9487 and 0.9458, respectively. These models had good accuracy 
when predicting NH3 concentration in the piggery 0.5 h, 1 h, 1.5 h, and 2 h in advance. This study 
can provide a reference for the prediction of air concentrations in pig house environments. 
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1. Introduction 
In intensive and large-scale pig production, air quality and odor emissions have a 

negative impact on the health of the pigs, the pig farm workers, and the local environ-
ment. Ammonia (NH3) concentration is an important indicator used to evaluate the envi-
ronment of a piggery. The high concentration of NH3 in the piggery will affect the normal 
growth of pigs, resulting in decreased immunity and production performance and induc-
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ing respiratory diseases [1]. Excretion of NH3 from pig houses may pose a risk of respira-
tory illness to pig farm workers and residents living nearby [2]. When NH3 is excessively 
discharged into the atmosphere, it returns to the surface through atmospheric dry and wet 
deposition processes, causing acidification of soil and water bodies and affecting ecosys-
tem stability [3]. Therefore, the development of tools to assist managers in anticipating 
changes in NH3 concentration in a piggery will ensure that timely measures can be taken 
to reduce the potential stress of ammonia on human and animal health, and the level of 
environmental pollution, factors that are important to improve animal production, animal 
welfare, and environmental management. 

In the past, statistical models such as least squares extensive and stepwise linear re-
gression were developed for gas concentration prediction in aquaculture environments 
[4,5]. However, air pollutants in farms are mixed, complex, and usually have interaction 
characteristics that lead to the concentrations of air pollutants having non-linear dynamics 
[6]. Therefore, many statistical models in the past have poor prediction of gas pollution 
concentration in farms. Machine learning (ML) algorithms can deal with nonlinear inter-
actions mathematically, and they have excellent performance in feature extraction, classi-
fication, and change prediction for big data. Machine learning has been developed rapidly 
in recent years [7–9]. Classical machine learning algorithms include neural networks and 
decision trees (DT). Based on these models, random forest (RF), extreme gradient boosting 
(XGBoost), backpropagation neural networks (BPNN), Elman neural networks (RNN), 
long short-term memory (LSTM), and other algorithms have been developed [10,11]. 
These algorithms have been applied to the prediction and regulation of environmental 
factors such as the automation of indoor air management, greenhouse gas emissions, and 
air pollution assessment, and have achieved good results [12,13]. 

Although a few researchers have constructed air prediction models for farming en-
vironments based on machine learning algorithms in recent years, the environments in 
farming houses vary greatly from region to region, and numerous modeling attempts and 
screenings are needed to achieve extensive gas concentration prediction [14,15]. For ex-
ample, many pig houses have started to adopt the regulation mode (called “semi-auto-
matic regulation” in this paper) that automatically changes the ventilation rate based on 
the set house temperature value. In this mode, the temperature fluctuation in the house is 
low, but the concentration of air pollutants in the house is often still too high in autumn 
and winter, and there are very few corresponding models for predicting air pollutants. In 
addition, as far as the modeling process is concerned, the selection of machine learning 
algorithms and environmental parameters in feature engineering are key aspects in deter-
mining the performance of the model, and there are very few relevant reports concerning 
the farming environment that can draw on how to select the underlying algorithms and 
environmental parameters. 

In this study, we evaluated the ability of three traditional machine learning and three 
deep learning algorithms to predict NH3 concentration in a semi-automatically regulated 
pig house in combination with environmental parameters. The traditional machine learn-
ing algorithms include the classical DT, as well as support vector machine (SVM) and 
XGBoost, which have performed well in the past for gas prediction in farming environ-
ments [16,17]. Deep learning algorithms were chosen from the common BPNN, as well as 
LSTM and RNN, as these models have strong regression capabilities for time series data 
but are rarely employed in farming environments [18,19]. For the selection of environ-
mental parameters, the three most concerned parameters (indoor temperature, humidity, 
and ventilation) in the pig house were measured, as well as the temperature and rainfall 
outside the house, as the latter can well reflect the changing state of the natural environ-
ment outside the house. In addition, from the response principle, indoor air pressure (P), 
H2O, and CO2 may also have an effect on NH3 concentration, and these three indicators 
were also included in the monitoring of environmental parameters [20]. The main objec-
tives were to evaluate the performance of LSTM, RNN, BPNN, DT, SVM, and XGBoost in 
predicting NH3 concentrations in semi-automatically regulated pig houses, and to identify 
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the main environmental factors affecting NH3 concentration. On this basis, two models 
with strong performance in predicting NH3 concentration in semi-automatic pig houses 
were proposed and optimized. This study can be a reference for future work related to 
gas concentration prediction in different farming modes. 

2. Materials and Methods 
2.1. Data Collection 

This study was conducted in a fattening pig house of a pig farm in Rongchang, 
Chongqing. More detailed information concerning this house is given in Pu et. al [21]. 

Environmental data were collected from September 17, 2020, to October 20, 2020. 
During this period, a total of 220 pigs in the pig house were evenly distributed in 22 pens, 
with each pig weighing 70–90 kg. An INNOVA (model 1412I, LumaSense, Inc., USA) 
based on the detection principle of infrared photoacoustic spectroscopy was used to mon-
itor and record the data of NH3, CO2, and H2O every 3 min. The HOBO (U23-001, Onset, 
Bourne, MA, USA) was used to monitor temperature and relative humidity, and was set 
to record every 5 min. The monitoring points of the above indexes were near 1.7 m in the 
middle of the pig house channel. Meanwhile, the ventilation volume in the piggery was 
regulated and recorded automatically by the intelligent system (Chongqing Dahong Ma-
chinery Co., Ltd., Chongqing, China) inside the piggery. Moreover, the temperature and 
rainfall data outside the house were recorded by surrounding small meteorological sta-
tions. 

2.2. Data Preprocessing 
In order to ensure the prediction performance of the model, the data collected by the 

equipment inside and outside the piggery and the intelligent system inside the piggery 
were preprocessed and analyzed. First, abnormal data processing was carried out on the 
environmental parameter data of the pig house using formula (1). If the absolute value of 
the difference between the value and its average value was greater than three times its 
standard deviation, the value was replaced by the average value of the data on both sides 
of the value. Then, the environmental parameter data were averaged for half an hour us-
ing formula (2). Because the dimensions of sampling equipment in the piggery were dif-
ferent, equation (3) was used to normalize the data. |𝑦 − 𝑦 | > 3𝜎     𝑦 𝑦 − 𝑦2 , (1)

𝑦 = (𝑦 + 𝑦 + ⋯ + 𝑦 )(30 𝑡⁄ ) , (2)

𝑦∗ = (𝑦 − 𝑦 )(𝑦 − 𝑦 ). (3)

Here, 𝑦  is the collected value of a pig house sensor; 𝑦  is the mean value of the 
sensor data sequence; 𝑦  is the data value after abnormal data processing; 𝜎 is the stand-
ard deviation of sensor data sequence; n is the data point; 𝑦  is the value after averaging 
every 30 min; t is the sensor acquisition time interval; 𝑦  is the maximum value of the 
sensor data sequence; 𝑦  is the minimum value of the sensor data sequence, and 𝑦∗ is 
the normalized value. 

2.3. Model Construction 
The construction process of the six prediction models was consistent (Figure 1), and 

they were all carried out in the following three steps: selecting the environmental param-
eters to determine the feature input scheme (2.3.1), selecting and importing potential al-
gorithms from scikit-learn or Keras libraries using Python (2.3.2), and training the input 
data based on different algorithms and adjusting parameters in combination with model 
evaluation metrics to achieve relatively good results (2.3.3). 
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Figure 1. Modeling workflow. 

2.3.1. Selection of Input Environmental Parameters 
A variety of environmental parameters concerning the piggery were collected to 

build the model, including temperature, humidity, CO2, H2O, ventilation, air pressure in-
side the pig house, and temperature and rainfall outside the pig house. These eight pa-
rameters were considered potentially correlated variables. On this basis, the random for-
est algorithm was used to rank the importance of eight environmental parameters on NH3 
concentration in the pig house. Random forest can yield the importance score of each var-
iable to evaluate the role of each in classification, as it relies on a self-help resampling 
technology and node random splitting. The ability to analyze complex interacting classi-
fication features makes random forest a feature selection tool for high-dimensional data. 
In this study, we considered the parameters with importance scores greater than 0.1 after 
random forest analysis as the priority input environmental parameters, and selected the 
inputs in order of importance from the largest to the smallest. The environmental param-
eters with importance scores less than 0.1 were used to calculate their correlations with 
NH3 concentration using Pearson correlation analysis (PsCA), and the inputs were se-
lected in order from the largest to the smallest according to the absolute value of correla-
tion. The input scheme for the model characteristic parameters was obtained on the basis 
of the analysis of environmental importance and the correlations among the data (Table 
1). 
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Table 1. Input scheme of model feature parameters. 

Serial Number Input Parameters 
1 NH3 
2 NH3, CO2 
3 NH3, CO2, H2O 
4 NH3, CO2, H2O, P 
5 NH3, CO2, H2O, P, Outdoor temperature 
6 NH3, CO2, H2O, P, Outdoor temperature, Indoor ventilation 

7 NH3, CO2, H2O, P, Outdoor temperature, Indoor ventilation,  
Indoor temperature 

8 
NH3, CO2, H2O, P, Outdoor temperature, Indoor ventilation,  

Indoor temperature, Indoor humidity 

9 NH3, CO2, H2O, P, Outdoor temperature, Indoor ventilation, 
 Indoor temperature, Indoor humidity, Outdoor rainfall 

2.3.2. Model Selection and Import 
The NH3 concentration of the pig house was used as the label datum, and the envi-

ronmental parameters related to the NH3 concentration were used as the characteristic 
data. The purpose was to learn the correspondence from the characteristic data such as 
temperature and humidity to predict the label data. Therefore, it was necessary to model 
the supervised learning algorithm in machine learning. At the same time, the input vari-
ables and output variables were time series, so the prediction of NH3 in the pig house was 
formally a regression problem, and the corresponding model is a non-probabilistic model. 
Therefore, different machine learning algorithms were used to establish discriminant 
models in supervised learning, including classical algorithms such as neural networks, 
DT, SVM, and related ensemble algorithms (XGBoost, LSTM, RNN, BPNN). Using Python 
software, machine learning algorithm running, statistical analysis, and data mining work 
were managed with pandas, matplotlib, and numpy. Traditional machine learning algo-
rithms (DT, SVM, and XGBoost) were imported directly from the scikit-learn library and 
combined with the input data for subsequent training and hyperparameter optimization, 
while deep learning algorithms (BPNN, LSTM and RNN) required additional use of the 
Keras library and artificial debugging to determine the number of hidden layers (there 
were two hidden layers in this study). 

2.3.3. Model Training 
The NH3 concentration was used as the prediction target. The length of the input time 

series (input_len) of each model was set to 5, and the length of the prediction time series 
(out_len) was set to 1. The first 80% of the preprocessed data was used to train the model, 
and the last 20% was used to test the model. In the training process, the training of each 
integrated model involved the selection of hyperparameters, a factor that is directly re-
lated to the final prediction results. Here, the hyperparameters were firstly artificially se-
lected and set so that the prediction effect was relatively high, and then three deep learn-
ing models and three conventional machine learning models were established. Then, the 
models with good prediction performance were screened, and hyperparameter optimiza-
tion was performed using the corresponding algorithms on this basis. For neural network 
algorithms (LSTM, RNN, and BPNN), the particle swarm optimization (PSO) algorithm 
was used to optimize the number of hidden layer neurons in the first and second layers 
and the learning rate. For DT, SVM, and XGBoost algorithms, grid search was used for 
parameter tuning.  

2.4. Model Performance Evaluation 
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The performance of the models was evaluated with mean absolute error (𝑀𝐴𝐸), root-
mean-squared error (𝑅𝑀𝑆𝐸), and coefficient of determination (𝑅 ), which are shown in 
Equations (4) and (5), respectively. 

2.4.1. Root-Mean-Squared Error (𝑅𝑀𝑆𝐸) 

𝑅𝑀𝑆𝐸 = 1𝑛 (𝑦 − 𝑦 ) . (4)

As with 𝑀𝐴𝐸, a smaller 𝑅𝑀𝑆𝐸 means that the model prediction performance is bet-
ter. 

2.4.2. Coefficient of Determination (𝑅 ) 

𝑅 = ∑ 𝑦 − 𝑦∑ 𝑦 − 𝑦 + ∑ 𝑦 − 𝑦 , (5)

where yom is the mean value of the observed value. An 𝑅 closer to 1 means the model is 
better. 

3. Results and Discussion 
3.1. Data Characteristics 

The collected parameter information is shown in Figure 2. The average concentration 
of NH3 fluctuated in the range of 1.77–20.94 ppm, and its association with CO2 concentra-
tion showed a significant upward trend from the 550th to the 2000th time point. Interest-
ingly, the outdoor temperature and ventilation rate were opposite to the change trends of 
NH3 and CO2 concentration, fluctuating in the range of 7.5–27.0 °C and 6.0–67.5 m3/min, 
respectively. The temperature and humidity in the house were relatively stable in the first 
2000 time points, fluctuating in the range of 23.5–28.0 °C and 57.6%–78.5%, respectively. 
From the 2000th to the 2300th time point, humidity in the house fluctuated significantly, 
and the environmental parameters near the time period changed as well, including a 
short-term rise in the temperature outside the house, a short-term increase in the ventila-
tion volume in the house, and fluctuation of humidity, air pressure, NH3 concentration, 
and CO2 concentration in the house. 

The concentration of NH3 met the standards of 25 mg·m−3, while the CO2 did not meet 
the respective standard of 1500 mg·m−3 as prescribed by The Ministry of Agriculture of 
the People’s Republic of China, given in NY/T 17824.3-2008 “Environmental parameters 
and environmental management for intensive pig farms.” The semi-automatic control of 
the piggery in this experiment was able to automatically control the ventilation rate based 
on the temperature, so the temperature in the piggery remained relatively stable for most 
of the time. At the same time, when the temperature outside the house decreases, the ven-
tilation inside the house is subsequently reduced, which in turn allows air pollutants to 
start accumulating in the pig house [22,23]. This is perhaps the main reason why NH3 and 
CO2 concentrations gradually increased after the 550th time point. It is worth noting that 
there was a brief increase in the outside temperature from the 2000th to 2300th time points, 
and the ventilation rate of the house increased automatically; this may also be the reason 
for the decreases in NH3 and CO2 concentrations at this time point. Thus, it seems that 
excessive concentrations of air pollutants in the pig house can occur, and a timely increase 
in ventilation in the pig house can effectively control the environment to a certain extent. 
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Figure 2 Internal and external environment of the pig house. The above graphs show the concen-
tration of NH3 (a), CO2 (d) and H2O (e) inside the house, as well as the temperature (b), humidity 
(c), air pressure and ventilation (f and g) inside the house, and the temperature and rainfall (h and 
i) outside the house, respectively. 

3.2. Importance and Correlation of Environmental Parameters 
The RF algorithm was used to evaluate the environmental variables affecting the con-

centrations of air pollutants in the piggery, and the importance of each variable was ob-
tained and sorted (Figure 3a). The most important influence on NH3 concentration was 
CO2 concentration (importance of 0.73), followed by H2O and P (0.12 and 0.07, respec-
tively). Humidity, outdoor rainfall, temperature, and indoor ventilation were less im-
portant. Considering that the RF algorithm may be omitted in parameter screening, a 
PsCA was performed between the concentrations of gaseous pollutants in the piggery and 
various environmental variables (Figure 3b). The results showed that there was a strong 
positive correlation between CO2 and NH3 concentrations (+0.75), followed by a strong 
positive correlation between P and NH3 concentrations (+0.68). At the same time, there 
was a strong negative correlation between outdoor temperature and NH3 concentration 
(−0.81), and there were also strong negative correlations between indoor ventilation and 
temperature and NH3 concentration (−0.67 and −0.44, respectively). 

The importance of CO2 to NH3 concentration may be due to the formation of CO2 
during NH3 production. Uric acid decomposition is the main source of NH3 in a piggery 
[24]. Uric acid is hydrolyzed into urea and glyoxylic acid under the action of various mi-
croorganisms, and finally urea produces NH3 and CO2 under the action of urease [20]. In 
addition, NH3 emissions need to be transmitted through the liquid film layer of the air to 
the gas film layer, and finally enter the external atmospheric environment. This process 
will be accompanied by H2O volatilization, and this may be the main reason why H2O had 
an impact on the NH3 concentration in the pig house. Random forest is a classifier estab-
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lished in a random manner and contains multiple decision trees [25]. Although the algo-
rithm has been verified to effectively evaluate the contribution of environmental parame-
ters to the indicators, there may be multiple similar decision trees in the piggery environ-
ment [26,27]. If there are several environmental parameters that are important for NH3 
concentration because of the same mechanism, then some of them are likely to be ne-
glected in the random forest method. Therefore, we introduced PsCA and found that P, 
indoor temperature, outdoor temperature, and indoor ventilation had high correlations. 
P changes with the external atmospheric environment and the ventilation volume in the 
piggery, and this may be the reason P had strong positive correlations with the outside 
temperature and the ventilation in the piggery. In addition, ventilation rate is an im-
portant parameter for regulating the environment of the piggery. In this study, the venti-
lation rate was set to increase or decrease according to the temperature inside the piggery, 
and the temperature inside the piggery would change with the infiltration of the temper-
ature outside the piggery; this may be the reason for the large negative correlations be-
tween the temperature outside the piggery, the temperature inside the piggery, the venti-
lation rate, and NH3 concentration. In general, there were interactions among environ-
mental parameters in the pig house. 

 
Figure 3. Analysis of piggery environment variables based on random forest (a) and Pearson corre-
lation (b). 

3.3. Model Comparison 
According to the analysis performed for the environmental parameters, nine input 

schemes of characteristic parameters were determined in the process of training the model 
(Table 1), and the accuracy of each model was evaluated with the value of R2 as the index 
(Table 2). Meanwhile, three cases were selected for comparative analysis without feature 
parameters (only input NH3), partial characteristic parameters with good prediction effect 
(input NH3, CO2, H2O, P, and outdoor temperature), and full characteristic parameters 
were selected for comparative analysis (Figure 4). In general, LSTM, RNN, and XGBoost 
had excellent prediction results, and even with different input features; the predicted and 
original values of these three models in the test set mostly overlapped, especially LSTM 
and RNN (Table 2 and Figure 4). DT could partially predict NH3 concentration, but the 
difference between its predicted and original values was larger than those of the first 
three. BPNN had good prediction results only when suitable input features (such as input 
NH3, CO2, H2O, P, and outdoor temperature) were used, and it deviated from the overall 
performance of both SVM. When the input feature was only NH3, the LSTM, RNN, and 
XGBoost could mostly predict NH3 (the first column in Figure 4), and most of their pre-
dictions differ from the original values only at the inflection point. When the input fea-
tures were NH3, CO2, H2O, P, and outdoor temperature, the LSTM, RNN, and XGBoost 
models produced better prediction results than others. The predicted values of the six 
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models were closer to the original values (the second column of Figure 4) than when only 
NH3 was input. The predicted values of LSTM, RNN, and XGBoost coincided with the 
original values at most of the inflection points. When all environmental parameters were 
used as input features (the third column of Figure 4), even for the LSTM and RNN, the 
deviation of the predicted values from the original values increased at the 300th time point 
of the test set. The difference between predicted and original values increased for the six 
models compared to when only NH3 was input. 

 
Figure 4. Comparison between predicted and original values of each model after the input of only 
NH3 (first column), input of NH3, CO2, H2O, P, and Outdoor temperature (second column) and input 
of all environmental variables (third column). 
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Table 2. Evaluation of model accuracy via R2 for each of the nine feature input schemes. 

Input Feature Parameters 
Model Algorithm 

LSTM RNN BPNN DT SVM XGBoost 
Serial 1 0.9239  0.9176  0.5709  0.8973  0.7240  0.9171  
Serial 2 0.9297  0.9214  0.8080  0.8993  0.8948  0.9234  
Serial 3 0.9348  0.9327  0.7999  0.9060  0.8975  0.9267  
Serial 4 0.9335  0.9275  0.5726  0.8977  0.8078  0.9173  
Serial 5 0.9321  0.9392  0.8241  0.9067  0.9137  0.9312  
Serial 6 0.9115  0.9138  0.5034  0.8949  0.6853  0.9077  
Serial 7 0.9183  0.9197  0.6226  0.8872  0.7875  0.9095  
Serial 8 0.8780  0.8739  0.4953  0.8652  0.7899  0.8707  
Serial 9 0.9102  0.9007  0.4289  0.8683  0.7755  0.8861  

LSTM and RNN have been considered as powerful algorithms for predicting atmos-
pheric pollutant concentrations in previous studies [28,29]. XGBoost is a typical tree model 
for unstable classifiers that can solve nonlinear problems and has achieved good results 
in indoor odor prediction in the past [30,31]. In this study, when the input environmental 
parameters were the same, all three of the above algorithms showed strong predictive 
power in most cases, especially LSTM and RNN. The RNN algorithm is a kind of feedfor-
ward neural network that can transmit signals from input to output in only one way, and 
it introduces the self-connections of a neural cyclic structure into the network [32,33]. 
Therefore, the algorithm has good predictive power for data with serial characteristics. 
LSTM is based on RNN by introducing memory blocks to overcome vanishing and ex-
ploding gradients [34]. The memory block consists of three gating units: an input gate, an 
output gate, and a forget gate, where the input gate controls the flow of cell activation 
from the input to the memory cell, and the output gate controls the flow of output from 
the memory cell to other nodes [35]. Considering that both LSTM and RNN performed 
better than other models in this study for the nine input schemes, the results suggest that 
both LSTM and RNN models may have good prediction ability for NH3 concentration in 
semi-automated pig houses. 

When the input environmental parameters were altered, the R2 values of the models, 
even those constructed using the same algorithm, could be dramatically different. In this 
study, the R2 of each model with input NH3, CO2, H2O, P, and outdoor temperature were 
improved compared to when only NH3 was input, especially for BPNN and SVM. This is 
consistent with previous studies that environmental parameters could increase model ac-
curacy [36,37]. It is noteworthy that the R2 value of each model decreased when all envi-
ronmental parameters were input than when only NH3 was input. This could be that some 
of the features were not strongly correlated with changes in NH3 concentration and in-
stead negatively affected the models when they were trained [38]. In general, the input of 
some environmental feature parameters can improve the model accuracy, although the 
number of feature parameters input needs to be controlled, and suitable indicators need 
to be selected. For the prediction of NH3 concentration in semi-automated pig houses, the 
characteristic parameters may firstly be considered as indicators with high importance 
after random forest analysis, and secondly be considered as supplementary from the per-
spective of correlations. 

3.4. Model Optimization and Evaluation 
Based on the analysis results of section 3.3, LSTM and RNN models were further 

optimized. Here, both models comprised two hidden layers, and the number of neurons 
in the first and second hidden layers and the learning rate were determined by the PSO 
algorithm. The hyperparameters and evaluation indexes after model optimization are 
shown in Table 3. After optimization by PSO algorithm, both LSTM and RNN models 
were improved. The R2 values of PSO-LSTM and PSO-RNN increased to 0.9487 and 
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0.9458, respectively. In addition, LSTM and RNN were tried in combination (PSO-LSTM-
RNN). The weights of the PSO-LSTM-RNN model were obtained by the optimal 
weighting method, and the final prediction value of the ammonia concentration in the 
piggery was obtained. The prediction error of the PSO-LSTM-RNN model was very close 
to that of PSO-LSTM and PSO-RNN, and the R2 and RMSE values of this model were 
0.9416 and 0.5893, respectively. 

Table 3. The values of hyperparameters and prediction errors of LSTM and RNN models after op-
timization by PSO algorithm. 

Model Hyperparameters Prediction Errors 
 Dense1 Dense2 Learning Rate RMSE R2 

PSO-LSTM 100 259 0.001 0.5914 0.9487 
PSO-RNN 100 339 0.0007 0.6125 0.9458 

To further evaluate the predictive power of the optimized model, the PSO-LSTM, 
PSO-RNN and PSO-LSTM-RNN models were applied to the prediction at different time 
scales. The input length of each model was set to 15, and the output lengths were set to 1, 
2, 3, 4, 5, and 6; in other words, the prediction of NH3 concentration in the piggery after 
0.5 h, 1 h, 1.5 h, 2 h, 2.5 h, and 3 h were realized. As seen in Table 4, all three models 
showed strong prediction ability for ammonia concentrations in pig houses in the next 2 
h (corresponding to the next 1–4 time points), especially for 0.5 h, 1 h, and 1.5 h (R2 values > 
0.93; RMSE < 0.91). With the increase in prediction time, the predicted value deviated from 
the actual value, and the overall prediction error became greater. When predicting the 
NH3 concentration of the piggery after 2.5 h (corresponding to more than five time points), 
The R2 values for the PSO-LSTM, PSO-RNN, and PSO-LSTM-RNN models decreased be-
low 0.9, while RMSE increased for each model. 

Table 4. Prediction errors of PSO-LSTM and PSO-RNN models at different time scales. 

Model Time Scales RMSE R2 

PSO-LSTM 

0.5 hour 0.8626 0.9447 
1 hour 0.8328 0.9382 

1.5 hour 0.9105 0.9378 
2 hour 1.0297 0.9182 

2.5 hour 1.1729 0.8968 
3 hour 1.2264 0.8773 

PSO-RNN 

0.5 hour 0.8273 0.9433 
1 hour 0.8838 0.9417 

1.5 hour 0.8703 0.9353 
2 hour 1.0301 0.9169 

2.5 hour 1.1256 0.8856 
3 hour 1.2651 0.871 

PSO-LSTM-RNN 

0.5 hour 0.8448 0.9441 
1 hour 0.8583 0.9398 

1.5 hour 0.8951 0.9361 
2 hour 1.0296 0.9176 

2.5 hour 1.1471 0.8912 
3 hour 1.2458 0.8761 

The PSO algorithm, which originated from the study of social behavior of birds and 
fish, is an intelligent evolutionary computational method that relies on collaboration and 
information sharing among individuals in a population to find the optimal solution [39]. 
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In this algorithm, each particle is a moving individual in the N-dimensional search space, 
and the particle has two attributes: velocity and position. A particle adjusts its position in 
the search space and collaborates with other particles to calculate the global optimal solu-
tion. The PSO algorithm has been widely used in the field of machine learning algorithms 
because of its computational simplicity and high convergence efficiency [40]. In this study, 
the PSO algorithm was applied to the optimization of LSTM, RNN, and LSTM-RNN, and 
the relatively good values for the hyperparameters of the two models were determined. 
The algorithm effectively improved the model accuracy. 

All three models optimized by the PSO algorithm showed high accuracy (R2 > 0.9) in 
predicting 1–4 future time points; this result may indicate that these types of models have 
good prospects in application to the prediction of NH3 concentration in pig houses at dif-
ferent time scales. At the same time, the accuracy of all three models was very close at all 
time scales, possibly due to the similarity of the LSTM and RNN algorithms [41]. How-
ever, the advantage of the higher accuracy of LSTM on long time series data was not found 
in this study. This may have been due to the fact that the NH3 concentration in this exper-
iment was influenced by artificial regulation from time to time, and this in turn made the 
pattern of NH3 changes over longer times behave unpredictably. In addition, for PSO-
LSTM-RNN, although the number of hidden layers was increased to three during the con-
struction of this model, a setting that was somewhat different from the single model, the 
accuracy of the model was not significantly improved after the combination of the two; 
however, this modification did increase the complexity of the model and the computer 
operation burden, which are factors that related to the similarity of the principles of RNN 
and LSTM algorithms. Overall, the PSO-LSTM and PSO-RNN models could effectively 
predict NH3 concentrations in a pig house at four future time points with a balance of 
model complexity and accuracy, and thus they have good application prospects. In addi-
tion, if a further combination of models is needed in the future, it may be necessary to 
consider model construction from the perspective of synergy or complementarity between 
algorithms. 

4. Conclusion 
There are complex interactions among various environmental parameters in a pig-

gery. In this study, random forest and PsCA were used to retain important characteristic 
parameters as much as possible while controlling the input variables of the model. 
Through comparative experiments, it was found that after inputting appropriate environ-
mental parameters (e.g., CO2, H2O, P, and outdoor temperature) the accuracy of each 
model for predicting ammonia concentrations was superior to that when only NH3 was 
input, while the accuracy of each model decreased after inputting too many environmen-
tal parameters. The LSTM and RNN models were selected, which were able to effectively 
predict the NH3 concentration in a semi-automatic pig house. On this basis, the PSO-LSTM 
and PSO-RNN models were proposed by using the PSO algorithm. These models were 
more accurate than LSTM and RNN and had a good prediction effect on NH3 concentra-
tion at different time scales. The PSO-LSTM and PSO-RNN models have excellent poten-
tial for application in predicting gas concentrations in breeding environments, and the 
introduction of other algorithms in terms of complementarity or synergy can be consid-
ered candidates with which to build more powerful combined models. 
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