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Simple Summary: With the increased development of pig farming intensification, air quality and
odor emissions in pig houses are gradually attracting attention. Among them, ammonia is considered
to be an important environmental indicator of pig house. Excessive accumulation of ammonia can
seriously affect the growth status of pigs and also cause a potential health risk to farm workers.
Therefore, it is very important to recognize the changes of ammonia in pig houses and to discharge
ammonia in time for the welfare farming of pigs. In this study, three traditional machine learning
algorithms and three deep learning algorithms were selected to predict the ammonia concentration
in a pig house. Based on them, important environmental parameters and promising algorithms
were screened out and the algorithms were evaluated for optimization. The results of the study can
provide a reference for air quality regulation in pig houses.

Abstract: Accurately predicting the air quality in a piggery and taking control measures in advance are
important issues for pig farm production and local environmental management. In this experiment,
the NH3 concentration in a semi-automatic piggery was studied. First, the random forest algorithm
(RF) and Pearson correlation analysis were combined to analyze the environmental parameters, and
nine input schemes for the model feature parameters were identified. Three kinds of deep learning
and three kinds of conventional machine learning algorithms were applied to the prediction of NH3

in the piggery. Through comparative experiments, appropriate environmental parameters (CO2,
H2O, P, and outdoor temperature) and superior algorithms (LSTM and RNN) were selected. On
this basis, the PSO algorithm was used to optimize the hyperparameters of the algorithms, and their
prediction performance was also evaluated. The results showed that the R2 values of PSO-LSTM and
PSO-RNN were 0.9487 and 0.9458, respectively. These models had good accuracy when predicting
NH3 concentration in the piggery 0.5 h, 1 h, 1.5 h, and 2 h in advance. This study can provide a
reference for the prediction of air concentrations in pig house environments.

Keywords: ammonia concentration; machine learning; prediction models; pig house

1. Introduction

In intensive and large-scale pig production, air quality and odor emissions have a
negative impact on the health of the pigs, the pig farm workers, and the local environment.
Ammonia (NH3) concentration is an important indicator used to evaluate the environment
of a piggery. The high concentration of NH3 in the piggery will affect the normal growth of
pigs, resulting in decreased immunity and production performance and inducing respira-
tory diseases [1]. Excretion of NH3 from pig houses may pose a risk of respiratory illness
to pig farm workers and residents living nearby [2]. When NH3 is excessively discharged
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into the atmosphere, it returns to the surface through atmospheric dry and wet deposition
processes, causing acidification of soil and water bodies and affecting ecosystem stability [3].
Therefore, the development of tools to assist managers in anticipating changes in NH3
concentration in a piggery will ensure that timely measures can be taken to reduce the
potential stress of ammonia on human and animal health, and the level of environmental
pollution, factors that are important to improve animal production, animal welfare, and
environmental management.

In the past, statistical models such as least squares extensive and stepwise linear regres-
sion were developed for gas concentration prediction in aquaculture environments [4,5].
However, air pollutants in farms are mixed, complex, and usually have interaction charac-
teristics that lead to the concentrations of air pollutants having non-linear dynamics [6].
Therefore, many statistical models in the past have poor prediction of gas pollution concen-
tration in farms. Machine learning (ML) algorithms can deal with nonlinear interactions
mathematically, and they have excellent performance in feature extraction, classification,
and change prediction for big data. Machine learning has been developed rapidly in recent
years [7–9]. Classical machine learning algorithms include neural networks and decision
trees (DT). Based on these models, random forest (RF), extreme gradient boosting (XG-
Boost), backpropagation neural networks (BPNN), Elman neural networks (RNN), long
short-term memory (LSTM), and other algorithms have been developed [10,11]. These
algorithms have been applied to the prediction and regulation of environmental factors
such as the automation of indoor air management, greenhouse gas emissions, and air
pollution assessment, and have achieved good results [12,13].

Although a few researchers have constructed air prediction models for farming en-
vironments based on machine learning algorithms in recent years, the environments in
farming houses vary greatly from region to region, and numerous modeling attempts and
screenings are needed to achieve extensive gas concentration prediction [14,15]. For exam-
ple, many pig houses have started to adopt the regulation mode (called “semi-automatic
regulation” in this paper) that automatically changes the ventilation rate based on the
set house temperature value. In this mode, the temperature fluctuation in the house is
low, but the concentration of air pollutants in the house is often still too high in autumn
and winter, and there are very few corresponding models for predicting air pollutants. In
addition, as far as the modeling process is concerned, the selection of machine learning
algorithms and environmental parameters in feature engineering are key aspects in deter-
mining the performance of the model, and there are very few relevant reports concerning
the farming environment that can draw on how to select the underlying algorithms and
environmental parameters.

In this study, we evaluated the ability of three traditional machine learning and three
deep learning algorithms to predict NH3 concentration in a semi-automatically regulated
pig house in combination with environmental parameters. The traditional machine learning
algorithms include the classical DT, as well as support vector machine (SVM) and XGBoost,
which have performed well in the past for gas prediction in farming environments [16,17].
Deep learning algorithms were chosen from the common BPNN, as well as LSTM and
RNN, as these models have strong regression capabilities for time series data but are
rarely employed in farming environments [18,19]. For the selection of environmental
parameters, the three most concerned parameters (indoor temperature, humidity, and
ventilation) in the pig house were measured, as well as the temperature and rainfall outside
the house, as the latter can well reflect the changing state of the natural environment outside
the house. In addition, from the response principle, indoor air pressure (P), H2O, and
CO2 may also have an effect on NH3 concentration, and these three indicators were also
included in the monitoring of environmental parameters [20]. The main objectives were
to evaluate the performance of LSTM, RNN, BPNN, DT, SVM, and XGBoost in predicting
NH3 concentrations in semi-automatically regulated pig houses, and to identify the main
environmental factors affecting NH3 concentration. On this basis, two models with strong
performance in predicting NH3 concentration in semi-automatic pig houses were proposed
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and optimized. This study can be a reference for future work related to gas concentration
prediction in different farming modes.

2. Materials and Methods
2.1. Data Collection

This study was conducted in a fattening pig house of a pig farm in Rongchang,
Chongqing. More detailed information concerning this house is given in Pu et al. [21].

Environmental data were collected from 17 September 2020, to 20 October 2020. During
this period, a total of 220 pigs in the pig house were evenly distributed in 22 pens, with
each pig weighing 70–90 kg. An INNOVA (model 1412I, LumaSense, Inc., USA) based on
the detection principle of infrared photoacoustic spectroscopy was used to monitor and
record the data of NH3, CO2, and H2O every 3 min. The HOBO (U23-001, Onset, Bourne,
MA, USA) was used to monitor temperature and relative humidity, and was set to record
every 5 min. The monitoring points of the above indexes were near 1.7 m in the middle of
the pig house channel. Meanwhile, the ventilation volume in the piggery was regulated
and recorded automatically by the intelligent system (Chongqing Dahong Machinery Co.,
Ltd., Chongqing, China) inside the piggery. Moreover, the temperature and rainfall data
outside the house were recorded by surrounding small meteorological stations.

2.2. Data Preprocessing

In order to ensure the prediction performance of the model, the data collected by the
equipment inside and outside the piggery and the intelligent system inside the piggery
were preprocessed and analyzed. First, abnormal data processing was carried out on the
environmental parameter data of the pig house using Formula (1). If the absolute value
of the difference between the value and its average value was greater than three times its
standard deviation, the value was replaced by the average value of the data on both sides
of the value. Then, the environmental parameter data were averaged for half an hour using
Formula (2). Because the dimensions of sampling equipment in the piggery were different,
Equation (3) was used to normalize the data.

∣∣yn − y′
∣∣ > 3σ yn=

yn−1 − yn+1

2
, (1)

yh =
(y1 + y2 + . . . + yn)

(30/t)
, (2)

y∗ =
(yn − ymin)

(ymax − ymin)
. (3)

Here, yn is the collected value of a pig house sensor; y′ is the mean value of the
sensor data sequence; yn is the data value after abnormal data processing; σ is the standard
deviation of sensor data sequence; n is the data point; yh is the value after averaging
every 30 min; t is the sensor acquisition time interval; ymax is the maximum value of the
sensor data sequence; ymin is the minimum value of the sensor data sequence, and y∗ is the
normalized value.

2.3. Model Construction

The construction process of the six prediction models was consistent (Figure 1), and
they were all carried out in the following three steps: selecting the environmental pa-
rameters to determine the feature input scheme (2.3.1), selecting and importing potential
algorithms from scikit-learn or Keras libraries using Python (2.3.2), and training the input
data based on different algorithms and adjusting parameters in combination with model
evaluation metrics to achieve relatively good results (2.3.3).
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Figure 1. Modeling workflow.

2.3.1. Selection of Input Environmental Parameters

A variety of environmental parameters concerning the piggery were collected to build
the model, including temperature, humidity, CO2, H2O, ventilation, air pressure inside the
pig house, and temperature and rainfall outside the pig house. These eight parameters
were considered potentially correlated variables. On this basis, the random forest algorithm
was used to rank the importance of eight environmental parameters on NH3 concentration
in the pig house. Random forest can yield the importance score of each variable to evaluate
the role of each in classification, as it relies on a self-help resampling technology and
node random splitting. The ability to analyze complex interacting classification features
makes random forest a feature selection tool for high-dimensional data. In this study, we
considered the parameters with importance scores greater than 0.1 after random forest
analysis as the priority input environmental parameters, and selected the inputs in order of
importance from the largest to the smallest. The environmental parameters with importance
scores less than 0.1 were used to calculate their correlations with NH3 concentration using
Pearson correlation analysis (PsCA), and the inputs were selected in order from the largest
to the smallest according to the absolute value of correlation. The input scheme for the
model characteristic parameters was obtained on the basis of the analysis of environmental
importance and the correlations among the data (Table 1).
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Table 1. Input scheme of model feature parameters.

Serial Number Input Parameters

1 NH3
2 NH3, CO2
3 NH3, CO2, H2O
4 NH3, CO2, H2O, P
5 NH3, CO2, H2O, P, Outdoor temperature
6 NH3, CO2, H2O, P, Outdoor temperature, Indoor ventilation

7 NH3, CO2, H2O, P, Outdoor temperature, Indoor ventilation,
Indoor temperature

8 NH3, CO2, H2O, P, Outdoor temperature, Indoor ventilation,
Indoor temperature, Indoor humidity

9 NH3, CO2, H2O, P, Outdoor temperature, Indoor ventilation,
Indoor temperature, Indoor humidity, Outdoor rainfall

2.3.2. Model Selection and Import

The NH3 concentration of the pig house was used as the label datum, and the envi-
ronmental parameters related to the NH3 concentration were used as the characteristic
data. The purpose was to learn the correspondence from the characteristic data such as
temperature and humidity to predict the label data. Therefore, it was necessary to model
the supervised learning algorithm in machine learning. At the same time, the input vari-
ables and output variables were time series, so the prediction of NH3 in the pig house was
formally a regression problem, and the corresponding model is a non-probabilistic model.
Therefore, different machine learning algorithms were used to establish discriminant mod-
els in supervised learning, including classical algorithms such as neural networks, DT,
SVM, and related ensemble algorithms (XGBoost, LSTM, RNN, BPNN). Using Python soft-
ware, machine learning algorithm running, statistical analysis, and data mining work were
managed with pandas, matplotlib, and numpy. Traditional machine learning algorithms
(DT, SVM, and XGBoost) were imported directly from the scikit-learn library and combined
with the input data for subsequent training and hyperparameter optimization, while deep
learning algorithms (BPNN, LSTM and RNN) required additional use of the Keras library
and artificial debugging to determine the number of hidden layers (there were two hidden
layers in this study).

2.3.3. Model Training

The NH3 concentration was used as the prediction target. The length of the input
time series (input_len) of each model was set to 5, and the length of the prediction time
series (out_len) was set to 1. The first 80% of the preprocessed data was used to train
the model, and the last 20% was used to test the model. In the training process, the
training of each integrated model involved the selection of hyperparameters, a factor that
is directly related to the final prediction results. Here, the hyperparameters were firstly
artificially selected and set so that the prediction effect was relatively high, and then three
deep learning models and three conventional machine learning models were established.
Then, the models with good prediction performance were screened, and hyperparameter
optimization was performed using the corresponding algorithms on this basis. For neural
network algorithms (LSTM, RNN, and BPNN), the particle swarm optimization (PSO)
algorithm was used to optimize the number of hidden layer neurons in the first and second
layers and the learning rate. For DT, SVM, and XGBoost algorithms, grid search was used
for parameter tuning.

2.4. Model Performance Evaluation

The performance of the models was evaluated with mean absolute error (MAE), root-
mean-squared error (RMSE), and coefficient of determination (R2), which are shown in
Equations (4) and (5), respectively.
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1. Root-Mean-Squared Error (RMSE)

RMSE =

√
1
n

n

∑
i=1

(
yoi − ypi

)2. (4)

As with MAE, a smaller RMSE means that the model prediction performance is better.

2. Coefficient of Determination (R2)

R2 =
∑n

i=1
(
ypi − yom

)2

∑n
i=1
(
ypi − yom

)2
+ ∑n

i=1
(
yoi − ypi

)2 , (5)

where yom is the mean value of the observed value. An R2 closer to 1 means the model
is better.

3. Results and Discussion
3.1. Data Characteristics

The collected parameter information is shown in Figure 2. The average concentration
of NH3 fluctuated in the range of 1.77–20.94 ppm, and its association with CO2 concentra-
tion showed a significant upward trend from the 550th to the 2000th time point. Interest-
ingly, the outdoor temperature and ventilation rate were opposite to the change trends of
NH3 and CO2 concentration, fluctuating in the range of 7.5–27.0 ◦C and 6.0–67.5 m3/min,
respectively. The temperature and humidity in the house were relatively stable in the first
2000 time points, fluctuating in the range of 23.5–28.0 ◦C and 57.6%–78.5%, respectively.
From the 2000th to the 2300th time point, humidity in the house fluctuated significantly,
and the environmental parameters near the time period changed as well, including a short-
term rise in the temperature outside the house, a short-term increase in the ventilation
volume in the house, and fluctuation of humidity, air pressure, NH3 concentration, and
CO2 concentration in the house.

The concentration of NH3 met the standards of 25 mg·m−3, while the CO2 did not
meet the respective standard of 1500 mg·m−3 as prescribed by The Ministry of Agriculture
of the People’s Republic of China, given in NY/T 17824.3-2008 “Environmental parameters
and environmental management for intensive pig farms.” The semi-automatic control of
the piggery in this experiment was able to automatically control the ventilation rate based
on the temperature, so the temperature in the piggery remained relatively stable for most
of the time. At the same time, when the temperature outside the house decreases, the
ventilation inside the house is subsequently reduced, which in turn allows air pollutants to
start accumulating in the pig house [22,23]. This is perhaps the main reason why NH3 and
CO2 concentrations gradually increased after the 550th time point. It is worth noting that
there was a brief increase in the outside temperature from the 2000th to 2300th time points,
and the ventilation rate of the house increased automatically; this may also be the reason
for the decreases in NH3 and CO2 concentrations at this time point. Thus, it seems that
excessive concentrations of air pollutants in the pig house can occur, and a timely increase
in ventilation in the pig house can effectively control the environment to a certain extent.

3.2. Importance and Correlation of Environmental Parameters

The RF algorithm was used to evaluate the environmental variables affecting the
concentrations of air pollutants in the piggery, and the importance of each variable was
obtained and sorted (Figure 3a). The most important influence on NH3 concentration
was CO2 concentration (importance of 0.73), followed by H2O and P (0.12 and 0.07, re-
spectively). Humidity, outdoor rainfall, temperature, and indoor ventilation were less
important. Considering that the RF algorithm may be omitted in parameter screening, a
PsCA was performed between the concentrations of gaseous pollutants in the piggery and
various environmental variables (Figure 3b). The results showed that there was a strong
positive correlation between CO2 and NH3 concentrations (+0.75), followed by a strong
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positive correlation between P and NH3 concentrations (+0.68). At the same time, there
was a strong negative correlation between outdoor temperature and NH3 concentration
(−0.81), and there were also strong negative correlations between indoor ventilation and
temperature and NH3 concentration (−0.67 and −0.44, respectively).
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The importance of CO2 to NH3 concentration may be due to the formation of CO2
during NH3 production. Uric acid decomposition is the main source of NH3 in a pig-
gery [24]. Uric acid is hydrolyzed into urea and glyoxylic acid under the action of various
microorganisms, and finally urea produces NH3 and CO2 under the action of urease [20].
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In addition, NH3 emissions need to be transmitted through the liquid film layer of the air to
the gas film layer, and finally enter the external atmospheric environment. This process will
be accompanied by H2O volatilization, and this may be the main reason why H2O had an
impact on the NH3 concentration in the pig house. Random forest is a classifier established
in a random manner and contains multiple decision trees [25]. Although the algorithm has
been verified to effectively evaluate the contribution of environmental parameters to the
indicators, there may be multiple similar decision trees in the piggery environment [26,27].
If there are several environmental parameters that are important for NH3 concentration
because of the same mechanism, then some of them are likely to be neglected in the random
forest method. Therefore, we introduced PsCA and found that P, indoor temperature,
outdoor temperature, and indoor ventilation had high correlations. P changes with the
external atmospheric environment and the ventilation volume in the piggery, and this may
be the reason P had strong positive correlations with the outside temperature and the venti-
lation in the piggery. In addition, ventilation rate is an important parameter for regulating
the environment of the piggery. In this study, the ventilation rate was set to increase or
decrease according to the temperature inside the piggery, and the temperature inside the
piggery would change with the infiltration of the temperature outside the piggery; this
may be the reason for the large negative correlations between the temperature outside the
piggery, the temperature inside the piggery, the ventilation rate, and NH3 concentration. In
general, there were interactions among environmental parameters in the pig house.

3.3. Model Comparison

According to the analysis performed for the environmental parameters, nine input
schemes of characteristic parameters were determined in the process of training the model
(Table 1), and the accuracy of each model was evaluated with the value of R2 as the index
(Table 2). Meanwhile, three cases were selected for comparative analysis without feature
parameters (only input NH3), partial characteristic parameters with good prediction effect
(input NH3, CO2, H2O, P, and outdoor temperature), and full characteristic parameters
were selected for comparative analysis (Figure 4). In general, LSTM, RNN, and XGBoost
had excellent prediction results, and even with different input features; the predicted
and original values of these three models in the test set mostly overlapped, especially
LSTM and RNN (Table 2 and Figure 4). DT could partially predict NH3 concentration,
but the difference between its predicted and original values was larger than those of the
first three. BPNN had good prediction results only when suitable input features (such
as input NH3, CO2, H2O, P, and outdoor temperature) were used, and it deviated from
the overall performance of both SVM. When the input feature was only NH3, the LSTM,
RNN, and XGBoost could mostly predict NH3 (the first column in Figure 4), and most
of their predictions differ from the original values only at the inflection point. When the
input features were NH3, CO2, H2O, P, and outdoor temperature, the LSTM, RNN, and
XGBoost models produced better prediction results than others. The predicted values of
the six models were closer to the original values (the second column of Figure 4) than when
only NH3 was input. The predicted values of LSTM, RNN, and XGBoost coincided with
the original values at most of the inflection points. When all environmental parameters
were used as input features (the third column of Figure 4), even for the LSTM and RNN,
the deviation of the predicted values from the original values increased at the 300th time
point of the test set. The difference between predicted and original values increased for the
six models compared to when only NH3 was input.

Table 2. Evaluation of model accuracy via R2 for each of the nine feature input schemes.

Input Feature
Parameters

Model Algorithm

LSTM RNN BPNN DT SVM XGBoost

Serial 1 0.9239 0.9176 0.5709 0.8973 0.7240 0.9171
Serial 2 0.9297 0.9214 0.8080 0.8993 0.8948 0.9234
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Table 2. Cont.

Input Feature
Parameters

Model Algorithm

LSTM RNN BPNN DT SVM XGBoost

Serial 3 0.9348 0.9327 0.7999 0.9060 0.8975 0.9267
Serial 4 0.9335 0.9275 0.5726 0.8977 0.8078 0.9173
Serial 5 0.9321 0.9392 0.8241 0.9067 0.9137 0.9312
Serial 6 0.9115 0.9138 0.5034 0.8949 0.6853 0.9077
Serial 7 0.9183 0.9197 0.6226 0.8872 0.7875 0.9095
Serial 8 0.8780 0.8739 0.4953 0.8652 0.7899 0.8707
Serial 9 0.9102 0.9007 0.4289 0.8683 0.7755 0.8861
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LSTM and RNN have been considered as powerful algorithms for predicting atmo-
spheric pollutant concentrations in previous studies [28,29]. XGBoost is a typical tree model
for unstable classifiers that can solve nonlinear problems and has achieved good results
in indoor odor prediction in the past [30,31]. In this study, when the input environmental
parameters were the same, all three of the above algorithms showed strong predictive
power in most cases, especially LSTM and RNN. The RNN algorithm is a kind of feedfor-
ward neural network that can transmit signals from input to output in only one way, and it
introduces the self-connections of a neural cyclic structure into the network [32,33]. There-
fore, the algorithm has good predictive power for data with serial characteristics. LSTM
is based on RNN by introducing memory blocks to overcome vanishing and exploding
gradients [34]. The memory block consists of three gating units: an input gate, an output
gate, and a forget gate, where the input gate controls the flow of cell activation from the
input to the memory cell, and the output gate controls the flow of output from the memory
cell to other nodes [35]. Considering that both LSTM and RNN performed better than other
models in this study for the nine input schemes, the results suggest that both LSTM and
RNN models may have good prediction ability for NH3 concentration in semi-automated
pig houses.

When the input environmental parameters were altered, the R2 values of the models,
even those constructed using the same algorithm, could be dramatically different. In this
study, the R2 of each model with input NH3, CO2, H2O, P, and outdoor temperature were
improved compared to when only NH3 was input, especially for BPNN and SVM. This
is consistent with previous studies that environmental parameters could increase model
accuracy [36,37]. It is noteworthy that the R2 value of each model decreased when all
environmental parameters were input than when only NH3 was input. This could be that
some of the features were not strongly correlated with changes in NH3 concentration and
instead negatively affected the models when they were trained [38]. In general, the input
of some environmental feature parameters can improve the model accuracy, although the
number of feature parameters input needs to be controlled, and suitable indicators need to
be selected. For the prediction of NH3 concentration in semi-automated pig houses, the
characteristic parameters may firstly be considered as indicators with high importance after
random forest analysis, and secondly be considered as supplementary from the perspective
of correlations.

3.4. Model Optimization and Evaluation

Based on the analysis results of Section 3.3, LSTM and RNN models were further
optimized. Here, both models comprised two hidden layers, and the number of neurons
in the first and second hidden layers and the learning rate were determined by the PSO
algorithm. The hyperparameters and evaluation indexes after model optimization are
shown in Table 3. After optimization by PSO algorithm, both LSTM and RNN models
were improved. The R2 values of PSO-LSTM and PSO-RNN increased to 0.9487 and
0.9458, respectively. In addition, LSTM and RNN were tried in combination (PSO-LSTM-
RNN). The weights of the PSO-LSTM-RNN model were obtained by the optimal weighting
method, and the final prediction value of the ammonia concentration in the piggery was
obtained. The prediction error of the PSO-LSTM-RNN model was very close to that of
PSO-LSTM and PSO-RNN, and the R2 and RMSE values of this model were 0.9416 and
0.5893, respectively.

Table 3. The values of hyperparameters and prediction errors of LSTM and RNN models after
optimization by PSO algorithm.

Model Hyperparameters Prediction Errors

Dense1 Dense2 Learning Rate RMSE R2

PSO-LSTM 100 259 0.001 0.5914 0.9487
PSO-RNN 100 339 0.0007 0.6125 0.9458
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To further evaluate the predictive power of the optimized model, the PSO-LSTM,
PSO-RNN and PSO-LSTM-RNN models were applied to the prediction at different time
scales. The input length of each model was set to 15, and the output lengths were set
to 1, 2, 3, 4, 5, and 6; in other words, the prediction of NH3 concentration in the piggery
after 0.5 h, 1 h, 1.5 h, 2 h, 2.5 h, and 3 h were realized. As seen in Table 4, all three
models showed strong prediction ability for ammonia concentrations in pig houses in the
next 2 h (corresponding to the next 1–4 time points), especially for 0.5 h, 1 h, and 1.5 h
(R2 values > 0.93; RMSE < 0.91). With the increase in prediction time, the predicted value
deviated from the actual value, and the overall prediction error became greater. When
predicting the NH3 concentration of the piggery after 2.5 h (corresponding to more than five
time points), The R2 values for the PSO-LSTM, PSO-RNN, and PSO-LSTM-RNN models
decreased below 0.9, while RMSE increased for each model.

Table 4. Prediction errors of PSO-LSTM and PSO-RNN models at different time scales.

Model Time Scales RMSE R2

PSO-LSTM

0.5 h 0.8626 0.9447
1 h 0.8328 0.9382

1.5 h 0.9105 0.9378
2 h 1.0297 0.9182

2.5 h 1.1729 0.8968
3 h 1.2264 0.8773

PSO-RNN

0.5 h 0.8273 0.9433
1 h 0.8838 0.9417

1.5 h 0.8703 0.9353
2 h 1.0301 0.9169

2.5 h 1.1256 0.8856
3 h 1.2651 0.871

PSO-LSTM-RNN

0.5 h 0.8448 0.9441
1 h 0.8583 0.9398

1.5 h 0.8951 0.9361
2 h 1.0296 0.9176

2.5 h 1.1471 0.8912
3 h 1.2458 0.8761

The PSO algorithm, which originated from the study of social behavior of birds and
fish, is an intelligent evolutionary computational method that relies on collaboration and
information sharing among individuals in a population to find the optimal solution [39]. In
this algorithm, each particle is a moving individual in the N-dimensional search space, and
the particle has two attributes: velocity and position. A particle adjusts its position in the
search space and collaborates with other particles to calculate the global optimal solution.
The PSO algorithm has been widely used in the field of machine learning algorithms
because of its computational simplicity and high convergence efficiency [40]. In this study,
the PSO algorithm was applied to the optimization of LSTM, RNN, and LSTM-RNN, and
the relatively good values for the hyperparameters of the two models were determined.
The algorithm effectively improved the model accuracy.

All three models optimized by the PSO algorithm showed high accuracy (R2 > 0.9)
in predicting 1–4 future time points; this result may indicate that these types of models
have good prospects in application to the prediction of NH3 concentration in pig houses at
different time scales. At the same time, the accuracy of all three models was very close at all
time scales, possibly due to the similarity of the LSTM and RNN algorithms [41]. However,
the advantage of the higher accuracy of LSTM on long time series data was not found in this
study. This may have been due to the fact that the NH3 concentration in this experiment
was influenced by artificial regulation from time to time, and this in turn made the pattern
of NH3 changes over longer times behave unpredictably. In addition, for PSO-LSTM-RNN,
although the number of hidden layers was increased to three during the construction of
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this model, a setting that was somewhat different from the single model, the accuracy
of the model was not significantly improved after the combination of the two; however,
this modification did increase the complexity of the model and the computer operation
burden, which are factors that related to the similarity of the principles of RNN and LSTM
algorithms. Overall, the PSO-LSTM and PSO-RNN models could effectively predict NH3
concentrations in a pig house at four future time points with a balance of model complexity
and accuracy, and thus they have good application prospects. In addition, if a further
combination of models is needed in the future, it may be necessary to consider model
construction from the perspective of synergy or complementarity between algorithms.

4. Conclusions

There are complex interactions among various environmental parameters in a piggery.
In this study, random forest and PsCA were used to retain important characteristic pa-
rameters as much as possible while controlling the input variables of the model. Through
comparative experiments, it was found that after inputting appropriate environmental
parameters (e.g., CO2, H2O, P, and outdoor temperature) the accuracy of each model for
predicting ammonia concentrations was superior to that when only NH3 was input, while
the accuracy of each model decreased after inputting too many environmental parameters.
The LSTM and RNN models were selected, which were able to effectively predict the NH3
concentration in a semi-automatic pig house. On this basis, the PSO-LSTM and PSO-RNN
models were proposed by using the PSO algorithm. These models were more accurate
than LSTM and RNN and had a good prediction effect on NH3 concentration at different
time scales. The PSO-LSTM and PSO-RNN models have excellent potential for application
in predicting gas concentrations in breeding environments, and the introduction of other
algorithms in terms of complementarity or synergy can be considered candidates with
which to build more powerful combined models.
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