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Simple Summary: Soil alterations may negatively affect the health of animals living inside these
soils, but these negative effects are often unexplored and remain “hidden” underground. This
study examines the validity of a non-invasive technique to quantify glucocorticoid levels of the
amphisbaenian Trogonophis wiegmanni, a fossorial burrowing reptile. Quantification of corticosterone
metabolites was made from fresh fecal samples using an enzyme immunoassay kit. An experimental
external supplementation of corticosterone to a group of amphisbaenians was detected in their feces
as an increase in their fecal glucocorticoid metabolite levels, confirming that this treatment can be
used to induce physiological increases of this hormone in these animals. We also quantified baseline
fecal glucocorticoid metabolite levels in a field population of this amphisbaenian using this technique.
Results showed that although there were no differences between sexes, sizes, or seasons, there was a
high interindividual variation, which may allow using this measurement and technique to examine
in detail the environmental causes that may produce this variation.

Abstract: To understand wildlife responses to the changing environment, it is useful to examine
their physiological responses and particularly their endocrine status. Here, we validated an enzyme
immunoassay (EIA) to non-invasively quantify fecal corticosterone metabolites (FCM) in the fossorial
amphisbaenian reptile Trogonophis wiegmanni from North Africa. We supplemented animals assigned
to the treatment group with corticosterone dissolved in oil applied non-invasively on the skin for
several days, while control groups received the oil-alone solution. Fresh feces were collected at the
end of the supplementation period, and FCM levels were quantified by an EIA. Basal FCM levels
were similar for both treatments and increased at the end of the test, but FCM increased significantly
more in corticosterone-treated animals. A further examination of FCM levels in a wild population
of this amphisbaenian did not find overall sexual, size or seasonal differences but showed a high
range of variation among individuals. This suggests that different uncontrolled intrinsic or local
environmental variables might increase the circulating glucocorticoid levels of different individuals.
Our results confirmed the suitability of EIA for analyzing physiological changes in FCM in this
amphisbaenian species. This technique may be useful for understanding and remediating the little-
explored potential stressors of the soil environment that may negatively affect the health state of
fossorial reptiles.

Keywords: amphisbaenian; endocrine activity; enzyme immunoassay; fecal corticosterone metabolites;
non-invasive monitoring; reptiles; Trogonophis
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1. Introduction

Understanding the causal mechanisms underlying conservation problems, such as the
health state and decline of populations derived from global change, is needed to manage
and confront these threats adequately. In this context, it is important to study the phys-
iological responses of organisms in free-living populations to understand how animals
are affected by perturbations of the environment and whether they can maintain stability
(homeostasis), decreasing negative impacts on fitness, despite rapidly changing environ-
mental conditions [1–3]. Some physiological indicators and techniques are being used
more frequently nowadays because they can allow a rapid assessment of the causes of
conservation problems, as well as suggest conservation actions and assess their effective-
ness [3]. Physiological stress is one of the health indicators that have been considered for
this purpose, as it may reflect the responses of animals to changes in the environment [2,4].
Glucocorticoids (GC) levels have been used as physiological indicators in several studies
of many vertebrate species, e.g., [5,6]. Particularly in wildlife studies, a non-invasive ana-
lytical technique has emerged that consists of quantifying GC levels through the residual
metabolites of GCs found in fresh feces [7–9]. This measure correlates with measures of
free GCs in plasma [10] and avoids harmful invasive sampling techniques.

Alterations expected from the global change could have particularly strong negative
consequences for the soil and underground environment [11,12]. In addition to climate
change, which directly affects soil temperature and humidity, there could be impacts
derived from, for example, soil pollution by fertilizers or heavy metals and soil degradation
(e.g., compaction, salinization, or erosion) [12]. These soil disturbances will strongly and
directly affect the health state of soil biodiversity, e.g., [12–16]. However, these negative
impacts have been scarcely studied and may remain “hidden” underground, resulting in
a bad but unnoticed conservation state of populations. This is because the importance of
soil biodiversity as a key factor in regulating the functioning of terrestrial ecosystems is
often not appreciated [12,17], and little concern about the conservation of fossorial animals
is evident [18].

Amphisbaenians are among the more notable fossorial reptiles, but they have been un-
derstudied because they spend their life buried underground, being a little conspicuous and
difficult to study [19,20]. Amphisbaenians are morphologically and functionally adapted
to a strict fossorial life, showing reduced vision and limb loss [19–21], which affect many
aspects of their ecology, e.g., [22–24]. Fossorial reptiles may face different conservation
threats than epigeal ones [18]. For example, amphisbaenians must be especially affected
by small-scale local soil alterations, as they spend all their lives underground, and their
mobility is restricted to small home ranges [15,25,26]. However, only a few studies have
examined the potential impact of soil disturbances on fossorial reptiles [17,18], and the
consequences for the conservation of their populations are, therefore, not well understood.
Analyzing the physiological health state and particularly the variations in GC levels of free-
living populations of fossorial animals in response to soil alterations and other potential
stressors may contribute to their management and conservation.

Here, we validated a technique to quantify GC levels of the Northwest African check-
board amphisbaenian Trogonophis wiegmanni. The main purpose was to optimize and
validate the suitability of an enzyme immunoassay (EIA) for non-invasively quantifying
fecal corticosterone metabolites (FCM). We first made a controlled experiment using an
external supplementation of corticosterone and examined whether supplemented individu-
als increased FCM levels more than control ones. Then, we used the validated assay for a
preliminary exploration of seasonal, sex, and size-related differences in FCM levels in the
field in an island population of this amphisbaenian.

2. Materials and Methods
2.1. Study Area

We performed fieldwork at the Chafarinas Islands (Spain) (Figure 1a). These islands
are located in the Mediterranean Sea (35◦11′ N, 02◦25′ W), close to the North African
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coast (Ras el Ma, Morocco). The archipelago has three small islands: Isabel II (15.1 ha),
Congreso (25.6 ha), and Rey Francisco (13.9 ha), which have restricted access. Soils are
poorly developed and immature [27]. The vegetation, dominated by woody bushes (Salsola,
Suaeda, Lycium, and Atriplex), is adapted to soil salinity and drought conditions resulting
from an arid and warm Mediterranean climate [28].
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Figure 1. (a) Typical habitat of Isabel II Island (Chafarinas Islands) where T wiegmanni amphisbaenians
were studied, with Rey Island in the background; (b) an adult T wiegmanni amphisbaenian as it was
found under a stone.

2.2. Study Animals and Sampling Procedures

The amphisbaenian T. wiegmanni (Figure 1b) is found in North Africa, from Morocco
to northeast Tunisia [29]. Like in other amphisbaenians, the knowledge of its ecology
is limited, but this is likely one of the amphisbaenian species with more information on
several aspects of its ecology and behavior, e.g., [15,16,25,26,30–34]. The conservation
state of this species was considered by the IUCN as of “Least Concern” [35], but more
information is required, and its actual conservation problems are unknown.

We made two field campaigns at the Chafarinas Islands in early autumn (September-
October) of 2019 and spring (March) of 2020, spending two weeks in each campaign
conducting fieldwork. Every day (between 07:00 and 18:00 h GMT), we lifted rocks to
search for amphisbaenians that were found under them, and we captured live animals
by hand. Amphisbaenians usually defecated most gastrointestinal content while being
handled as an anti-predatory response. Thus, we made use of this behavior commonly
exhibited upon handling (convenience sampling) to collect fresh fecal samples, but on
some occasions, we also forced the expulsion of feces by gently massaging the bellies. If an
individual did not defecate in a few seconds, we released it without taking samples. We
stored the feces of each individual in an Eppendorf vial. Samples were maintained cold
inside a portable refrigerator during fieldwork and later stored at −20 ◦C in a freezer.

The total body ‘length’ of amphisbaenians (from the tip of the snout to the tip of the
tail) was measured (to the nearest 1 mm) using a metallic ruler. We also used a digital
scale to weigh (to the nearest 0.01 g) the body ‘mass’ of animals after extracting their fecal
samples to avoid confounding effects of fecal mass on body mass. A ‘body condition
index’ was calculated as the residuals of the least squares linear regression between body
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mass and total length (both log10-transformed) (linear regression, r = 0.86, F1,177 = 505.59,
p < 0.0001). This index is considered a proxy of the health state in many animals because
the residuals allow for the separation of the condition effects from those of body size [36,37].
We determined the sex of each individual by examining the presence of hemipenes in the
cloacae [30,38]. Thereafter, we released amphisbaenians at their exact point of capture less
than 5 min after finding them. However, 24 individuals were maintained temporarily in
captivity for a corticosterone supplementation experiment (see below) and released 12 days
after capturing with good health and without observing any loss of body condition in
any individual.

2.3. Biological Validation

This experiment was conducted in March 2020. Before the experiment, 24 adult
amphisbaenians of similar body size were captured on Isabel Island and immediately
taken to the nearby Chafarinas Biological Field Station, located on the same island less
than 100 m from the capture sites. Amphisbaenians were maintained for 24 h before and
during the experiment in individual cages (25 × 15 cm) with a thin sand substrate from the
study area. During the experiment, the amphisbaenians were fed insect larvae and snails
collected in the same area [32]. Water was provided daily with a water spray. Cages were
placed in a laboratory room with large open doors so that the ambient temperature and
the photoperiod were similar to those of the surrounding habitat where the animals had
been captured.

We experimentally increased circulating corticosterone (CORT) levels of amphisbaeni-
ans using a non-invasive method. For 12 days, 12 individuals (6 females, 6 males) randomly
assigned were daily supplemented with 5 µL of a solution of 2 µg corticosterone (≥92%,
C2505, Sigma Aldrich, Saint Louis, MO, USA) dissolved in 6 mL of soybean oil (430005,
Sigma-Aldrich) applied with a pipette on the dorsum (CORT treatment), while the other
12 individuals (6 females, 6 males) were supplemented with soybean oil alone (Control
treatment). High concentrations of lipids in reptiles’ skin make lipophilic molecules to
be quickly absorbed into the bloodstream [39]. This procedure has been proven effective
in increasing corticosterone levels in the blood of several species of lizards [39–41] and
snakes [42]. In order to avoid potential bias due to the time of the day’s influence on
metabolism and excretion of GC [43], all animals received the CORT or control treatment at
the same time (between 9:00 h and 10:00 h local time). Cages of experimental and control
individuals were spatially mixed and maintained under the same conditions. We collected
fecal samples (see above) of control and CORT-supplemented amphisbaenians just before
the experiment began and the day after (12 h after) the supplementation process had ended.
However, at the end of the experiment, we could only collect enough amounts of fecal
samples that were useful for analyses from 19 individuals (9 control and 10 experimental).

2.4. Measurement of Fecal Corticosterone Metabolites (FCM)

Frozen fecal samples were sent from the field inside portable freezers for analyses
at the Ethology and Endocrinology Lab (Madrid Autonomous University) of Madrid,
maintaining the cold chain from collection to analyses to avoid the effects of different
storage temperatures on GC levels [44,45]. In the lab, all samples were stored frozen at
−20 ◦C for less than one month since collection to analyze to avoid the effects of storage
time on FCM levels [7].

To extract FCM in the feces of amphisbaenians, we first pulverized and dried the
frozen fecal samples in an oven at 90 ◦C for 4 h. Then, 0.05 g of each dry sample was
placed into an Eppendorf tube, where we added 500 µL of phosphate buffer saline (PBS)
and 500 µL of 100% methanol. To homogenize the sample and the solvents, we agitated
tubes using first a vortex shaker and later an orbital shaker, where tubes were kept for 16 h.
The extract obtained was centrifuged at 2500× g rpm for 15 min, and the supernatant was
transferred to polyurethane tubes (suitable for hormone preservation) that were kept at
−20 ◦C until being quantified. Less than a week after extraction, we used a commercial
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EIA kit (D-24145; Demeditec Diagnostics GmbH, Kiel, Germany) for the quantification of
FCM in fecal extracts. The quantification of FCM levels (in ng/mL dry excrement) in the
fecal extracts was done using a spectrophotometer (Microplate Reader, MR 600; Dynatech
Industries Pvt. Ltd., Bangalore, India). We processed fecal samples in random order and
made duplicated analyses of the fecal extracts.

We calculated the parallelism, accuracy, and precision tests to validate the EIA tests
used. We compared serial dilutions (1:16, 1:8, 1:4, 1:2, 1:1) of pooled fecal extracts with
the standard curve provided by the manufacturer to calculate the parallel displacement
curves (R2 = 0.94, p > 0.05). The high accuracy of the recovery of corticosterone (above
90%) showed that the fecal extracts did not have compounds that could interfere with
the quantification. The precision of the quantification was also high, as showed by the
low intra- (9.6%) and inter-assay (11.9%) coefficients of variation for fecal samples. The
sensitivity of the assay for corticosterone metabolites was greater than 4.1 ng/mL.

2.5. Statistical Analyses of Data

To analyze the effects of the corticosterone supplementation experiment, we used
a General Lineal Model (GLM) to estimate whether individual log10 transformed FCM
levels of amphisbaenians, as the response variable, changed from the beginning to the
end of the experiment (‘time’ effect as a repeated measures factor that considers within
individual variation), depending on their ‘treatment’ (Control vs. CORT) and ‘sex’ (male
vs. female), both as categorical fixed factors and including the interactions between factors
in the model.

To test for differences in FCM levels of amphisbaenians observed in the field, we used a
GLM to estimate whether individual log10 transformed FCM levels, as the response variable,
differed depending on the ‘sex’ of the individual or the ‘season’ (spring vs. autumn) when
it was sampled (both as fixed factors), and included the log10 transformed body ‘length’
as a continuous covariate. We also included all two-way and three-way interactions in
the model.

We ensured that residuals of the models fulfilled the assumptions of normality and ho-
moscedasticity (using Shapiro–Wilk’s and Levene’s tests, respectively). Statistical analyses
were made with the Statistica 8.0 software (StatSoft Inc., Tulsa, OK, USA).

3. Results
3.1. Biological Validation

Individual overall FCM levels of amphisbaenians did not significantly differ between
treatments or sexes, but FCM levels increased significantly from the beginning to the end of
the experiment (‘time’ effect), and the significant interaction between ‘time’ and ‘treatment’
indicated that CORT treated individuals increased more their FCM levels with time than
control individuals (Table 1; Figure 2). Thus, while control and CORT individuals did not
significantly differ in their initial FCM levels (Tukey’s test, p = 0.98), both groups increased
their initial FCM levels with time (Tukey’s tests, Control, p = 0.048; CORT, p < 0.0002), but
at the end of the treatment, CORT individuals had significantly higher FCM levels than
control ones (Tukey’s test, p = 0.028). Thus, all individuals had increased their FCM levels at
the end of the experiment, but while in control individuals, their final raw FCM levels were,
on average, 13 times higher than the initial ones. In CORT individuals, final FCM levels
were 327 times higher than initial levels. The sex of the amphisbaenian did not significantly
affect this effect of the CORT treatment.
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Table 1. Results of a GLM testing the effects of a corticosterone supplementation experiment on the
fecal corticosterone metabolites (FCM) levels of the amphisbaenian T. wiegmanni.

SS df F p

Treatment 1.51 1 3.68 0.07
Sex 0.27 1 0.66 0.43

Treatment × Sex 0.13 1 0.33 0.58
Error 6.15 15
Time 15.93 1 50.19 <0.0001

Time × Treatment 2.47 1 7.78 0.014
Time × Sex 0.02 1 0.06 0.81

Time × Treatment × Sex 0.38 1 1.19 0.29
Error 4.76 15
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3.2. Seasonal, Sexual and Size-Related Variation in Baseline Field FCM Levels

The FCM levels of amphisbaenians in the field were on average (±SE) 495 ± 35 ng
of FCM/g dry feces, although inter-individual variability was high and, thus, although
most individuals (76.4%) had FCM levels between 50 and 600 ng/g, there were 23.6%
of individuals that had higher values between 600 and 2850 ng/g (Figure 3a). However,
average FCM levels did not significantly differ between ‘seasons’ (GLM, F1,171 = 2.77,
p = 0.10) or ‘sexes’ (F1,171 = 2.62, p = 0.11) (Figure 3b) and were not significantly correlated
with body ‘length’ (F1,171 = 0.40, p = 0.53). All two-way and three-way interactions were no
significant (season × sex: F1,171 = 1.06, p = 0.30; season × length: F1,171 = 2.70, p = 0.10; sex
× length: F1,171 = 2.62, p = 0.11; season × sex × length: F1,171 = 1.04, p = 0.31). Furthermore,
FCM levels of amphisbaenians were not significantly related to their ‘body condition index’
(Pearson’s correlation, r = 0.11, F1,177 = 2.13, p = 0.15).
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4. Discussion

Inter- and intra-specific variability in the characteristics of the physiological stress
responses observed in studies with different animal species [46,47] indicated the impor-
tance of optimization and validation of non-invasive quantification of GC levels for each
new species where this technique is intended to be used. Our study first confirmed that
the experimental corticosterone supplementation increased FCM concentrations in the
amphisbaenian T. wiegmanni, which supports the suitability of using the corticosterone
EIA as a valid method for the non-invasive quantification of FCM concentrations in wild
populations of this amphisbaenian. Furthermore, our findings indicated that neither the
average baseline FCM concentration nor the effects of the corticosterone supplementation
differed between sexes. The results also confirmed the previous finding that the application
on the skin of corticosterone dissolved in oil might be used to increase corticosterone levels
in reptiles for experimental purposes [39–42]. This offers the possibility of combining
these two procedures (skin corticosterone application and measurement of FCM levels)
to design future experimental studies examining the effects of potential stressors in this
amphisbaenian.

Interestingly, the application of oil alone (control) also increased FCM in T. wiegmanni
amphisbaenians, although to a significantly lesser degree than corticosterone. This may
suggest that captivity conditions and human handling procedures alone may also act as
potential stressors for sensitive individuals. Similar responses to saline controls in ACTH
tests have been observed in, for example, some rodents [47,48]. This highlights the need for
careful control of housing and handling procedures to minimize the disturbance of animals
during the experimental work, not only because of animal welfare considerations [4]
but also because the increased GC levels of control animals may confound the results
of some experiments examining behavioral or physiological consequences of potential
stressors. Alternatively, it is known that adding mineral oil to the skin of lizards can lead
to permeabilization of the skin that is followed by a large increase in rates of cutaneous
water loss, leading to dehydration, which might also explain part of the increase in the
FCM levels, being both groups of animals affected by the oil supplementation. However, it
is unlikely that the low amounts of oil used in our experiment caused a significant loss of
water, and, moreover, we did not observe any significant difference in the body condition
of animals between the start and the end of the supplementation period.

By using this validated FCM assay, we made a preliminary exploration of sex, body
size (a partial proxy for age) [30], and seasonal differences in FCM levels in a single wild
population of T. wiegmanni amphisbaenians. The overall results of a large sample did
not show any significant difference in mean FCM values between sexes, body sizes, or
seasons. While, for example, during the breeding season, males of other reptiles often show
slightly higher levels of GC as a consequence of costly reproductive behaviors [49–51],
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we did not find this effect in this amphisbaenian species. These results might be initially
interpreted as a lack of sexual, size, or reproductive effects in this species, but they might
rather result from the confounding effects of other uncontrolled environmental or intrinsic
variables that may mask the potential basal sexual, age, and seasonal variations, which
might otherwise be observed under “ideal” conditions. In fact, we found a wide range of
variation in FCM levels in the wild, suggesting that in some individuals, the levels of circu-
lating corticosterone were higher than in others, independently of their sex, size, or season.
The observed variability could indicate that individuals may differently perceive stressful
stimuli and accordingly undergo different hormonal adjustments to each stressful event
or that environmental variation of potential stressors has not been considered. This result
prompts future studies examining the uncontrolled environmental or intrinsic causes that
may correlate with these interindividual variations in GC levels. For example, a previous
study examining the FCM levels in different populations of T. wiegmanni showed a corre-
lation between FCM levels and heavy metal concentrations in the soil, with populations
inhabiting more contaminated areas showing higher FCM levels [52]. The validation of
the FCM measurement test made in the current study supports the idea that these high
FCM levels may represent a physiological increase of GCs, likely as a consequence of the
disruptive endocrine effects of heavy metals [53].

We did not find a significant relationship between the body condition of amphisbaeni-
ans and their FCM levels in the wild. Body condition has been used as a proxy for the health
state of reptiles [37,54]. For example, soil salinization and food restrictions due to extended
drought conditions negatively affected the body condition index of T. wiegmanni [15,55],
while contamination by heavy metals did not affect body condition [15], although it did
increase FCM levels [52]. This leads to the recommendation to obtain a reliable, complete
perspective of the health state of an individual or population. We should combine several
physiological measures and indexes and control for the potential confounding effects of
several environmental variables.

In many vertebrates, also in reptiles, high levels of GC in blood and feces were
considered as a proxy of stress, e.g., [51,56–59]. Nevertheless, increases in GC per se are
not necessarily indicative of stress, as these hormones have complex, interactive effects
across many systems [60,61]. Measuring physiological stress responses is important for
monitoring populations because chronic high-stress levels have been shown to result in
several physiological damages, such as decreased immune responses, and often lead to
suppression of reproduction, e.g., [62–66]. Therefore, a population with highly stressed
individuals could decline quickly in the future. The assay that we have validated here for
measuring FCM levels in T. wiegmanni can be useful and important to quickly detect changes
in the GC levels of individual amphisbaenians and relate this variation with potential soil
disturbances before the entire population is negatively affected. Moreover, this technique is
a convenient innocuous sampling that takes advantage of a behavior (expulsion of feces as
an anti-predatory behavior) that these animals usually exhibit when captured. In contrast,
blood sampling of these small-sized amphisbaenians would not provide enough amount
of blood useful for GC analysis without serious damage to animals. Likewise, similar
methods and assays could be used for other fossorial animals in the future.

5. Conclusions

The health and conservation state of populations of animal species living underground
has often been understudied due to the difficulty of finding and sampling these animals.
This is important in a changing world scenario, where many threats to soil biodiversity that
may occur hidden in the soil could be easily overlooked. The measurement of physiological
parameters using simple and non-invasive techniques, such as determining the FCM
levels with EIA, can be a strong tool to monitor and manage populations of fossorial
animals. Validation and optimization of such methods for each target species are, however,
required to ensure the accuracy and reliability of the health estimations in future studies of
wild populations [47,67]. The continuous monitoring of the physiological health state of
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amphisbaenian populations in the field, together with environmental data, may help to
understand the negative factors that affect these animals and to predict and take actions to
minimize potential future conservation problems derived from global change.
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