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Simple Summary: Microplastics are ubiquitous particles with dimensions less than 5 mm. In the
marine environment, due to their small size, they can be ingested by organisms. The purpose of
this review is to describe the negative effects related to the ingestion of microplastics in wild marine
organisms. At the moment, few effects caused by the ingestion of microplastics in wild marine
organisms are known.

Abstract: The present review provides detailed information on the adverse effects of MPs on wild
marine organisms, including tissue damage, fish condition, oxidative stress, immune toxicity, and
genotoxicity. A bibliometric analysis was carried out on CiteSpace (version 6.1.R3) (Drexel University,
Philadelphia, PA, USA) to verify how many papers studied the effects on wild marine species. The
results showed a total of 395 articles, but only 22 really presented data on the effects or impacts on
marine biota, and of these, only 12 articles highlighted negative effects. This review shows that the
observed effects in wild organisms were less severe and milder than those found in the experimental
conditions. The knowledge of negative effects caused by direct ingestion of microplastics in wild
animals is still limited; more efforts are necessary to fully understand the role of MPs and the adverse
effects on wild marine organisms, the ecosystem, and human health.
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1. Introduction

The increasing amount of plastic pollution in the ocean is a global concern [1–3].
Global plastic production has a growing rate of about 5% per year, and in 2020, it was

approximately 367 million tons [4]. About 10% of these new plastics are released into the
marine environment [5]. The plastics that arrive in the sea are gradually degraded into ever
smaller pieces up to microplastics (<5 mm) and nanoplastics (<1 µm) [6].

Recent studies documented the presence of microplastics (MPs) pollution worldwide,
from the deep oceans to the polar areas [7–11]. MPs present in the marine environment can
be ingested by a wide range of organisms, zooplankton, benthos, top predators, sea turtles,
marine mammals, and birds [12–16].

One of the main scientific questions inferred in the last years refers to the potentially
toxic effects of the MPs’ ingestion on the marine biota’s health status. MPs can induce toxic
effects on organisms, affecting normal functioning, and may cause several organ-specific
toxicities, such as neuronal, digestive, reproductive, and developmental toxicity [17–23].
Moreover, MPs may adsorb contaminants present in the environment because of their
lipophilicity [24]; in fact, once arriving in the seawater, they change their nature in response
to physicochemical and biological ageing processes [25] and, in this way, act as carriers
for very hazardous chemicals (e.g., organic contaminants and heavy metals) [26,27]. MPs
have sorb contaminants, such as heavy metals [28], pharmaceuticals [29], and persistent
organic pollutants [30–32]. These pollutants can be ingested by marine organisms conveyed
through MPs. Once ingested, the inflammatory cells and the detoxification mechanisms
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induce the generation of reactive oxygen species (ROS), which can produce oxidative stress
and lipid peroxidation (LPO) of cellular membranes [33]. This oxidative stress can lead to
an oxidative alteration of cellular components, including lipids, proteins, and DNA [34].

The organisms, to avoid oxidative stress and be protected from the toxic-induced
damage, induce the activity of antioxidant enzymes such as catalase (CAT), superoxide
dismutase (SOD), and glutathione peroxidase (GPx) [35]. Unfortunately, chronic exposure
to MPs can cause oxidative damage [36]; for this reason, oxidative stress can be used as
an indicator of physiological stress and can be measured indirectly by quantifying the
antioxidant defenses and detoxification systems’ activity [34].

Finally, the fate of MPs once ingested by fish is not yet clearly understood [37,38]. MPs
can reach internal tissues and organs such as the liver, the wall of the intestine, the stomach,
and the muscle [39–41].

The presence of quantifiable levels of MPs in the muscle of edible fish species is worry-
ing in regard to the potential consequences for human health [39]. In the last years, several
studies on MPs’ toxicity were published [42]; however, knowledge of toxicological effects
caused by direct consumption of microplastics in wild animals is still limited (Table 1).

The purpose of this review was to collect all the papers published up to date on the
effects of microplastics on marine biota in order to have a global overview, but, above all, we
aimed to understand what the real effects of microplastics on wild marine organisms are.
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Table 1. Summary of effects caused by microplastic ingestion in wild marine biota.

Area Species N Specimens % Specimens with
Ingested MPs Biomarker Effect Reference

Northeast Atlantic Ocean
Seabass, Dicentrarchus labrax,
Horse mackerel, Trachurus trachurus,
Atlantic chub mackerel, Scomber colias

150 49

Fulton’s condition factor (CF) No effect

[33]Brain acetylcholinesterase (AChE) activity Altered activity (↑)
Muscle total cholinesterases (ChE) activity No effect
Brain, muscle, and gills lipid peroxidation (LPO) Altered levels (↑)

Strait of Sicily Painted comber, Serranus scriba 120 22–43

Catalase (CAT) activity Altered level (↑)

[43]Glutathione S-transferase (GST) activity Altered level (↑)
Malondialdehyde (MDA) content Altered level (↑)
Acetylcholinesterase (AChE) activity Altered level (↓)

NW Mediterranean Sea Red mullet, Mullus barbatus 118 59

Gonado-somatic index (GSI) No effect

[44]
Hepato-somatic index (HSI) No effect
Stomach-fullness index (FULL) No effect
Fulton’s body condition factor (CF) No effect
Gonad, liver, spleen, kidney, stomach, and gill histology No tissue damage

North Sea

Cod, Gadus morhua
Flounder, Paralichthys dentatus
Sawbill duck, Mergus merganser
Common guillemot, Uria aalge

13 61.5 Organ’s histology No tissue damage [39]

South of Sicily Small-spotted catshark,
Scylhiorinus canicula 50 80

Gonado-somatic index (GSI) No effect

[45]
Hepato-somatic index (HSI) No effect
Spleno-somatic index (SSI) No effect
Fulton’s body condition factor (CF) No effect
Immune-related gene expression No effect

South of Sicily Small-spotted catshark,
Scylhiorinus canicula 61 80.3

Relative condition factor (Kn) No effect [46]Ammino acids and fatty acids profiles No effect

Southern Tyrrhenian Sea Bogue, Boops boops 65 Na Relative condition factor (Kn) No effect [8]

Tyrrhenian and Ligurian Seas Bogue, Boops boops 379 56 Relative condition factor (Kn) No effect [47]

Western Mediterranean Sea Amberjack, Seriola dumerili 52 98

Superoxide dismutase (SOD) activity Altered level (↑)

[48]
Catalase (CAT) activity Altered level (↑)
Glutathione S-transferase (GST) activity Altered level (↑)
Ethoxyresorufin-O-deethylase (EROD) activity No effect
Malondialdehyde (MDA) No effect

Western Mediterranean Sea Sea cucumber, Holothuria tubulosa 30 83.3

Superoxide dismutase (SOD) activity Altered level (↑)

[49]

Catalase (CAT) activity Altered level (↑)
Glutathione reductase (GRd) activity Altered level (↑)
Glutathione S-transferase (GST) activity Altered level (↑)
Acetylcholinesterase (AChE) activity No effect
Malondialdehyde (MDA) No effect

Western Mediterranean Sea Striped mullet, Mullus surmuletus 417 27.3

Superoxide dismutase (SOD) activity No effect

[50]Catalase (CAT) activity No effect
Glutathione S-transferase (GST) activity Altered level (↑)
Malondialdehyde (MDA) No effect
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Table 1. Cont.

Area Species N Specimens % Specimens with
Ingested MPs Biomarker Effect Reference

Central Adriatic Sea Red mullet,
Mullus barbatus 16 na

Interleukin-1beta (IL-1β) Altered level (↑)

[51]

Interleukin IL-8 Altered level (↑)
Interleukin IL-10 Altered level (↑)
Interferon (IFN) Altered level (↑)
Catalase (CAT) activity Altered level (↑)
Superoxide dismutase (SOD) activity Altered level (↑)

Central Adriatic Sea European hake,
Merluccius merluccius 16 na

Interleukin-1beta (IL-1β) Altered level (↑)

[51]

Interleukin IL-8 No effect
Interleukin IL-10 Altered level (↑)
Interferon (IFN) Altered level (↑)
Catalase (CAT) activity Altered level (↑)
Superoxide dismutase (SOD) activity Altered level (↑)

North and Baltic Seas

Atlantic cod, Gadus morhua,
Dab, Limanda limanda,
European flounder, Platichthys flesus
Atlantic herring, Clupea harengus
Atlantic mackerel, Scomber scombrus

290 5.5 Fulton’s body condition factor (CF) No effect [52]

Greenland Sea Bigeye sculpin, Triglops nybelini
Polar cod, Boreogadus saida 156 18–34 Fulton’s body condition factor (CF) No effect [53]

Adriatic Sea Loggerhead turtle, Caretta caretta 45 98 V3/V4 hypervariable region of 16s rRNA Operational taxonomic units
(OTUs) variation [54]

Western Mediterranean Sea European sardine, Sardina pilchardus
Anchovy Engraulis, encrasicolus 210 14.3–15.2 Fulton’s body condition factor (CF) Altered level (↓) [55]

Northwestern Mediterranean Sea Deep-water shrimp,
Aristeus antennatus 148 39.2 Condition indices (K, hepatosomatic index) No effect [56]

Central Mediterranean Sea Atlantic horse mackerel,
Trachurus trachurus 92 90.6 Vitellogenin (VTG) Altered level (↑) [57]

Western Mediterranean Sea
Anchovy, Engraulis encrasicolus
Striped mullet, Mullus surmuletus
Bogue, Boops boops

34
44
51

-

Fulton’s body condition factor (CF) No effect

[58]

Catalase (CAT) activity Altered level (↑) in E. encrasicolus
Superoxide dismutase (SOD) activity Altered level (↑) in E. encrasicolus
Glutathione S-transferase (GST) activity Altered level (↑) in M. surmuletus
Acetylcholinesterase (AChE) activity No effect
Malondialdehyde (MDA) No effect

Western Mediterranean Sea Bogue, Boops boops 102 46 Fulton’s Body condition factor (CF) No effect [59]

Central and Northwestern
Mediterranean Sea

Fin whales, Balenoptera physalus
36

34

CYP1A in skin biopsy Altered level (↑)
[60]CYP2B in skin biopsy Altered level (↓)

lipid peroxidation (LPO) in skin biopsy Altered level (↑)

Northwestern Mediterranean Sea Deep-water shrimp,
Aristeus antennatus 201 75.1

Relative condition factor (Kn) No effect
[61]Gonado-somatic index (GSI) Altered level (↓)

Hepato-somatic index (HSI) Altered level (↑)

N: number; (↑): increase; (↓): decrease.
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2. Materials and Methods

To carry out this bibliographic review, a list of references obtained from the Web
of Science Database (WoS) (https://www.webofscience.com/wos/woscc/basic-search)
(accessed on 23 November 2022) was used.

The searched keywords were “microplastics” AND “effects” AND “marine biota”.
The titles, abstracts, and keywords were manually inspected to exclude irrelevant papers.
The search included published original peer-reviewed research articles and reviews. The
inclusion criteria applied for this review were as follows:

(1) Only the articles in the English language and published in peer-reviewed journals
were considered in this paper; meanwhile, the technical reports, the monographs, the
academic dissertations, the theses, and the conference proceedings were not included.

(2) Only articles that reported microplastic effects or impacts on the marine biota were
included, while studies focused on sources in riverine or freshwater environments
were not considered.

(3) Finally, articles that reported laboratory uptake experiments or modeling were not
included in this review.

The analyses were performed with CiteSpace (version 6.1.R3), an open-source bib-
liometric software developed by Chen [62], and we analyzed 22 articles reporting the
effects on marine biota. In this study, some parameters were considered to synthesize a
stable network (1) term source (article title, abstract, and keywords), (2) node selection
g-index (k = 50), (3) time slicing (years per slice) = 1, pruning (pathfinder and pruning
sliced networks), and (4) visualization (cluster view-static and show merged network).

3. Results
3.1. Bibliometric Analysis

The results showed a total of 395 articles. By analyzing the results directly with WoS,
it was possible to see the general impression of growing interest in MPs research (Figure 1).
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Figure 1. Number of publications relative to the research performed with WoS.

Only 22 out of 395 articles really presented data on the adverse effects on wild marine
biota. The first article was published in 2016 [52].

https://www.webofscience.com/wos/woscc/basic-search
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3.2. CiteSpace Analysis on MPs Effects in Wild Marine Organisms

Until now, the effects of the ingestion of MPs were evaluated in 27 marine species,
including invertebrates, fish, birds, and reptiles, coming from the Northeast Atlantic Ocean,
the Mediterranean Sea, and the Artic area (Table 1).

3.2.1. Country of Authorship and Affiliation

The data analysis CiteSpace showed that the most represented authors belonged to
Italy (35.5%), Spain (32.3%), Norway (6.5%), Greece, Portugal, Germany, Ireland, Tunisia,
the Netherlands, France, and Mexico (3.2%) (Figure 2).
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The organizational analysis was used to reveal academic collaborations at the level of
institutions (Figure 3).
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The firsts ranked organizations with the largest research output were CNR-IRBIM
(National Research Council)—Italy; University of Messina—Italy; University of the Balearic
Islands—Spain; Istituto superiore per la protezione e la ricerca ambientale (ISPRA)—Italy;
Instituto de Salud Carlos III—Spain; Balearic Islands Oceanographic Centre—Spain; Uni-
versidad Autonoma de Barcelona—Spain; University of Ferrara—Italy; and University of
Siena—Italy.

3.2.2. Keywords

The keywords analysis showed that the first keywords of the articles related to our
research were Mediterranean Sea (Citation Counts 10); plastic pollution (Citation Counts
5); oxidative stress, Aristeus antennatus, small-spotted catshark, marine litter, and Balearic
Island (Citation Counts 2) (Figure 4).

3.2.3. Journal Co-Citation Analysis

The top-ranked items by citation counts were the Marine Pollution Bulletin and En-
vironmental Pollution, with 19 counts; and Scientific Reports, and Environmental Science &
Technology, with 18 counts. These journals are followed by Marine Environmental Research,
Science of the Total Environment, and Science, with 16 citations; Philosophical Transactions of the
Royal Society B, with 14 citations; and Plos One, with 13 citations. The 10th position is taken
by Environment International, with 10 citations (Figure 5).
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3.2.4. Are There Any Gender Biases in the Authorship?

A study on the number of women in research was also carried out. In fact, generally,
the women’s publication proportions are reduced with respect to the men, with the greatest
discrepancy at the highest ranks [63]. The author’s position in a scientific article is very
important; the most important positions are the first and the last. The first author is
generally a scientist who performed most of the work, while the last author is the project
leader or the supervisor.

Fifty-eight percent of the authors of the 22 articles that entered our database were
women. Women represented 80% of all first authors in our database. The analysis of the
latest authorships has also provided us with some preliminary conclusions regarding the
academic condition of women in organizations dealing with this type of study, representing
75% of the latest authors (Table 2). Our data suggested to us that women studying the
effects of microplastics on marine biota are well represented.

Table 2. Gender ratio among scientists working on the effects of MPs on marine biota.

Author Role F M % Females Reference

Last 6 4 60 [33]
First 6 5 55 [43]
Last 3 2 60 [44]

First and last 3 2 60 [39]
First and last 5 4 56 [45]
First and last 7 6 54 [46]
First and last 8 3 73 [8]

First 3 7 30 [47]
First 3 3 50 [48]
First 5 4 56 [49]
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Table 2. Cont.

Author Role F M % Females Reference

First and last 4 2 67 [50]
- 2 4 33 [51]
- 1 6 14 [52]

First and last 5 4 56 [53]
First 6 4 60 [54]

First and last 5 0 100 [55]
First and last 5 2 71 [56]

Last 6 1 86 [58]
Last 5 2 71 [59]

First and last 5 5 50 [57]
First and last 5 1 83 [61]
First and last 8 7 53 [60]

F: female; M: male.
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3.3. Effects of Microplastics
3.3.1. Effects on the Brain (Neurotoxicity)

The brain is a tissue that is often used to determine the neurotoxic effects of envi-
ronmental pollutants on marine organisms [34]. In this sense, neurotoxic effects were
associated with the ingestion of MPs. Previous studies, under experimental conditions,
evidenced the harmful effects of MPs ingestion in the brain of sea bass (Dicentrarchus labrax).
MPs caused neurotoxicity through acetylcholinesterase (AChE) inhibition and increased
lipid oxidation (LPO) [64].

The catalase (CAT), the superoxide dismutase (SOD), the glutathione-S-transferase
(GST), the acetylcholine esterase (AchE), and the malondialdehyde (MDA) were measured
in marine species that were naturally exposed to MPs’ ingestion (Table 1). Capó et al. [58]
reported an increase in CAT activity (in Mullus surmuletus and Boops boops), in SOD activity
(Boops boops and Engraulis enchrasicolus), and in GST activity (Boops Boops) as a consequence
of MPs’ uptake. The AChE activity showed no differences related to MPs’ ingestion, as
well as MDA levels (M. surmuletus and B. boops).

MPs’ contamination and effect biomarkers (brain acetylcholinesterase and lipid per-
oxidation) were evaluated by Barboza et al. [33] in wild Dicentrarchus labrax, Trachurus
trachurus, and Scomber colias. The authors found that specimens that ingested MPs showed
higher lipid peroxidation levels in the brain and increased brain acetylcholinesterase activity
than specimens in which no MPs were found.

It is known that increased LPO levels indicate lipid peroxidation damage. The high con-
centrations of LPO in the brain could induce the break of acetylcholine-containing vesicles,
resulting in increased neurotransmitters being released in the synaptic cleft [65]. Neuro-
toxicity by altered activity of acetylcholinesterase was also reported in Serranus scriba [43].
Finally, Hoyo-Alvarez et al. [34] reported that, in Sparus aurata specimens fed with MPs
and a pollutants-enriched diet, the activity of some of the oxidative stress biomarkers in-
creased; moreover, they showed the alterations in dopaminergic- and serotonergic-system
activities, highlighting the neuro-functional effects associated with the ingestion of MPs
and pollutants.

3.3.2. Effects on the Gills

The gills are one of the entry routes for microplastics into the organism [66]. During
breathing, MPs can passively enter the gill chambers of fish with the water flow and may
adhere to the gill filaments. MPs were found in the gills of several fish species [26,33,67].
Fibers, fragments, and pellets are the most reported shapes isolated from gill fish. Fibers
adhere easily to the gill filaments due to their physical properties [66].

Barboza et al. [33] found that the gills of the specimens that ingested MPs showed
higher LPO levels and a higher index of lipid peroxidation damage than the specimens
that were negative to MPs’ ingestion. Gill lipid peroxidation damage can lead to adverse
effects, including compromise of respiration and biotransformation of xenobiotics [68].
Histologically, no tissue damage was reported at the gill level [44] (see Table 1).

3.3.3. Effects on the Muscle

MPs were found in the muscle tissue of fish species [39]. Considering that fish muscle is
the part that is consumed by humans and that the presence of microplastics accumulated in
this part of the body could be dangerous for human health, Ferrante et al. [69] highlighted
the presence of MPs < 3µm in some seafood specimens (Sparus aurata, Solea solea, and
Mytilus galloprovincialis) from the south coast of the Mediterranean Sea.

Barboza et al. [33] investigated the MPs’ contamination and the biomarkers effect as
the total cholinesterase (ChE) and lipid peroxidation in wild Dicentrarchus labrax, Trachurus
trachurus, and Scomber colias. The results showed that no significant differences were found
in the ChE activity in muscles between fish that ingested MPs and others that had not
ingested MPs. Moreover, the authors found that specimens that ingested MPs showed
higher lipid peroxidation levels in the dorsal muscle than fish that had not ingested MPs.
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Lipid peroxidation in muscle may alter muscular and neuro-muscular functions,
resulting in an energy deficit, problems in coordination movements, and a decrease in
swimming performance [70]. Barboza et al. [33] found high lipid peroxidation in fish that
ingested MPs (see Table 1).

3.3.4. Effects on the Liver

The liver plays an important role in the detoxification processes of xenobiotics, and
consequently, this tissue is often used as an indicator of the degree of damage induced by
pollutants. In the laboratory, it was demonstrated that MPs can cross the intestinal barrier,
travel through the bloodstream, and reach the liver [71]. The bioaccumulation of MPs in
the liver was also demonstrated in naturally exposed animals, such as birds and fishes
(Gadus morhua, Serranus scriba, Engraulis encrasicolus, Sardina pilchardus, and Clupea harengus),
by chemical analysis (pyrolysis gas chromatography–mass spectrometry) and polarized
light microscopy [39,41]. The MPs’ accumulation was mainly in the blood vessels and the
surrounding area [43]. Until now, no specific histopathological lesions at the hepatic level
were found [39].

The toxic effects of MPs on Serranus scriba liver were recently evaluated by
Zitouni et al. [43]. The catalase and glutathione S-transferase activities and the malondi-
aldehyde content were monitored in sites with different anthropogenic impacts, as well
as the acetylcholinesterase activity (nervous system enzyme) and metallothionein con-
tent. Significant site-dependent cytotoxicity in relation to MPs’ ingestion was pointed
out [43]. Moreover, changes in malondialdehyde content were also observed, as well as the
presence of reactive oxygen species (ROS) expressed by the altered levels of catalase and
glutathione-S-transferase activities and in the content of metallothioneins (MTs).

The possible effect of the ingestion of MPs on the instauration of oxidative stress in the
liver of Seriola dumerili was recently studied by Solomando et al. [48]. Catalase, superoxide
dismutase, and glutathione S transferase showed increased activities in fish with a higher
load of MPs with respect to those specimens that presented fewer MPs; a linear relationship
between the number of MPs and the catalase and superoxide dismutase activities was also
reported. The EROD activity and malondialdehyde levels were similar in both groups.

The GST enzyme was widely used as a biomarker of the detoxification system [36].
Alomar et al. [50] reported a significant increase in GST activity also in a Mullus surmuletus
liver which had ingested MPs (see Table 1).

3.3.5. Effects on the Digestive System (Gut)

In fish, the inflammatory activation is upregulated by cytokines, which are used as
markers of inflammation [72]. The effect of MPs’ ingestion on the molecular signaling
underlying intestinal inflammation was evaluated in two important commercial fish species,
Mullus barbatus and Merluccius merluccius [51]. It was observed by the same authors that
MPs’ abundance was highly correlated to cytokines (i.e., interleukin-1β, interleukin 10,
and interferon). Moreover, CAT and SOD transcript levels suggested ROS generation and
infiltration of immune cells in the gut [51].

As concerns marine invertebrates, in Holoturia tubulosa, the effects of MPs, considering
a battery of biomarkers of oxidative stress (catalase, superoxide dismutase, glutathione
reductase, and glutathione S-transferase and reduces glutathione) and neurotoxicity (acetyl-
cholinesterase), were evaluated [49]. It was observed that the intestine of H. tubulosa from
the most polluted areas showed higher CAT, SOD, glutathione reductase (GRd), and glu-
tathione S-transferase (GST) activities and reduced glutathione (GSH) levels than those
from the control area. A positive correlation between the presence of MPs in the intestine
and CAT, GST, and GSH was found. Moreover, the levels of malondialdehyde presented
similar values in all areas, thus indicating that the induction of antioxidant defense mecha-
nisms had maintained the homeostasis of the organism and avoided oxidative damage. The
acetylcholinesterase activity presented similar values in all areas, indicating the absence
of neurotoxicity.
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The effect of MPs’ ingestion on the gut microbiota was recently evaluated in the log-
gerhead sea turtle (Caretta caretta) [54]. During the transit through the digestive system,
MPs can interact with the residing microbial community, with possible negative conse-
quences on the host’s health. Putative pathogens were found in fecal samples that were
characterized by high amounts of MPs. The hypothesis is that MPs can act as a carrier
for pathogens (bacteria) in marine organisms. Different phylotypes associated with high
levels of MPs were also identified (i.e., Cetobacterium somerae and other taxa), potentially
responding to plastic-associated chemicals (see Table 1).

3.3.6. Effects on the Endocrine System

On their surface, MPs can adsorb many chemical contaminants, such as antibiotics,
heavy metals, phthalates, dioxins, organochlorine contaminants (HCB, DDTs, and PCBs),
bisphenol A (BPA), and persistent organic pollutants (POPs) [73,74]. As reported by
de Sá et al. [75], MPs can act as a carrier of pollutants in the marine food web.

Almost all plastic products are carriers of endocrine-disrupting chemicals (EDCs) [76],
a wide range of substances, including pharmaceuticals, dioxin, and dioxin-like compounds;
polychlorinated biphenyls; DDT and other pesticides; and components of plastics, such
as BPA and phthalates. EDCs interfere with the body’s endocrine system by altering the
synthesis, secretion, transport, activity, and elimination of hormones. EDCs can alter fish
reproduction at various organizational levels. The adverse effect of plastic ingestion on
Trachurus trachurus health was evaluated by using the liver expression of vitellogenin (VTG)
as a biomarker for endocrine disruption [57]. The expression of VTG was observed in
the liver of male specimens. The authors considered VTG expression as an indicator of
xenoestrogen exposure that could be caused by the ingested plastics or by EDCs present in
seawater whose effects can be exacerbated by plastics (see Table 1).

3.3.7. Effects on Metabolism

One of the organs most affected by problems related to the metabolic alterations linked
to the MPs’ ingestion is the liver Chae et al. [77]. Some authors demonstrated that MPs’ ex-
posure causes metabolic disorders in experimental conditions [68,77]. Zitouni et al. [43] per-
formed an innovative metabolomic analysis on 36 metabolites in Serranus scriba liver. The
metabolites investigated, mainly involved in energy, amino acid, and osmolyte metabolism,
were significantly affected by the presence of MPs. On the contrary, Mancuso et al. [46],
analyzing the amino acids and fatty acids levels (eye and liver) in relation to the presence
of MPs in the GIT of Scyliorhinus canicula, did not find any effect or correlation between
MPs’ abundance and amino acids and fatty acid (see Table 1).

3.3.8. Genotoxicity

Zitouni et al. [43] estimated the potential genotoxicity associated with MPs uptake
in the liver of Serranus scriba. The mutagenic potential of MPs was evaluated by the
micronucleus test. Authors reported significant site-dependent genotoxicity by changes in
the amount of micronucleus (see Table 1).

3.3.9. Condition and Health Indicators

Condition factor and organo-somatic indices are general indicators of fish health status.
The relative condition factor (Kn) and Fulton’s condition factor (CF) are most used and are
based on the assumption that heavier fish of a given length are in better condition [78–81].
They are used in fishery science to assess the health status at a stock level, as well as
to evaluate the impact of parasites on marine organisms [82–84]. Monitoring the well-
being of fish could be very important in assessing the effects of MPs’ ingestion on marine
organisms. Measuring fish conditions may provide a simple way to evaluate the quality of
environmental conditions and their relationship with microplastic ingestion.

The influence of ingested MPs on the well-being of marine organisms was evaluated
in some studies, most of them regarding teleosts (Mullus barbatus, Gadus morhua, Limanda
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limanda, Platichthys flesus Clupea harengus, Scomber scombrus, Dicentrarchus labrax, Scomber
colias, Boops boops, Sardina pilchardus, and Engraulis encrasicolus), as well as elasmobranchs
(Scylhiorinus canicula) and crustacean decapods (Aristeus antennatus) (Table 1). Some studies
reported no direct effect of MPs’ ingestion on health status through using Fulton’s condi-
tion [33,44,45,52,53,56,59] or Kn [46,47]. Sbrana et al. [47] reported that individuals (Boops
boops) in worse physical condition ingested MPs more frequently than individuals in better
conditions (high values of Kn).

The same authors reported that the ingestions of MPs by fish living in worse environ-
mental conditions (low values of Kn) could reflect the level of environmental contamination.
Similarly, Compa et al. [55] reported, in Sardina pilchardus, higher levels of ingestion in fish
with the lower condition, while the highest condition factor was found in fish with low
levels of ingestion.

Carreras-Colom et al. [56] did not find negative effects; they only found a negative
correlation between the fiber load and the gonadosomatic and hepatosomatic index (GSI)
in Aristeus antennatus caught along the norther coast of Spain.

Rodríguez-Romeu et al. [44] evaluated the potential effect of anthropogenic (natural
and synthetic) fiber ingestion in Mullus barbatus, using health-status indicators (Table 1).
Hepatosomatic and gonadosomatic indices, Fulton’s body condition factor, and stomach-
fullness index (as a measure of feeding intensity) showed no differences related to MPs
ingestion levels (see Table 1).

4. Discussion

Although research on the effects caused by plastic ingestion has rapidly increased
in the last decade, most of these studies were carried out in experimental conditions.
These studies investigated the effects on feeding, reproduction, growth, development, and
lifespan, whereas few articles reported the effects of MPs in wild marine species. This is
mainly due to the difficulties in controlling or monitoring multiple environmental variables,
such as feeding history [85].

The laboratory experiments allow for the assessment of various acute and chronic
effects, even if they do not reproduce natural conditions. Most the experimental studies
expose organisms (mainly zebrafish and medaka) to one type of polymer of a specific
size (generally nanoplastics) and shape, but in the natural environment, organisms are
exposed to a mixture of polymers with different sizes and shapes. Moreover, the doses used
in experimental conditions greatly exceed the concentration found in naturally exposed
marine organisms. It is important to underline that marine MPs can carry toxic chemicals
on their surface. These toxins may cause further adverse effects on wild organisms.

Recently, some studies underlined the presence of natural and semisynthetic mi-
crofibers in wild marine organisms [86–89]. Although natural microfibers degrade faster
than synthetic polymers, these microfibers can persist in the marine environment for a lot of
time in relation to their nature and environmental factors [86]. Moreover, the degradation
of natural and semisynthetic fibers causes the release of toxics adsorbed (i.e., textile dyes) to
the surface into the environment [90,91]. In conclusion, the authors suggest paying more at-
tention to the detection of dyes in natural fibers since these are indicators of anthropogenic
processing and could cause biological damage.

The knowledge of adverse effects caused by direct ingestion of microplastics in wild
animals is still limited; more efforts are needed to fully understand the role of MPs in
marine ecosystems and their adverse effects on wild organisms.

Plastic pollution is a threat affecting marine ecosystems globally. The amount of
plastic in the natural environment is continuously increasing. To contrast this phenomenon,
multilevel mitigation strategies are being addressed for the reduction of plastic waste, the
improvement of waste management, and the recovery of polluted areas. Nevertheless,
huge efforts are needed to drastically reduce plastic emissions in aquatic ecosystems in an
acceptable temporal range. The entire global plastics economy should be transformed.
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