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Simple Summary: The choice of sensors for detecting animal behavior through wearable devices
has the greatest impact on the quality of the behavior learning process and the cost of production.
The present study evaluated, through a machine learning process, the most important features in
the detection and classification of sheep behavior, as well as the individual contribution of each
of the sensors included in the monitoring collar. The study showed that the gyroscope had a very
low contribution towards improving accuracy, despite its high production cost, and also shares
very similar characteristics with the accelerometer used in the collar. Conversely, the thermometer,
which was intended for other monitoring scenarios, proved to be essential in detecting some states,
especially the ones related to postures in which the animal tends to wrap the collar and thus increases
the temperature of the device. The final feature set provided by the thermometer and accelerometer
was considered a good basis for building an animal behavior monitoring system.

Abstract: Animal monitoring is a task traditionally performed by pastoralists, as a way of ensuring
the safety and well-being of animals; a tremendously arduous and lonely task, it requires long walks
and extended periods of contact with the animals. The Internet of Things and the possibility of
applying sensors to different kinds of devices, in particular the use of wearable sensors, has proven
not only to be less invasive to the animals, but also to have a low cost and to be quite efficient. The
present work analyses the most impactful monitored features in the behavior learning process and
their learning results. It especially addresses the impact of a gyroscope, which heavily influences the
cost of the collar. Based on the chosen set of sensors, a learning model is subsequently established, and
the learning outcomes are analyzed. Finally, the animal behavior prediction capability of the learning
model (which was based on the sensed data of adult animals) is additionally subjected and evaluated
in a scenario featuring younger animals. Results suggest that not only is it possible to accurately
classify these behaviors (with a balanced accuracy around 91%), but that removing the gyroscope can
be advantageous. Results additionally show a positive contribution of the thermometer in behavior
identification but evidences the need for further confirmation in future work, considering different
seasons of different years and scenarios including more diverse animals’ behavior.

Keywords: animal monitoring; wearable sensors; machine learning; behavior prediction

1. Introduction

Animal monitoring as a way of studying animal behavior has been receiving a huge
effort from academia and industry [1,2]. The objective is to study production processes and
conditions not only to improve welfare, but also to increase gains by optimizing operational
processes. Different kinds of sensor technologies, and the consequent transport of sensed
data for analysis and forecasting in line with the trend of the Internet of Things (IoT), are
being applied in the agricultural sector. In the case of animals, one of the technologies
that has been greatly developed is related to wearable sensors, due to their low cost,
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reduced impact on animal lives and because they allow animal behavior to be inferred.
For example, by using inertial sensors [2], it is possible to measure animal activity and
identify a set of behaviors such as eating, ruminating, walking or resting. From there, it is
possible to infer a large amount of information about animals, such as prostration due to
illness, heat, or even to measure resting periods. The information collected by this type of
sensors is typically transferred to computational infrastructures equipped with Machine
Learning (ML) algorithms, either in real-time or through opportunistic communication
means, with the data being analyzed and compared and predictions being made about its
future evolution.

However, forecasting and analysis depend on the ability to capture relevant informa-
tion regarding animal behavior, with such ability depending on the quality of the sensors
and even the way they are applied to animals. Inertial sensors [3,4], such as accelerometers,
magnetometers, or gyroscopes, can sense different physical quantities and are available
in a wide range of technologies, qualities, and prices. Regarding the latter, there is a
huge disparity in prices of inertial sensors, with values ranging from less than $1.5 for
accelerometers to nearly $7 for gyroscopes. Such details are of the utmost importance for
the development of a monitoring collar, making sensor selection decisions a complex task.
Under this setting, can it be claimed that the higher cost of the gyroscope is compensated
for by improving learning outcomes in a computational learning process?

The present work is part of the development of an animal monitoring collar and
reports on the evaluation of different inertial sensors’ ability to predict animal behavior.
The work includes an individual evaluation of each of the sensors in the accuracy of the
learning process, as well as in the complexity of the behavior classification algorithm, thus
allowing to base the choice of sensors on a cost-benefit analysis.

The remainder of this paper is organized as follows. Section 2 overviews the related
work regarding animal behavior monitoring techniques, especially the ones that use ma-
chine learning (ML) techniques. Section 3 describes the data gathering methodology and
ML process performed in the scope present work, and Section 4 presents the data analy-
sis and ML outcomes. Section 5 discusses the results and Section 6 concludes the paper,
presenting the most relevant conclusions and pointing out future work.

2. Related Work on Behavior Classification Based on ML

The use of animal sensing technologies with precision livestock farming systems [5],
integrated according to a typical architecture of the Internet of Things, has allowed the
collection of representative data from the most diverse aspects of animal life. After being fil-
tered, such data can be analyzed and important information related to animal activity [6,7],
health [8–10] and feeding [11] can be extracted, ultimately becoming a very useful tool for
improving the management efficiency in this area.

2.1. Animal Sensorization

Animal sensing based on wearable sensors has been used in numerous works [1,2], mostly
through devices placed on the neck [2] and operated by a microcontroller. Konka et al. [12]
studied the ability to detect ruminating and eating behavior in cows, comparing data from
a collar and a device on the jaw. Although it is accepted that the device in the jaw, also
with an accelerometer, can capture these behaviors more easily and with less noise, it is
emphasized that it is also possible to classify them using the collar with an accuracy of
over 90%. Giovanetti et al. [13] studied the detection of sheep grazing, rumination and
resting behaviors, obtaining an accuracy also above 90%, thus showing the ability to detect
behaviors of this kind with this type of device. Barwick et al. [14] studied the effectiveness
of different placements for accelerometers (collar, leg and ear tag) to classify sheep grazing,
standing and walking behaviors. They analyzed 14 features and correctly predicted 94%,
96% and 99% of grazing, standing and walking events, respectively, using ear acceleration
values. Balasso et al. [15] studied the placement of an accelerometer in the left paralumbar
fossa of cows, with high success in predicting postures (such as standing and lying down),
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but performing worse when predicting eating, walking, ruminating, and standing still
behaviors, achieving results below 80%. This success can be explained by, in these postures,
the animal continuing to move its head, which induces errors in other devices/models.
Analogously, behaviors that are mostly associated with head movements are not detected
by a device that aims to detect the position of the body.

Mansbridge et al. [16] compared the performance of collars and ear sensors with ac-
celerometers and gyroscopes to detect grazing and ruminating behaviors in sheep. Despite
the collar performance being superior, it was only by a relatively small margin, showing the
ability of sensors in the ear to capture movements in a similar way to collars. Considering
this, the fact that sensors in the ear are potentially more practical is highlighted, since
they can be integrated into animal identification earrings (ear tag). Another study, also
considering sheep [9], aimed to differentiate normal behavior from that of (simulated)
lame animals. Due to the forced difficulty in walking, the head movements become more
accentuated, allowing the respective accelerations to be captured more easily, evidencing
again the ability of these devices to allow the detection of the condition prematurely. In
the same study, performance with a collar (and a device on the leg) is compared to the ear
device, and it is noted that accentuated head movements are “damped” by the location
(neck), with more errors in the classification of behaviors with lameness. This resulted in a
better performance of the device in the ear, in relation to the others.

There is also reference to the simultaneous use of devices. In a particular case, the
use of a device on the leg synchronized with a collar is explored [17]. The study claims to
have achieved better accuracy values compared to other similar works. This is because,
regarding the postures and behaviors studied, the collar better reflects the movements of
the mandible when the animal (in this case cows) eats, while the device on the leg better
classifies lying down and walking, thus covering the “weaknesses” between the devices.
However, negative aspects are pointed out in this type of approach, since it implies more
costs in general, as well as other disadvantages, both for the animal and the handler [15].
This study highlights the evident difference in performance between animals that are used
to the use of both devices in relation to those that are not.

Over the last few years, the authors of the present paper have been focusing on the
development of an animal monitoring collar, first with the aim of conditioning postural
behavior and preventing the animals from feeding on leaves and grapes and thus being
able to thin out vines [18]. In this first version, in addition to an accelerometer, the collar
had a distance sensor using ultrasound in order to compensate for the slopes of the vines in
the accelerometer values, typical of the Douro region, Portugal. In tests conducted outside
this environment [19], the information provided by the distance sensor never proved to
be a relevant feature, justifying why it ended up being excluded from later versions of the
collar. Subsequently, the collar was used to analyze the nocturnal activity of the sheep [20],
as well as the goat kidding process [21], without using the data collected by the ultrasound
sensor [6].

While devices equipped with 3-axis accelerometers are the most used type of approach
in the context of animal monitoring, other alternatives can be of interest. As such, it is
important to point out the possibility of using other sensors to monitor the welfare of the
animals. Of these, it is possible to highlight heart rate and body temperature sensors (which
may indicate a health problem), as an indirect method that serves as an indicator for stress
and agitation levels [8]. Humidity detectors can be added to a sensory platform, as they
may play a role in influencing the behavior and metabolism of animals [22].

2.2. ML Techinques for Animal Behaviour Classification

ML [23] is a branch of the field of Artificial Intelligence (AI), which seeks to use data
and algorithms to imitate the way humans learn, gradually obtaining better results [24]. In
the scope of animal monitoring, it is often used in the context of supervised learning [2],
as it allows for the automation of this process. Here, algorithms are trained to predict
outcomes based on labeled data, trying to make a mapping between the input and output.
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As such, in a first stage, associated with the data collection based on sensors, a
process of direct observation is normally implied, either in person, or through video
recording, to carry out a subsequent labelling of data, based on the point in time a given
behavior occurred.

Considering that data based in wearable sensors is numerical by nature, one of the
most used algorithms are Decision Trees, or a more complex variation, Random Forests.
Decision Trees perform well with numerical data, which translates into favorable learning
capabilities. In addition, they are characterized by their legibility and simplicity, translating
into the fact that they are computationally less intensive, which is of extreme importance
when applied in microprocessors, adding to the fact that it allows to maximize the lifetime
of the battery supporting the device. These aspects are highlighted by Kamminga et al. [25]
as important criteria to be considered when selecting a ML algorithm for use in devices of
this nature.

3. Materials and Methods

The present study consisted of creating a new dataset by monitoring three animals
through a monitoring collar and the recording of video images. Specifically, it included a
supervised learning process where an ethogram with five behaviors was defined, (namely
Eating, Walking, Standing, Lying, and Ruminating). Through the recording and annotation
of video images, the learning process was carried out and the ML results were analyzed. The
most impactful features in the behavior learning process were analyzed (considering both
the scenarios of including and omitting gyroscope data), and the complexity of the decision
trees obtained was also assessed. Based on the chosen set of sensors, a learning model was
subsequently established and the learning outcomes were analyzed. Finally, considering
that the sensed data used for the learning model was based on adult animals, its behavior
prediction capability was analyzed in a scenario featuring animals of a younger age.

3.1. Animal Monitoring Platform

The monitoring platform developed by iFarmTec (http://ifarmtec.pt/produtos.html,
accessed on 19 December 2022), consists of a collar (Figure 1a) equipped with inertial sen-
sors, integrated via Bluetooth communication with an Android application (Figure 1b) that
centralizes the telemetry records and video images. Collar sensors include an InvenSense
ICM-2948 IMU that senses a 3-axis gyroscope, 3-axis accelerometer and 3-axis compass,
and its Nordic Semiconductor NRF52 includes a thermometer.
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Figure 1. Monitoring platform: (a) monitoring collar, (b) android app that gathers collar data and
video records animal behavior.

The learning firmware used in the experiments performs a 20 Hz sensor sampling and
streams monitoring information through Bluetooth Low Energy (BLE) notifications to a
BLE central Android application. It contains a set of sensors under evaluation, namely an
accelerometer, a gyroscope, a magnetometer, and a thermometer. Additionally, it includes
a Near Field Communications (NFC) sensor that acts as a power switch and allows the

http://ifarmtec.pt/produtos.html
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triggering of an NFC Peer-to-Peer (P2P) process that includes Bluetooth pairing between
the BLE peripheral (collar) and BLE central (Android application).

Thus, after establishing a connection between the mobile device and the device on the
animal, it was possible to use the application to both record video about the animal’s behav-
ior and receive synchronized data from the sensors. Both the video and the sensorial data
would then be stored in real time in separate files on the mobile device’s internal storage.

3.2. Monitored Animals and Monitoring Setup

Three animals were used in this study. The focus was on two adult female sheep
(Ovis aries) of the “Serra da Estrela” autochthonous breed, aged between 3–4 years and
2.5 years, respectively. The third animal consisted of a male lamb four months of age,
used to compare its behavior with the adults and to verify the generalizing ability of the
algorithms developed with adult data to predict younger animal behavior.

Considering that the adults were the focal point of the study, more data were collected
about the sheep than the lamb. As such, regarding the sheep, data retrieval happened dur-
ing five non-continuous days. Throughout the days, it became possible to get progressively
closer to the animals as their familiarity would increase, something that was also noticed in
other works [26,27].

Regarding the remaining days, they were not continuous as to allow for the transfer-
ring of the data from the mobile devices to a computer and for a posterior pre-analysis of
the data, looking to see the most predominant behaviors, at what time they occurred and
which ones were the least captured.

Considering the behaviors themselves, they can be synthesized in the ethogram
described in Table 1 and they include the following behaviors: Eating, Walking, Standing,
Lying, and Ruminating.

Table 1. Ethogram of captured behaviors.

State Description

E—Eating
Eating grass. Small steps and head movements while having the muzzle
down, natural from this process, still count for this classification. Chewing
with the head slightly up is still accounted for.

W—Walking Moving for a considerable amount of time, either at a slow or a fast pace.

S—Standing Stationary behavior. Neck movements to look around are accounted for.

L—Lying Lying down with head lowered or only slightly raised.

R—Ruminating
The act of regurgitating food from the stomach back into the mouth for
proper chewing. Can be done while standing or lying (but exclusive of
those behaviors)

Every recording took place in the afternoon, between June and July 2022, with the
first day starting at around 5 p.m. However, a lack in the variety of behaviors was noticed,
which lead to a successive delay on the start of the recording seasons on each of the next
days as to bypass the effect of the hot summer weather. Useful data were collected from the
two adult sheep over the span of four days. For this task, two mobile phones were used,
so that each collar/animal was assigned to a specific mobile device throughout the whole
gathering time. After each recording season those files were transferred to a computer for
further analysis and processing. This includes the merging of the Comma-Separated Values
(CSV) files of each animal into a single, unified one, for the day. Following this aggregation,
a labelling task was performed, to create a dataset fit for supervised learning.
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3.3. Pre-Processing and Data Cleaning

After having the data structured and having done a preemptive analysis, a cleaning
of that same data was necessary. This process can be divided into a set of smaller steps.
Duplicates were removed based on the timestamp that originated on the collar. Since no
time value should be repeated (and have an increment of about 1/20 s from the previous
entry), when this condition was not met the value on the features were also the same,
further validating this condition for removal. Outliers were removed as well during data
cleaning to avoid problems in statistical procedures, easing the machine learning processes.
Due to data cleaning, the initial 459,750 obtained entries were reduced to 446,043 (an
approximate 3% reduction).

The set of features available in the dataset, resumed in Table 2, included the acceler-
ation values along the x/y/z axis, the gyroscopic values along the x/y/z axis, the dynamic
acceleration value along the x/y/z axis [7], and pitch and roll angles.

Table 2. Feature description.

Feature Description

Acc(x, y, z) Acceleration value along the x/y/z axis
Gyr(x, y, z) Gyroscopic value along the x/y/z axis
D_Acc(x, y, z) Dynamic acceleration value along the x/y/z axis
TMP Temperature measured at microprocessor board
Roll/Pitch Roll/Pitch angles

Considering the resulting (adult) dataset, a split of 75/25 was taken for training and
testing, respectively. Moreover, the split was performed under a stratified strategy, so that
the splitting of data was proportional to class distribution.

3.4. Algorithm Choice and Model Evalutation

Considering the advantages of Decision Trees, it was the algorithm of choice for the
learning task. Therefore, the depth of the tree determines the ability to specify through
sub-conditions the features’ values that represent each class to be learned, and therefore
increasing the tree depth increases the accuracy of the learning process. Consequently, the
increase in depth leads to an exponential increase in the number of leaves, which has a
strong impact on the code to be implemented in the classifier, with a special expression in
microprocessor-implemented classifiers used on wearable devices.

Regarding the way in which model performance is evaluated, accuracy is often used.
Notwithstanding, animal behavior is naturally erratic, which causes an imbalance in class
distribution. For this reason, Balanced Accuracy can be used, as it accounts for different
class distribution. An extremely useful tool in the analysis of supervised learning outcomes
is the confusion matrix, which represents in each row the instances in an actual class, while
each column represents the instances in a predicted class, or vice versa. A high number of
errors in the prediction between two classes is typically due to the similarity of the classes’
characteristics, to a poor sensing process, or even to the lack of sample representativeness
of a class in the dataset used in the learning process. Additionally, other metrics allow
to confer the performance of each behavior individually, namely Precision and Recall. In
this context, Precision shows how much a model can be trusted when predicting a given
behavior, while Recall expresses the capability of a model to find all the entries of a given
behavior. In addition, F1-Score was also used, as it can be interpreted as the weighted
average between Precision and Recall.

4. Results

To find a model capable of predicting animal behavior, two main metrics were used
to evaluate the performance of the developed models: (i) the balanced accuracy; since
the dataset was not balanced, this variation of accuracy was employed, as it accounts for
different class distribution and measures how much a model correctly predicts the entire
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dataset; and (ii) the number of leaves was primarily used to compare the complexity of
different models. In other words, the bigger this number is, the more complex a tree usually
is. Note that unless stated otherwise, the results shown refer to the testing set.

The effect of a decision tree’s (maximum) depth was one of the parameters analyzed.
Figure 2 graphically highlights the results obtained from this experiment.
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Observing the graphic related to balanced accuracy (Figure 2a), it is possible to see
how the model’s performance tends to rise with the tree depth increase. Notwithstanding,
after a certain depth, testing accuracy growth stops following the growth of the training
set, indication of overfit. Regarding the number of leaves (Figure 2b), it is possible to see an
exponential growth based on the tree’s depth.

While other hyperparameters were experimented with, the results were not considered
relevant or conclusive to be considered in the scope of this paper. Notwithstanding,
considering the tests performed and the set of all the features, an initial best model was
reached, whose learning results can be consulted in Table 3, along with a confusion matrix
illustrated in Figure 3.

Table 3. Performance of best model (AllFeatures).

Parameter Value

Balanced training accuracy 0.919
Balanced testing accuracy 0.912
Leaves 448
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Attending to Table 3, it is possible to verify that both the values of training and testing
accuracy are around 92%, meaning the model could accurately predict most classes. This
value was in line with similar works and therefore is highlighted positively. Moreover,
it is important to note how the number of leaves (448) is significantly lower than the
numbers obtained during the study of depth influence (Figure 2, right), where no tuning
was performed, highlighting the improvement of this model.

The analysis of the confusion matrix shows two problems, both related to the small
sample size. First, there was a huge deficit of W-classified samples, which typically has a
consequent learning deficit for the W behavior. Second, the model often confused the E
behavior with S and W behavior. The later problem had to do with the dynamic similarities
existing between the states and can be mitigated through the extension of the monitoring
period. The model served as a baseline for the following experiments, in which the effect of
features/sensors was considered.

To determine which features were more impactful for predicting the behaviors, the
contribution of each feature for the model was also assessed based on the effect that each
feature had on the model’s prediction, e.g., how much each feature was used on the tree, and
its results are described in Table 4. Moreover, the closer to the root a given feature/split is,
the more important it is, since it has an influence on the splitting of a larger amount of data.
Its analysis allows us to perceive that the most important feature is the Temperature (TMP),
followed by Acc(x) and Pitch. Considering the high correlation between the pitch and the
acceleration values, the enormous impact of the features provided by the accelerometer for
the accuracy of the developed learning process was recognized.

Table 4. Feature importance of the best model.

Feature Value

TMP 0.270
Acc(x) 0.191
Pitch 0.184
D_Acc(x) 0.176
D_Acc(y) 0.055
Roll 0.038
D_Acc(z) 0.031
Acc(y) 0.020
Gyr(y) 0.013
Acc(z) 0.010
Gyr(z) 0.008
Gyr(x) 0.003

To assess the impact each sensor had on the performance of the models, a specific
study was later carried out. As such, different models were trained based on distinct feature
sets. Considering the previous results, the accelerometer was taken as base model, and a
separation was defined within the features of this sensor. The first subset, StaticAccFea-
tures, consists solely of the features directly extracted from the sensor, i.e., the values of
acceleration on each of the three axes (x, y, z). The second subset, AccFeatures, in addi-
tion to the former, also contains the values of dynamic acceleration for each axis. Finally,
InertFeatures contains not only the features of the previous subset, but also the values of
Pitch and Roll. These two features can be calculated indirectly, based on trigonometric
calculations over the values of the accelerations. Hereupon, each of these subsets translates
into additional overhead that can happen on a microcontroller, so trying to minimize the
number of calculated features may prove beneficial for a device’s performance. Table 5.
summarizes each of the feature subsets.
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Table 5. Feature set used.

Feature Set Description

StaticAccFeatures Acc(x, y, z)
AccFeatures Acc(x, y, z) + D_Acc(x, y, z)
InertFeatures Acc(x, y, z) + D_Acc(x, y, z) + Pitch and Roll
InertFeatures + TMP Acc(x, y, z) + D_Acc(x, y, z) + Pitch and Roll + Thermometer
AllFeatures Acc(x, y, z) + D_Acc(x, y, z) + Pitch and Roll + Thermometer + Gyro(x, y, z)

The performance of each set of features was then evaluated, based on two metrics: the
balanced accuracy and the tree complexity associated with the increase of the tree depth.
The first one measured the balanced accuracies of each model, and the results are illustrated
in Figure 4. It is important to highlight that AllFeatures corresponds to the set of all the
features, while “Thermometer Contribution” and “Gyro Contribution” reveal the difference
in performance based on the impact each sensor has on the models without it.
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By observing Figure 4, it is possible to conclude that specific increments in the features
are beneficial to the performance of the models. In other words, while there is an increment
in balanced accuracy from the StaticAccFeatures model to the AccFeatures and InertFeatures
models, the difference between the latter two is negligible, suggesting that Pitch and Roll do
not add value to the learning process. Likewise, the model InertFeatures + TMP performs
similarly to the one with AllFeatures, indicating that Temperature plays an important role
in the performance of the model, in contrast to Gyroscopic features (the difference between
these two models).

The second metric analyzed was the complexity of the tree, based on the number of
leaves. The results are shown in Figure 5, which allows a differentiation between the models
based on complexity. Here, it is important to mention how every subset of acceleration
models (StaticAccFeatures/AccFeatures/InertFeatures) presents a similar number of leaves.

The contribution of each of the sensors to the learning process could thus be isolated,
which, together with the cost of each of them, allows an informed decision regarding the
most appropriate implementation of the collar. Table 6 synthetizes the results obtained for
the best performing model as a function of each removed sensor, along with the financial
impact of each choice, compared to the model with all the sensors.

Comparing the results of Table 6, the benefit of removing the Gyroscope can be
highlighted considering multiple aspects. Albeit by a small margin, there is a slight
improvement in the testing balanced accuracy, and a reduction in the number of leaves
comparatively to the AllFeatures model. Additionally, this sensor is relatively expensive
compared to the others.
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Table 6. Balanced accuracies by sensor.

Removed Sensor BAcc Training BAcc Testing Leaves Saving

All sensors present (AllFeatures) 0.919 0.912 448 —
No accelerometer (no InertFeatures) −0.014 −0.010 −114 $1.6
No gyroscope (InertFeatures + TMP) 0.000 +0.003 −27 $7–1.6
No thermometer 0.038 −0.037 −34 $0
No angular features (Pitch and Roll) −0.000 +0.001 −48 $0

Based on the analysis of the cost and benefit of each of the sensor sets, it was decided to
remove the gyroscope and to ignore the contribution of the associated features (Gyr(x, y, z))
to the learning outcome. Table 7 summarizes the learning metrics, and Figure 6 defines the
confusion matrix obtained.

Table 7. Scores of best model (InertFeatures + TMP).

Metric Precision Recall F1 Score Support

E 0.88 0.86 0.87 27,398
L 0.96 0.98 0.97 26,533
R 0.96 0.97 0.97 18,444
S 0.91 0.84 0.87 29,639
W 0.75 0.92 0.83 9388
Average 0.89 0.91 0.90 111,402
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Note that the Support (as shown in Tables 6 and 7) refers to the number of data entries
of the respective state, and it illustrates how each state was represented in the testing set.

Another hypothesis tested by this study was the capability of a simple model to predict
the behaviors of an animal of the same species but in an early development phase, namely, a
growing lamb. The testing set consisted of the whole lamb’s dataset, as it was considerably
smaller than the adult’s counterpart. As such, the InertFeatures + TMP model was used
and a balanced accuracy of 0.57 was obtained. Table 8 and the confusion matrix illustrated
in Figure 7 show the calculated results.

Table 8. Scores of best model (InertFeatures + TMP) against Lamb.

Metric Precision Recall F1 Score Support

E 0.90 0.90 0.90 25,979
L 0.98 0.35 0.52 7092
R 0.00 0.00 0.00 0
S 0.22 0.30 0.25 3322
W 0.60 0.73 0.66 6196
Average 0.54 0.46 0.47 42,589
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Figure 7. Performance of Best Model (InertFeatures + TMP) against Lamb. The different cell colors
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is represented.

Here, it is relevant to draw attention to the fact that, while the overall performance
of the model was sub-optimal, some behaviors performed significantly better than others.
Specifically, E has a solid metric of both precision and recall, resulting in an equally good
f1-score. State L, on the other hand, when classified, had a tremendous performance, nearly
being perfectly classified (due to a precision of 0.98), even though the model failed to find
most of L state entries, as shown by its low recall.

5. Discussion

The analysis of the most impactful features in the learning process allowed us to
perceive that features associated with the accelerometer were dominant, both in terms of
linear accelerations (i.e., Acc(x, y, z)) and the features dependent on them (i.e., Pitch, Roll).
Regarding the temperature, although the inclusion of the thermometer was not motivated
by its importance in behavior detection, the results obtained suggest that this feature has
an important role in improving predictive power. It was a surprising and interesting
result, with a possible explanation having to do with the greater transfer of heat to the
thermometer when the animal lies down, which helps to identify this behavior.

The analysis of the model’s performance illustrated in Figure 2, with the increase of
tree depth, revealed an important point: the depth increase influences the balanced accuracy
of the model, since as the value of depth increases, so does the predictive capacity of the tree.
However, this growth was neither linear nor indefinitely beneficial. Upon reaching a certain
point, the testing accuracy stops following the training growth, indicating that the tree
starts to overfit. Moreover, the number of leaves (a measure of tree complexity) expands
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exponentially based on the tree’s depth. This value was of particular importance for two
reasons. On the one hand, it is an indicator of the computational demand that the model
has on the classification algorithm processor, which, in this case, is a microprocessor with
reduced processing capability and memory capacity, in order to keep both the production
costs and energy consumption low. On the other hand, while an increment of this value
might be beneficial for a model’s overall performance, if unchecked it can result in a
situation of “diminishing returns” in which the increase in accuracy stops following the
increase in complexity. A high number of leaves can be an indicator of how specific the
tree is getting towards data, e.g., whether it the model is getting high variance or not. This
exponential growth is expected to stop after a certain depth, as nodes start to get pure, i.e.,
leaves begin to contain data from a single class only, putting branch growth on hold.

The analysis of the contribution of each of the sensors to the global performance of
the learning process allowed us to identify a huge impact of the accelerometer data on
learning, both due to the linear acceleration features it provides and the derived features.
Moreover, while the models with AllFeatures and InertFeatures + TMP presented a similar
value of balanced accuracy (Table 6), it is possible to see how the exclusion of gyroscopic
features is beneficial, with a small increment in the balanced accuracy of around 0.3%.
While this increment might appear negligible, it is important to attend to the fact that it
also translated into a reduction of 27 leaves, suggesting that gyroscopic features not only
are non-informative but also add noise to the model, and with that noise, unnecessary
complexity. It was also possible to verify a slight contribution provided by the thermometer,
almost consistent, regardless of the depth of the decision tree (Figure 6). In contrast with
the results obtained for the thermometer, the gyroscopic-related features were ranked very
low in the feature ranking phase. Thus, the gyroscope appeared as a sensor capable of
being removed without negatively impacting the model. Furthermore, when considering
the sensor cost, another reason arises to justify its removal.

The evaluation of the learning results obtained without resorting to the gyroscope
made it possible to consider the feasibility of creating an automatic behavior classification
mechanism, even though some of the behaviors are still classified with very low accuracies.
Since the present work is still exploratory and has the concrete objective of evaluating the
set of necessary sensors, the set of monitored animals was very low, and the monitoring
period was very short. Therefore, the number of samples related to states is very small and
little representative of the diversity of animal anatomy and behavior, which translates into
a low capacity to learn these states. Once the hardware with the sensors determined in
this work has been produced, a new learning process will have to be conducted with more
animals, of different breeds and during different times of the year.

Regarding the prediction of a lamb’s behavior based on the training of an adult’s
dataset, results suggest that such a task is not possible. With a balanced accuracy of 57%,
the model cannot accurately predict the range of behaviors the lamb displays. Still, it is
important to highlight how Eating performs noticeably well, based on the confusion matrix
of Figure 7. This might be justified by the fact that the posture taken by the lamb during
this behavior is very identical to the sheep. Likewise, the model has a lot of confidence
classifying Lying, possibly for the same reasons, although it fails at finding all Lying entries.
This poor performance, as well as the performance of the remaining behaviors, might be
justified by the fact that the young animal is more active and its movement more dynamic
compared to the adult counterparts, something typical of the animal’s youth.

6. Conclusions

Autonomous monitoring presents itself as an answer to many issues, with many bene-
fits but also several disadvantages. Selecting which kind of sensors to use and techniques
to employ dictates the costs of producing a system for this problem, how much gain will be
obtained from its employment, and how hard it would be to maintain such a system.

In the present study, the impact of a set of sensors on the detection of animal behavior
through a supervised learning process was evaluated and the most impactful features
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present in the dataset in the learning process were identified. Results confirmed the
importance of the features provided by the accelerometer for the accuracy of the learning
process and indicated an interesting impact of the data provided by the thermometer on
the learning outcomes. Conversely, the data provided by the gyroscope in the learning
process did not improve the learning outcomes, having proved to be a redundant source
of information to the information provided by the accelerometer, and the removal of the
gyroscope ends up being beneficial, albeit by a small margin. This conclusion is of particular
importance since gyroscopes are expensive, and the possibility of removing this sensor
without affecting the performance significantly is valuable.

This work was subject to limitations that future iterations should consider and over-
come. A small set of sheep was evaluated. With only two (adult) sheep available to be
evaluated and compared, the results are limited. Thus, conclusions about the power to
generalize to other animals (within the same growing phase or not) are also limited. For
this type of experiment, a larger number of animals would confer higher certainty on the
results obtained. Similarly, a larger diversity of data from lambs would confirm that their
behaviors cannot be predicted with models trained for adults. A future line of work that
should be followed is the comparison of activity dynamism and behavior between animals
of different age groups.

Further studying the temperature could be valuable. The scope in which this feature
was experimented was limited, due to harsh logistics and necessary work. Thus, data was
retrieved during the summer season, in the afternoon. Extending the observation period
to a whole day could be advantageous to seek the collection of a more diverse set of data.
Likewise, expanding this gathering to a longer period could be advantageous to observe
the variation and influence of temperature throughout the year. Additionally, other factors,
such as the climate and animals in heat, could be considered. With that, some mechanism to
normalize temperature as a function of the time of the year could be necessary, to improve
generalizing power.
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