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Simple Summary: During the present decade, highly selected caprine farming has increased in
popularity due to the hardiness and adaptability inherent to goats. Recent advances in genetics
have enabled the improvement in goat selection efficiency. The present review explores how genetic
technologies have been applied to the goat-farming sector in the last century. The main candidate
genes related to economically relevant traits are reported. The major source of income in goat farming
derives from the sale of milk and meat. Consequently, yield and quality must be specially considered.
Meat-related traits were evaluated considering three functional groups (weight gain, carcass quality
and fat profile). Milk traits were assessed in three additional functional groups (milk production,
protein and fat content).

Abstract: Despite their pivotal position as relevant sources for high-quality proteins in particularly
hard environmental contexts, the domestic goat has not benefited from the advances made in ge-
nomics compared to other livestock species. Genetic analysis based on the study of candidate genes
is considered an appropriate approach to elucidate the physiological mechanisms involved in the
regulation of the expression of functional traits. This is especially relevant when such functional traits
are linked to economic interest. The knowledge of candidate genes, their location on the goat genetic
map and the specific phenotypic outcomes that may arise due to the regulation of their expression act
as a catalyzer for the efficiency and accuracy of goat-breeding policies, which in turn translates into a
greater competitiveness and sustainable profit for goats worldwide. To this aim, this review presents
a chronological comprehensive analysis of caprine genetics and genomics through the evaluation of
the available literature regarding the main candidate genes involved in meat and milk production
and quality in the domestic goat. Additionally, this review aims to serve as a guide for future research,
given that the assessment, determination and characterization of the genes associated with desirable
phenotypes may provide information that may, in turn, enhance the implementation of goat-breeding
programs in future and ensure their sustainability.

Keywords: breeding; SNP; genomics; does; bucks; meat; milk

1. Introduction

Caprine farming has spread to almost every country in the world, due to the good
prices and high value of goat-derived products (especially milk), attracting new farmers
and investors [1]. The majority of the world caprine population is located in developing
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countries, occupying marginal territories under extreme climate conditions and held under
elder farming systems [2]. This scene contrasts with that of Europe and North America,
where otherwise, high-technological and intensive conditions rule the goat industry, which
is highly focused on milk production and exploiting high-performance breeds subjected
to genetic selection schemes [3]. In this context, the benefits that the domestic goat has
obtained, as derived from the achievements made in the areas of genetics, nutrition and
animal management, are rather limited in comparison to the level of integration that such
techniques account for in other species.

The aforementioned framework evidences the secondary role to which caprine has
been relegated within the scope of stockbreeding history [4]. This secondary position may
be the result of two main conjoined facts; the traditional disregard of the caprine species as
a destructive animal for pasture [5], and consumer preferences for other domestic species,
which have conferred caprine-derived products with a low international market value,
thus pushing caprine production to a marginal role in farming [6].

Recent archaeological findings indicate that the domestication of the goat took place
more than 10,000 years ago in the ‘Fertile Crescent’ (Figure 1). This region is where the
first settled agricultural communities of the Middle East and Mediterranean basin are
thought to have originated, and would have covered the area from the Anatolian peninsula
to the eastern territories of current Iran [7]. Wild bezoar (Capra aegagrus) and markhor
(Capra falconeri) are thought to be the most likely ancestors of the domestic goat, according
to phylogenetic studies implementing Y chromosome AMELY and ZFY sequences [8].
Additionally, other studies evaluating the major histocompatibility complex led to the
possible inclusion of the Iberian mountain goat (Capra pyrenaica) and Alpine ibex (Capra
ibex) in the history of goat domestication [3].
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Figure 1. Relief Representation of Goatherd with Goat and Trees, ca. 1350–1333 BCE. New
Kingdom, Amarna Period. Late Dynasty 18. Limestone, 8 1/4 × 16 3/4 × 2 1/2 in., 22.5 lb.
(21 × 42.5 × 6.4 cm, 10.21 kg). Brooklyn Museum, Gift of the Ernest Erickson Foundation, Inc., New
York, NY, USA, 86.226.30.

A higher tolerance to human handling and a better adaptability to the driven grazing
may have been determining factors, which aimed to boost the popularity of certain animal
populations [9]. Apart from the early breeding objectives that were sought following the
domestication of the goat, the first civilizations became interested in the functional selection
objectives linked to productive traits, such as the aptitude to captive breeding, prolificacy
or body size [10].

The domestication and world dissemination of the species led to the first distinctive
morphological traits of the original goat populations, such as the shape of the horns and
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ears [3]. This source of phenotypic variability could be the result of human/artificial
selection, in addition to genetic drift and founder effects [11], which may explain the
appearance of the characteristic traits in a lineage as a consequence of a narrow genetic base
in its original population and its isolation. This may also be evidenced by other features,
such as the presence of wattles, hair length or the wide variety of possible coat colours that
have been developing as other distinctive traits in the first goat populations [3].

After centuries of their relationship with humans, natural selection for caprine adapt-
ability to different environments and the artificial selection for productive, morphological
and behaviour traits led to the appearance of 576 modern domestic goat breeds [10]. The
Angora goat, whose presence in Phrygia and Cilicia (current Anatolia peninsula) was
described 2400 years BC [12], was the first caprine breed in which a preliminary process
of standardization was attempted. However, it would not be until 1890 and 1895 when
the first caprine dairy goat breed standardization would take place in Switzerland, for the
Saanen and Toggenburg goat breeds, respectively [13].

Although this event was a milestone and marked the beginning of caprine milk
selection history [13], most of the significant advances would have to wait until the 1960s
in France, when a bovine selection model would be applied to dairy goat production [14].
This turning point was promoted by the massive growth in the French cheese industry after
the Second World War, which led to the development of intensive milking farm regions
connected to the cheese factories. This improvement in animal production required farms
to implement highly technical support, which brought about the routinization of progeny
testing and artificial insemination [13]. It would take another decade for caprine meat
breeding programmes (which have been dramatically scarcer than dairy goat breeding
programs) to appear, with Boer goat breeding programmes being one of the few examples,
appearing by the end of the 1970s in South Africa [15] (Figure 2).

The first documented register describing a caprine-selection-focused attempt dates
back to 1962 [16], when the ‘Universidad de Puerto Rico’ studied the most profitable
crosses between Puerto Rican local goat breeds and high-performance dairy goats. The
study sought the most appropriate cross that would result in animals parallelly presenting
the best adaptability, through the evaluation of goat kid survival rate, and the greatest
productivity, through the evaluation of milk yield.

It was three years later (1965) when the first heritability estimations were performed
in caprine [17]. This advance resulted from the integration of genealogical information as a
compulsory step towards animal breeding estimations, which is a crucial step during the
first stages of any breeding programme. The advances not only concerned the available
genetic components or biostatistical tools, but also the revolution of phenotypic data collec-
tion. Contextually, the onset of 305-day lactation normalization in 1979 [18] made it possible
to objectively compare the productivity of does from different breeds and controlled at
different moments within lactation [19], which not only permitted farmers’ taking directed
decisions based on factual data, but also laid the grounds for genetic evaluations. Still, the
control of environmental effects was challenging, and reliable estimations were not feasible.

After the implementation of Best Linear Unbiased Prediction methods (BLUP) in
caprine in the mid-1980s [20], along with the Animal Model [21] for breeding value calcula-
tions, the design of more complex selection schemes arose. This permitted the complete
and reliable integration of genealogical information into genetic evaluations, but also the
evaluation of animals that were phenotypically controlled in broadly distinct environmen-
tal conditions. This means that BLUP allowed for the separate estimation of the genetic
and non-genetic (environmental) factors; hence, the heritable fraction of functional traits
could be isolated and more appropriately controlled.
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The ‘Genomic Era’ began with the discovery and utilization of microsatellite markers,
which would be applied in the context of domestic goats as an extension of the use of bovine
and ovine microsatellite panels in 1993 [22]. One year later, in 1994, the first description
of caprine specific microsatellites was published [24]. The genomic information obtained
from caprine microsatellite studies in these years permitted the development of studies
based on the relationship between specific genomic regions, Quantitative Trait Loci (QTL),
and desirable production traits [19].

QTLs are regions of the genome for which an association with the phenotypic vari-
ance of a certain trait has been proved [34]. Such an association may be supported by
the fact that QTL regions may contain genes codifying for the specific regulation of the
expression of a certain functional feature. For several years, many QTL were described
using microsatellite genetic markers. However, even if they are still valid and preferrable
when economic resources for research are scarce, the large size of some QTL [34] makes
their mapping resolution and confidence intervals limited if the application of other, more
efficient techniques is possible [35].

As previously mentioned, despite the fact that microsatellites offer a high degree of
polymorphism for each marker, they are not as abundant as SNPs, and hence provide
insufficient coverage of the genome [36]. In this regard, the first study of a caprine Single
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Nucleotide Polymorphism (SNP) was published in 2006 [37]. SNP would progressively
replace microsatellites as the preferred genetic marker.

Additional milestones were quickly reached in the following years. For instance, the
first study using the Canadian Test-Day Model in caprine was published in 2007 [38]. The
Canadian Test-Day Model is a 12-trait random regression animal model, in which the traits
are milk, fat, and protein test-day yields, and somatic cell scores on test days within each
of the first three lactations. Test-day records from later lactations are not used. Random
regressions (genetic and permanent environmental) are based on Wilmink’s three parameter
function, which includes an intercept, regression on days in milk, and regression on an
exponential function to the power –0.05 times days in milk (b0 + b1 × Exp(−0.05 × days in
milk) + b2 × days in milk) [39]. This translates into genetic evaluations based on a better
modelling of the lactation curve, providing more accurate results, which consequently
enhances the selection progress.

These advances led to the publication of the first ‘Copy Number Variations Regions’
(CNVR) map for the domestic goat in 2010 [31]. Recent studies have shown that CNVR
(intraspecific gains or losses of ≥1 kb of genomic DNA), represent important sources of
variability of mammalian genomes (~0.4–25% of the genome). Their importance lies in the
fact that CNVRs can change the gene structure and dosage, regulate gene expression and
function and, hence, potentially have more effects than the most frequent single-nucleotide
polymorphisms (SNPs) in determining phenotypic differences.

In 2012, the ‘International Goat Genome Consortium’ (IGGC) developed the first SNP
chip for domestic goats; a high-density chip with 53,347 SNPs called ‘Illumina 50K SNP
BeadChip’ (Illumina Inc., San Diego, CA, USA) [30]. In 2014, a new version of the high
density SNP chip was developed, which is the most advanced goat SNP chip at present,
called the ‘Illumina 52K SNP BeadChip’ a 60,000 SNP chip (Illumina Inc., San Diego, CA,
USA), which is also carried out under the support of the IGGC [40]. Due to its robustness,
low genotyping costs, automatic allele calling and the ability to interrogate the goat genome
at high resolutions, these SNP chips were used to study the genetic diversity and population
structure of native goats in various countries [41].

In 2013, after several attempts [23,25,42], the whole caprine genome was sequenced
and optically mapped in China [29]. This advance made the reference genome sequence
of the domestic goat available for the first time. The knowledge of the caprine genomic
map was preceded by the first ‘Bacterial Artificial Chromosome Library’ published for
caprine [43]. Recently, a new, ‘de novo’ genetic assembly (ARS1) has been developed. It
allows for high-quality genomic mapping, thanks to the advanced sequencing method-
ology ‘single-molecule PacBioRSII’ [27]. This methodology uses single-molecule, real-time
(SMRT) sequencing technology, which takes advantage of an immobilized DNA poly-
merase/template complex nested in thousands of small wells (called zero-mode waveg-
uides). The value of these new technologies lies in the fact that they are characterized by
their high-throughput characteristics. Hence, they provide the opportunity to produce
millions of reads with an inexpensive sequencing.

The use of SNP analysis in goat association studies marked a milestone with the
first ‘Genome Wide Association Study’ (GWAS) in 2018 [26]. Thanks to GWAS tools,
researchers could obtain more in-depth knowledge of the association between specific
genome sequences and the phenotypic variation in traits of interest. GWAS appeared as an
alternative to QTL and microsatellite studies, given that it allows for the identification of
narrower genomic regions [34,44].

These new genomic tools are promising in terms of genetic selection within breeding
programmes, because they allow scientists to locate the candidate genes that are directly
involved in phenotypic traits of economic impact. Hence, they enable the acceleration of
genetic progress. Therefore, the present review provides a chronological analysis of the
advances made in caprine genetics and genomics and describes the main candidate genes
for caprine meat and milk production and quality that have been reported in the literature
to date.
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2. Data Collection

A comprehensive bibliographic analysis was performed of the documents published
over the last 10 years. Reviews, articles, short notes, Doctoral theses, and Master’s theses
were considered. The search for documents was performed using the ‘Google Scholar’
search engine (https://scholar.google.com/, accessed on 17 May 2021). This search engine
was chosen as suggested by other papers developing bibliographic studies of a similar
kind, as they comprise tools that enable data extraction for analysis [45–47]. The keywords
chosen to perform the search of documents were “caprine candidate genes, caprine meat genes,
caprine milk genes”. Semantic fields were also considered.

The selection criteria for the documents included in the final dataset comprised:
(1) date, looking for those that were published during the past 10 years (2) content, giving
priority to those based on the study of candidate genes, and (3) species, including those
primarily dealing with the caprine species, but also considering those involving the caprine
species, in addition to other species, such as the ovine. In the case of data overlapping
in different documents, the data published in the most recent publication were chosen.
Only two reviews based on caprine candidate genes were found. The first was published
in 2009 and the second in 2020. Based on the bibliographic references that these reviews
provided, it was possible to expand the information and to include more candidate genes
involved in caprine meat and milk production. A remarkable lack of articles dealing with
candidate genes in the caprine species was observed during the last two years of this study.
Particularly, references exclusively dealing with the caprine species were sparse. Gene data
(karyotype location and information) were obtained using the database of the National
Centre of Biotechnology Information NBCI (https://www.ncbi.nlm.nih.gov/gene/). This
database was last accessed on 5 July 2021 [48].

3. Candidate Genes Regulating the Expression of Economically Relevant Traits
in Caprine
3.1. Candidate Genes Regulating the Expression of Goat Meat Breeding Criteria and Traits

Growth performance and weight gain are two of the most relevant traits in caprine
farming, given that they directly relate to the shortening of puberty age and the number
of kilograms of meat to be sold, hence benefitting the farmer [49]. Contextually, body
weight increases until 5–6 years of age, at which time it begins to decrease. The literature
indicates the existence of sexual dimorphism, with males being heavier than females and a
progressive decrease in weight gain as the number of kids born increases, with single-birth
kids being heavier than double-birth kids, and these, in turn, being heavier than multiple-
birth kids. Among other important factors, the season of birth, nutrition management,
farming system, and the age and birth order of the doe have been reported to influence
body-weight-related traits [50].

The current selection framework is characterized by a lack of reciprocity between
caprine dairy and meat production. Hence, in practice, this is one of the main challenges
that the sector needs to face; improving dairy characteristics, which negatively correlate
with those related to butchering production [51], while taking advantage of the sturdiness
and improved adaptability of caprine breeds [52].

The breeding objectives used in artificial selection to obtain a desirable dairy morphol-
ogy are the opposite to those seeking the enhancement of meat/butcher traits. This may
explain the marked differences that exist between the characteristic shape of goat dairy
breeds (thin and triangular forms), and meat breeds (short, rectangular and excellent body
conformation) [49].

Carcass dressing percentage in goats is approximately 50–55%, and is usually lower
than in ovine. This is due to the greater bone proportion in caprine, along with a different
carcass fat deposition, which, in goats, is perivisceral rather than subcutaneous or intramus-
cular [53]. In the same way, the caprine carcass has a lower fat coverage; hence, moisture
losses (which can reach 8%) are greater than those in sheep. However, the lower intramus-
cular fat deposition in caprine makes chevon meat a healthier alternative to lamb [54].

https://scholar.google.com/
https://www.ncbi.nlm.nih.gov/gene/
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In terms of meat quality characteristics, organoleptic traits include muscle appearance,
juiciness, texture, hardness, flavour and aroma [55]. Many factors condition the expression
of these traits, including nutrition, exercise/physical activity, age, and method of slaughter
and bleeding [55]. Regarding nutritional quality, chevon muscle is high in amino acid
diversity and is very lean, presenting a lower degree of fat interspersion than other species
(but with more polyunsaturated fatty acids) [6].

Body weight and butcher performance, body growth, body weight gain, kid survival
rate, feed conversion index and dressing percentage of the carcass are among the most
frequently considered quantitative traits within the framework of caprine selection. Table 1
presents a summary of the most frequently addressed breeding criteria and traits concerning
selection for meat production in goats. Figure 3 presents a scheme of caprine candidate
gene background regulating the expression of meat production.
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Figure 3. Summary scheme of caprine candidate genes’ influence on meat production.

Table 1. Breeding criteria and traits for caprine meat production.

Breeding Criteria Traits Reference

Body weight Birth weight, body weight at 7, 14, 21 and 28 days, monthly weighing until
18 months of age

[56,57]

Growth Average daily gain (ADG) before weaning, from 3 to 6 months of age, from 6 to
12 months of age

[57]

Conformation/corporal
structure

Body length, height at the withers, chest girth, shoulder width and
pin-bone width

[58]

Carcass quality Hot (immediately after slaughter) and cold (before chilling) carcass weight;
weights of the head, skin, heart, and thoracic and abdominal viscera; carcass
dressing percentage; leg length and carcass width; and carcass fat coverage
and lean meat and bone yield percentages

[56,59]

Meat quality Muscle pH measurements, colour, water retention capacity, nutritional
composition (protein, fat, and collagen percentages), and fatty acid profile in
samples of longissimus thoracis et lumborum, triceps brachii and semimembranosus

[56]
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3.1.1. Actual and Potential Candidate Genes Regulating the Expression of Body Growth
and Weight Gain

Among the genes for which a significant association has been reported with the
regulation of the expression of body growth and weight gain, the following are the most
relevant. First, the Adenylate Cyclase 1 gen (ADCY1), which encodes for a molecule
involved in Cyclic Adenosine Monophosphate (cAMP) synthesis, is associated with chest
width [60]. This gene regulates cellular division and mitosis [61], but also has been reported
to hold regulatory control over Growth Hormone (GH) release [62].

Second, the Sorting Nexin 29 gene (SNX29), which has been described as a controller
of the differentiation and proliferation of myocytes, has been directly ascribed to the
complex of genes regulating the expression of muscle growth [63]. In parallel with this, its
association with chest width and pin bone width, both relevant traits due to their association
with dressing aptitude, has been recently reported [60]. Third, the LIM Domain Binding
Factor 2 gene (LDB2), which encodes for a protein playing a crucial role in lymphocyte
migration and atherosclerosis [64], has been shown to have a strong relationship with daily
body weight gain in other species, such as poultry, as derived from GWAS studies [65].

Fourth, Myeloid-associated Differentiation Marker gene (MYADM) has been reported
to be involved in the cytoplasmatic membrane synthesis of the myeloid-line cells and has
impact on the erythrocyte morphology. Its association with post-weaning body weight in
lambs has been described, which suggests it may be worth exploring in kids [66]. Fifth, the
Insulin-like Growth Factor 1 Receptor gene (IGF1R) encodes for receptors for IGF-1 binding,
modulating its blood concentration and activity, and has been shown to be associated with
body growth and height in dogs [67].

Sixth, the Apolipoprotein L3 gene (APOL3) encodes for a protein involved in lipid
transport and metabolism, and has been ascribed an interesting potential influence on milk
and growth traits [68]. Seventh, and similar to the aforementioned, the Stromal Interaction
Molecule 1 gene (STIM1) encodes for a membrane calcium transporter that is related to
prolificacy traits [69], and has been suggested as a candidate gene for growth traits [70].
Eighth, the HMG-Box Containing 3 gene (HMGXB3), which has been described to be
involved in cellular proliferation in neoplasia [71], has also been reported to be of great
interest in meat production [70].

Ninth, among growth-hormone-linked genes, the Growth Hormone gene (GH), which
encodes for the main hormone involved in the vertebrate corporal development, has been
reported to be strongly related to body weight at birth and weight gain in goat kids [72]. In
this regard, those genes linked to regulation or control of GH, such as the Growth Hormone
Secretagogue Receptor gene (GHSR), may be relevant. For instance, GHSR encodes for a
G protein-associated receptor that binds ghrelin, a GH-release-stimulating hormone [73].
Similarly, the Growth Hormone Receptor gene (GHR) encodes for the proteins to which
GH binds, modulating the molecular mechanisms that this hormone sets in motion, which
have a direct impact on corporal development [74].

Tenth, the insulin-like growth-factor-related genes, such as the insulin-like growth
factor gene (IGF-1) play a pivotal role in the mammalian somatotrophic axis, participating in
many metabolic functions involved in the regulation of the expression of growth, lactation,
and reproduction traits. Indeed, its effects on the carcass conformation and fat distribution
of cattle have been acknowledged in the research [75]. Additionally, the Insulin-like
Growth Factor 2 Binding Protein 1 gene (IGF2BP1) encodes for a protein that takes part
in the ‘sonic hedgehog’ route, which is a metabolic chain impacting body/organ growth
and development [76]. This is also extendible to the Insulin-like Growth Factor Binding
Protein 3 gene (IGFBP3), which encodes for a protein that regulates the activity of an IGF-1
subfamily, but is also associated with growth, body size and prolificacy traits [77]. Another
‘sonic hedgehog’ metabolic route participant is the Fibroblastic Growth Factor Receptor 1
(FGFR1), which unleashes a molecular-signals cascade associated with metabolism and
organic development [78]. Eleventh, the Bone Morphogenic Protein gene (BMP) encodes
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for a transforming growth factor β (TGF-β) superfamily. Many of the genes in this complex,
such as BMP4 [79] and BMP15 [80], have been reported to relate to growth traits.

Twelfth, the Nonsense-mediated mRNA Decay Factor gene (SMG6) has been suggested
to affect growth due to its genome stabilization functions, given that genome instability
inhibits mitosis and decreases cellular division and tissue growth [81]. Thirteenth, the
Cell Adhesion Molecule 2 gene (CADM2) encodes for a synaptic signalling vector that
is abundant in the brain and muscle, and has been described to be involved in weight
at slaughter and corporal length [82]. Table 2 reports a summary of the candidate genes
associated with body growth and weight gain that have been described in goat breeds,
the chromosome location, exon counts, physiological function, and where to find them in
the literature.

Table 2. Summary of the candidate genes associated with body growth and weight gain that have
been described in goat breeds, their chromosome location, exon counts, physiological function and
where to find them in the literature.

Acronym Gene Name Chromosome Exon
Count Transcripts Physiological Function Goat Breeds in Which the

Gene Has Been Described Reference

ADCY1 Adenylate Cyclase
1 4 20 2

Involved in energetic
metabolism, cellular

mitosis and GH releasing.
Cameroon, West African

Dwarf, Small East African and
Landim goat

[60]

SNX29 Sorting Nexin 29 25 21 2
Regulates myoblast
differentiation and

proliferation.

LDB2 LIM Domain
Binding Factor 2 6 9 7

Modulates
transendothelial leucocyte

migration.
Nanjiang yellow goat [83]

MYADM
Myeloid-associated

Differentiation
Marker

18 1 1

Involved in cellular
membrane formation in a

wide variety of cellular
lines.

Bamu wild goat, Khonj wild
goat, Australian feral

Rangeland goats, Boer goats
and Australian cashmere goat

[84]

IGF1R
Insulin-like

Growth Factor 1
Receptor

21 21 1 Regulates IGF-1 activity.

APOL3 Apolipoprotein L3 5 4 6 Involved in lipid blood
transport and metabolism. Leizhou goat [70]

STIM1 Stromal Interaction
Molecule 1 15 14 4 Associated with body

weight gain.

HMGXB3 HMG-Box
Containing 3 7 21 3

Demonstrated
relationship with cellular
proliferation in neoplasia.

GH Growth Hormone 19 5 1

Related to corporal
development.

Thai Native, Anglo-Nubian,
Boer and Saanen goat [85]GHR Growth Hormone

Receptor 20 13 6

IGFBP3
Insulin-like

Growth Factor
Binding Protein 3

4 5 1

BMP4 Bone Morphogenic
Protein 4 10 6 5

Boer goat, Chinese Xuhuai
white goat and Chinese

Haimen goat
[85]

BMP15 Bone Morphogenic
Protein 15 10 2 1 Jining Grey goat [85]

IGF-1 Insulin-like
Growth Factor 5 7 9

Involved in corporal
metabolism, growth and

development.

Malabari and Black Attappady
goat [86]

IGF2BP1
Insulin-like

Growth Factor
Binding Protein 1

19 15 2 Involved in endocrine
routes associated with

body growth and
development.

Shaanbei White Cashmere goat [87]

FGFR1
Fibroblastic

Growth Factor
Receptor 1

27 20 13

SMG6
Nonsense-

mediated mRNA
Decay Factor

19 20 2 Genome stabilization
functions

CADM2 Cell Adhesion
Molecule 2 1 11 3

Involved in cellular
migration and
proliferation.

White and Black Guizhou,
Nubiann, Boer and Huai goat. [82]

GHSR
Growth Hormone

Secretagogue
Receptor

1 3 2 Regulates GH realise Boer, Xuhuai and Haimen goat [73]
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3.1.2. Actual and Potential Candidate Genes Regulating the Expression of Body Size and
Carcass Quality

The genes presented in this subsection have been reported to be associated with body
size and carcass quality, either skeletal quality or muscle quality. First, the quest to find
caprine specific genes related to the aforementioned traits is challenging, given the lack
of existing species-specific literature. In this context, among the only examples found, the
PR/SET Domain 6 gene (PRDM6) encodes for a histone methyltransferase, a molecule with
an important role in corporal development and reproduction, and is, therefore, suspected
to be related to body growth [88], and the Nerve Growth Factor gene (NGF) encodes for a
crucial protein in the development and differentiation of the nervous system. However, it
also plays an important role in muscle growth and prolificacy [89] in goats.

Interestingly, some of the genes for which an association with economically relevant
traits has been reported have an additional relevance, as they coregulate the expression
of dual-purpose traits; that is, they are associated with better carcass features while they
regulate for better milk-quality traits. The Pituitary-specific Positive Transcription Factor 1
gene (POU1F1 or PIT-1) encodes for a positive regulator of many hormones, such as the
Growth Hormone, Prolactin or Thyroid-stimulating Hormone, and has been shown to
have a role in growth and lactation traits in caprine [90]. Furthermore, a certain degree of
association is presumed with carcass conformation, owing to its relationship with body
depth and leg size in bovine, alongside some milking morphological traits [91].

Additionally, regarding muscle development, the Leptin gene (LEP), which regulates
the expression of a hormone that exerts its effects on daily voluntary food intake, energetic
waste and corporal metabolic balance [92], has been proven to condition carcass weight,
corporal fat yield and lean meat percentage in ovine [93]. The Myostatin gene (MSTN) is
considered to be a highly relevant candidate gene for meat production, due to its widely
studied association with body growth and muscle mass development in bovine [37].

Concerning bone quality and development, the T-box Transcription Factor 15 gene
(TBX15) is highly expressed in mesenchymal precursor cells and chondrocytes, and has
a direct impact on bone development [94]. This was also reported for the Drosha and
DiGeorge Syndrome Critical Region gene 8 (DGCR8), which is involved in osteoclastic and
bone-reabsorbing activity, and hence in the determination of skeletal development [95].

Regarding muscle development, the Cell Division Cycle 25 Homolog A gene (CDC25A)
has been reported to take part in the cellular quiescence G1 phase and to be involved in
myoblast differentiation in mice [96]. Additionally, the Solute Carrier Family 26 Member 2
gene (SLC26A2) encodes for a protein that seems to modify sulphate transporting residual
activity, and is associated with short body size and skeletal dysplasia [97]. Table 3 summa-
rizes the candidate genes associated with body size and carcass quality described in goat
breeds to date, as well as their chromosome location, exon counts, physiological function
and where to find them in the literature.

Table 3. Summary of the candidate genes associated with body size and carcass quality that have
been described in goat breeds, their chromosome location, exon counts, physiological function and
where to find them in the literature.

Acronym Gene Name Chromosome Exon
Count Transcripts Physiological Function Goat Breeds in Which the

Gene Has Been Described Reference

TBX15 T-box Transcription
Factor 15 3 9 2

Related to body size and
chondrocytes and
mesenchymal cell

precursors regulator. Gizhou Small goat [98]

DGCR8

Drosha and DiGeorge
Syndrome Critical

Region microprocessor
complex subunit gene 8

17 16 1

Associated with body size
and involved in the

osteoclastic development
and remodelling bone

activity.
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Table 3. Cont.

Acronym Gene Name Chromosome Exon
Count Transcripts Physiological Function Goat Breeds in Which the

Gene Has Been Described Reference

CDC25A Cell Division Cycle 25
Homolog A 22 15 1

Responsible for corporal
development and

involved in myoblast
differentiation and G1

quiescence.
LEP Leptin 4 3 1 Related to corporal and

muscle mass development.MSTN Myostatin 2 3 1

PRDM6 PR/SET Domain 6 7 8 1
Regulates skeletal

development and body
mass index.

Shaanbei White Cashmere
goat [88]

NGF Nerve Growth Factor 3 3 2
Involved in muscle and

nervous tissue
development.

Black Attappady and
Malabari goat [89]

SLC26A2 Solute Carrier Family 26
Member 2 7 9 8 Involved in bone tissue

development. Leizhou goat [70]

POU1F1
Pituitary-specific

Positive Transcription
Factor 1

1 6 2

Plays an important role in
corporal metabolism,
growth and corporal

development.

Thai Native, Ango-nubian,
Boer and Saanen goat [85]

3.1.3. Actual and Potential Candidate Genes Regulating the Expression of Carcass
Lipidic Profile

Among the genes regulating the expression of the lipidic profile of caprine carcasses
we first find the Peroxisome Proliferator-activated Receptors Gamma gene (PPARγ),
which encodes for a protein that is directly related to carcass lipids, thanks to its regula-
tory activity over the expression of other genes involved in fat metabolism, promoting its
mRNA synthesis and protein formation [99]. Second, the Lipoprotein Lipase gene (LPL),
modulates fatty acid metabolism due to its implication in muscle lipid composition as
reported in cattle [100].Third, following the aforementioned line, the Acetyl-Coenzyme
A Carboxylase gene (ACACA) encodes for one of the most important enzymes involved
in tissue fatty acid synthesis, and is associated with conformation traits and meat fat
composition in bovine [101]. The Sterol Regulatory Element-binding Protein 1 (SREBF1
or SREBP-1c) encodes for transcription factor family modulating lipid homeostasis [102]
and seems to promote the expression of ACACA [103] and PPARγ’s transcription. Hence,
its involvement in fatty acid metabolism is presumed [104]. Fourth, the Thyroid Hor-
mone Responsive SPOT14 gene (THRSP) seems to mediate the expression of other genes
that are involved in lipid synthesis, and is known to be related to the fatty acid profile
in bovine muscle [105]. Fifth, the Carnitine Palmitoyl-transferase 1A gene (CPT1A),
which encodes for a mitochondrial enzyme responsible for acyl-carnitine synthesis,
has been proven to promote fatty acid transport into the mitochondria [106]. Certain
genes are associated with fatty acid and adipose tissue metabolism in other species. For
instance, a study in pigs [107] showed that the Retinol deshidrogenase-16 gene (RHD16)
plays a role in the metabolic reactions in adipose tissue [107], while the Heart Fatty
Acid-Binding Protein gene (H-FABP) is reported to be involved in lipid metabolism and
seems to influence the intramuscular fat composition in pigs [108]. However, their role
in caprine has yet to be confirmed [59]. Table 4 presents a summary of the candidate
genes associated with carcass lipidic profile that have been described in goat breeds,
their chromosome location, exon counts, physiological function and where to find them
in the literature.
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Table 4. Summary of the candidate genes associated with carcass lipidic profile that have been
described in goat breeds, their chromosome location, exon counts, physiological function and where
to find them in the literature.

Acronym Gene Name Chromosome Exon
Count Transcripts Physiological Function Goat Breeds in Which the

Gene Has Been Described Reference

PPAR-γ
Peroxisome

Proliferator-activated
Receptors Gamma

22 6 1
Regulates adipose

differentiation and lipid
metabolism.

White Yaoshan goat [59]LPL Lipoprotein Lipase 8 10 2
Involved in triglycerides
degradation, obtaining
glycerol and fatty acids.

H-FABP
(FABP3)

Heart Fatty Acid-Binding
Protein (fatty acid binding

protein 3)
2 5 2 Related to lipid

metabolism.

SREBF1 Sterol Regulatory
Element-binding Protein 1 19 8 1

Modulates expression
of other lipid-metabolism-

related genes.

ACACA Acetyl-Coenzyme A
Carboxylase 19 60 7 Involved in liver fatty

acid synthesis.

THRSP
(SPOT14)

Thyroid Hormone
Responsive 29 2 1

Regulates expression of
other lipid-metabolism-

related genes.

CPT1A Carnitine
Palmitoyl-transferase 1A 29 19 1

Responsible for
acyl-carnitine obtention,

product of fatty acid
degradation.

Moroccan goat breeds [109]

RDH16 Retinol deshidrogenase-16 5 4 1 Involved in energetic
metabolism. Gizhou goat [98]

3.2. Candidate Genes Regulating the Expression of Goat Dairy Breeding Criteria and Traits

The international caprine milking sector comprised 215 million animals in 2019, which
was one-quarter of the world caprine census [110]. Europe, with only 5% of the world
caprine dairy census, produced 15% of the caprine worldwide milk production, which
could mainly be ascribed to its high degree of specialization [1].

This high European productivity is supported on high-technology farms, on which
goat breeds such as the Alpine, Saanen or Toggenburg have been bred under the scope
of strict genetic selection schemes and breeding programmes [3]. However, this is only
one side of the same coin and the opposite situation is found in developing countries.
Specifically, in developing countries, genealogic control and productivity registers are
barely available or are of poor quality [1]. The caprine European dairy sector is a well-
regulated industry, where almost all the milk is processed into cheese [1]. Most of the
farms’ income derives from milk production, while the sale of chevon for the meat industry
is a marginal source of income, due to the relatively low value of caprine meat within
developed countries [6].

According to García, et al. [111], milk quality is defined as the milk’s ability to tolerate
the technological processes that lead to a market-demanded product in terms of nutritional
value, food safety and sensorial parameters. This is especially relevant in the framework
of the cheese industry, given that increasing milk protein and percentage (known as ‘dry’
or ‘cheese extract’) increases the chances to enhance farms’ rentability and profitability,
even more than milk volume production (in litres) [112]. Furthermore, traditional breeding
criteria (milk yield in volume; milk lactose, fat and protein percentages; fatty acid profile
and omega 3 (technologic quality); and somatic cell count (hygienic quality) [111]) have
recently been joined by postprocessing technological traits related to cheese-making quality
indicators, in order to improve cheese production efficiency. Among these traits we find,
for instance, milk cheese yield (%CY) or the dairy cheese efficiency (dCY) [112], and the
newly implemented term of ‘recuperation’ (%REC) for each milk component (proteins and
fat) from the junket.
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3.2.1. Actual and Potential Candidate Genes Regulating the Expression of Milk
Production/Yield

Given the greater economic repercussion of goat dairy products against caprine-
meat-derived products, it is understandable that the progress and knowledge on genes
associated with milk yield and quality surpasses those for goat meat production-related
genes. The evaluation of the literature suggested that a large fraction of the genes involved
in meat quality- and/or yield-related traits correlatedly regulate the expression of milk
yield- and content-related traits; hence, they indirectly correlate with the quality of milk
and the products that derive from it, for example, cheese. For instance, the Pituitary-
specific Positive Transcription Factor 1 gene (POU1F1) is associated with the expression of
genes that encode for hormones regulating mammary gland development and milk pro-
duction, such as prolactin, growth hormone, insulin-like growth factor 1, progesterone and
oestrogens [113]. Among them, contextually, the Insulin-like Growth Factor 1 gene (IGF-1)
is associated, as mentioned in the previous sections, with body growth and development
or metabolism, but has also been reported to participate in the regulation of the expression
of milk protein and fat [75], or the Vacuolar Protein Sorting 13 gene (VPS13) family, which
is actively involved in milk production, as was proven in other mammalian domestic
species [70]. For example, while the VPS13C gene seems to affect glucose homeostasis in
high-productive milk cattle [114], the VPS13B gene was detected in a QTL related to leg
length (which is associated with fertility, prolificacy and milk production) [115]. Among
the genes which were found to be associated with dairy yield or quality, first, the Leptin
gen (LEP) was reported as a candidate gene for milk yield and quality traits, due to its
implications for the regulation of daily voluntary food intake, energetic distribution and
metabolism in cattle [116]. Consequently, this brings about the implications of the Leptin
Receptor gene (LEPR), which has also been reported to have an influence on milk traits,
due to its function in leptin blood concentration and physiological activity [117]. Second,
the ATP Binding Cassete Subfamily G Member 2 gen (ABCG2), besides its acknowledged
membrane drug and xenobiotics’ transporting activity, is presumably linked to a decrease
in milk production and an increase in milk protein and fat [118]. Third, the Growth Hor-
mone Receptor gene (GHR) encodes for the GH transmembrane receptors that unleash the
cellular mechanisms set off by this hormone, and is directly associated with carbohydrate
and lipid metabolism, and involved in the beginning and maintenance of lactation [119].
Fourth, it is common for genes regulating the expression of milk yield to have a negative
or positive correlation with milk composition (protein, fat, lactose and somatic cell count,
among others). In this context, the Prolactin gene (PRL), which encodes for a physiological
multi-function hormone, whose specific actions occur at the reproductive and lactation
levels, and, hence, influences milk yield and milk protein and fat percentages [120]. In the
same way, the Prolactin Receptor gene (PRLR), which encodes for a receptor associated
with a wide range of endocrine functions, such as mammalian lactation and body growth,
is one of the most frequently addressed candidate genes for milk traits in the literature,
given its regulation of the expression of milk yield and lactose, protein and fat percent-
ages [121]. Fifth, the high expression of these genes in the mammary gland seems to be
responsible for their implications for milk production/yield and quality. Contextually,
these include the Ribosomal Protein L3 gene (RPL3), which has been described to have
an especially high expression in the mammary gland, being involved in the regulation
of energetic balance [122], or the Osteopontin gene (OPN), which encodes for a protein
involved in many processes, such as cellular adhesion, chemotaxis and inflammation,
cellular survival, and tissue remodelling, but is also potentially involved in milk produc-
tion [123]. Furthermore, the Growth Hormone 1 gene (GH1) has been reported to likely be
useful in stimulating the udder development in transgenic goats and, therefore, increas-
ing their milk yield [48] as it has been reported for cattle milk production [124]. Sixth,
the regulation of the expression of traits linked to hygienical quality of milk, measured
through somatic cells counts, may be associated with the Lactoferrin gene (LTF), which is a
very likely candidate gene for mastitis resistance. This occurs because, among the several
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functions in which it is involved, it has been reported to have a light antimicrobial effect
in the mammary gland, which prevents the release of inflammatory mediators, such as the
interleukins 1β and 6 or the α-tumoral necrosis factor [125]. This has also been reported
for the Breast Cancer Type 1 gene (BRCA1), which encodes for a protein that is considered
to be a DNA disorder-fixing molecule and to regulate the cell division cycle, as a potential
early marker of disease, which has also been reported to increase somatic cell count in
case of mastitis [126].

3.2.2. Actual and Potential Candidate Genes Regulating the Expression of Milk
Content/Composition

First, casein genes conform to the most widely explored milk trait genes’ expression
regulation complex in the research. They attract special attention due to their implications
for milk yield and quality determination [127]. Recent research advances in goat breeds
such as Murciano-Granadina, Norwegian and Sarda goats have addressed the implication
of the whole casein complex in milk production and contents (protein, fat, dry matter,
lactose and somatic cells counts) [128–139]. The CSN1S1, CSN1S2 and CSN2 genes encode
the αs1-casein, αs2-casein and β-casein, which are calcium-sensible caseins, while the
CSN3 gene encodes for κ-casein, which is involved in micelle stability [140]. Second, the
α-Lactalbumin gene (α-LA) encodes for α-Lactalbumin, a highly important milk serum
protein, which regulates the production of lactose in the milk of in all mammals. Contex-
tually, this gene has been reported to increase lactose percentage in early-lactation milk
from transgenics animals [141]. Third, the β-Lactoglobulin gene (β-LG) encodes for the
β-Lactoglobulin, another essential milk serum protein, whose primary biologic functions
seems to be related to phosphorus metabolism at the mammary gland, although its asso-
ciation with milk production and composition has not been comprehensively described
in goat breeds [142]. Fourth, besides its acknowledged membrane drug and xenobiotics’
transporting activity, the ATP Binding Cassette Subfamily G Member 2 gen (ABCG2), is
presumably linked to a decrease in milk production and an increase in milk protein and
fat [118]. This correlated action in genes, regulating the expression between milk traits
and those of another nature, has been relatively frequently addressed in the literature.
For instance, the Insulin-like Growth Factor 1 gene (IGF-1) is associated, as mentioned in
the previous sections, with body growth and the development or metabolism, but has
also been reported to participate in regulating the expression of milk protein and fat,
respectively [75].

Even in genes specifically reported to participate in the regulation of the expression
of milk fat contents, a multifunction character has often been suggested. For instance,
the Diacylglycerol Acyltransferase gene (DGAT1) encodes for a acetyl-coenzyme A
variant, which is involved in lipid and other biomolecules’ synthesis, and was proved
to associate with milk fat and protein contents [143]. The 1-acylglicerol-3-phosohate-
O-acyltransferase gene (AGPAT6), which encodes for a crucial enzyme in glycolipids
and triglycerides synthesis, the two main types of lipids present in milk, has been
reported to present a high expression in the mammary gland epithelium; therefore, it
has been suggested to have repercussions for milk fat percentage [144]. This was also
noted for other genes, such as the Butyrophilin Subfamily 1 Member A1 gene (BTNA1),
which was identified in a copy number variation analysis [84], and presents a widely
acknowledged role in fat drops’ secretion in the mammary gland [145]. The Fatty Acid
Synthase gene (FASN), which encodes for a protein involved in fatty acid synthesis,
and the Acetyl-CoA Carboxylase gene (ACACA), which encodes for a liver fatty acids
synthesis mediator protein, have been proved to present a certain association with milk
lipid profile and fat percentage in dairy cattle, respectively [146,147]. The Stearoyl-
CoA Desaturase gene (SCD) which encodes for a protein with a strong association
to monounsaturated fatty acids synthesis in adipose tissue and mammary gland, has
a direct repercussion for milk fatty acid profile [148]. The action of particular genes
may not be direct but derive from these genes’ regulatory potential. Accordingly, the
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Peroxisome Proliferator-activated Receptor Gamma gene (PPARγ) encodes for a protein
with a high impact on other lipid-metabolism-related genes’ transcription, such as LPL,
FASN, ACACA y SCD, PLIN2, PLIN3, FABP3, PNPLA2, in same way as it regulates the
expression of NR1H3 y SREBF1 genes [149]. The Adipophilin gene, also known as
Perilipin 2 gene (PLIN2) [150] and the Perilipin 3 gene (PLIN3 ó TIP47) [151] take part in
cytoplasmatic lipid transport and storage, and their implication for lipid secretion into
milk has been widely reported. This also occurs at RNA levels, as was addressed for
the Sterol Regulatory Element-binding Protein 1 (SREBF1 or SREBP-1c). This encodes
for a transcription factor molecule, which is a protein that regulates the expression of
protein synthesis from mRNA, modulating the expression of those genes that encode
for proteins with a fat milk percentage impact [152].

As those genes whose effects are highly expressed in the mammary gland should
always be presumed to have an association with the expression of milk-related traits,
either quantitative or qualitative. For example, the Patatin-like Phospholipase Domain
Containing 2 gene (PNPLA2) encodes for a lipase that seems to be involved in intracel-
lular triglycerides’ degradation in adipocytes, and for which overexpression in cattle
mammary gland was proved [149], or the Aldehyde Dehydrogenase 2 gene (ALDH2),
which is thought to take part in triglyceride synthesis and mammary gland epithelium
cell apoptosis in bovine, with repercussions for fat milk yield and somatic cell count [153].
Many of the genes involved in fatty acid metabolism or fat mobilization have also been
reported to participate in the regulation of the expression of milk quality traits, espe-
cially those reported with the fat fraction of milk. he faTtty Acid Binding Protein 3 gene
(FABP3), which encodes for a protein participating in long-chain fatty acid intracellular
transport, as well as other lipids’ cytoplasmatic movements, was proven to be associated
with milk fat percentage [154]. Additionally, the Liver X Receptor-α (NR1H3) encodes for
a transcription factor as well, ruling out the expression of other genes expression involved
in fatty acids, cholesterol and carbohydrate metabolism, and was proved to contribute to
milk lipid profile [155], as suggested for other genes, such as the Oxidized Low-Density
Lipoprotein Receptor gene (OLR1), which encodes for a protein with fatty acid transport
and oxidated-low density lipoprotein degradation functions, and has been reported to
impact milk fat profile [156]. These genes not only directly affect the particular glands
in which milk is produced, but may also be involved in the regulation of higher neuro-
logical routes. For example, the Brain-derived Neurotrophy Factor gene (BDNF), which
encodes for a protein that regulates voluntary food intake and energetic distribution at
the hypothalamic level, has been reported to be associated with fat milk percentage in
cattle [157] or the Fat Mass and Obesity-associated Protein gene (FTO), which plays a
central role in energetic homeostasis and waste control. This is, therefore, thought to
affect the fat milk percentage [158]. The relationship across milk constituents may also be
based on a correlated regulation of the function of certain genes, but this may affect other
economically relevant traits, such as prolificacy. Therefore, the Acetyl-CoA Acetyltrans-
ferase gene (ACAT), which encodes for a cholesterol-metabolism regulating protein [159],
has shown associations with other desirable productive traits (milk protein contents and
fertility) in Holstein cattle [160] or the Long-chain Acyl-CoA Synthetase Isoform 1 gene
(ACSL1), which encodes for a basic protein in triglycerides, phospholipids and cholesterol
synthesis, making it a great candidate gene for milk-quality-related traits [161]. Table 5
presents a summary of the candidate genes associated with milk content that have been
described in goat breeds, their chromosome location, exon counts, physiological function
and where to find them in the literature, and Figure 4 presents a schematic representation
of dairy goat candidate genes and their functions.
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Table 5. Summary of the candidate genes associated with milk production/yield that have been described in goat breeds, their chromosome location, exon counts,
physiological function and where to find them in the literature.

Acronym Gene Name Chromosome Exon Count Transcripts Physiological Function Goat Breeds in Which the Gene Has
Been Described Reference

LEP Leptin 4 3 1 Regulates glycaemia, milk production and milk
fat percentage. Dairy cattle [117]LEPR Leptin receptor 3 22 3

BDNF Brain-derived Neurotrophy Factor 15 6 5 Plays different roles in daily food intake and, in
consequence, in nutrient and energy availability in

the mammary gland.
Dairy cattle [162]FTO Fat Mass and Obesity-associated

Protein 18 9 1

IGF-1 Insulin-like Growth Factor 1 5 7 9

ABCG2 ATP Binding Cassete Subfamily G
Member 2 6 22 8 Related to milk production and milk

fat percentage. Dairy cattle [163]

GHR Growth Hormone Receptor 20 13 6 Regulates cell growth, proliferation and apoptosis. Dairy cattle [117]
PRLR Prolactin Receptor 20 11 7 [164]

PRL Prolactin 23 5 1 Involved in mammary gland tissue preparation
before lactation and regulates milk production. Alpine goat [165]

RPL3 Ribosomal Protein L3 5 10 1 Modulates energetic balance during the lactation
yield peak. Saanen goat [70]

VPS13 Vacuolar Protein Sorting 13 8 73 3 Gene family associated with milk production.

VPS13B Vacuolar Protein Sorting 13
Homolog B 14 65 10 Related to leg’s morphological traits associated

with fertility and milk production. Dairy cattle [115]

VPS13C Vacuolar Protein Sorting 13
Homolog C 10 85 1 Regulates glycaemia increasing milk production. Dairy cattle [114]

SPP1 (OPN) Osteopontin 6 7 2 Involved in milk yield production and milk
fat percentage. Dairy cattle [123]

GH1 Growth Hormone 1 19 5 1 Seems to stimulate udder development and is
associated with milk dairy traits. Dairy cattle [124]

LTF Lactoferrin 22 17 1 Associated with mastitis resistance somatic
cell count. Damascus goat [166]BRCA1 Breast Cancer Type 1 19 23 5

POU1F1
(PIT1)

Pituitary-specific Positive
Transcription Factor 1 (POU class 1

homeobox 1)
1 6 2 Modulates many milk-related hormones’ action.

CSN1S1 αs1-casein 6 19 8 Associated with total milk protein composition
and milk yield production. Murciano-Granadina and Norwegian goats [128–138,167]

CSN1S2 αs2-casein 6 19 7
Encodes for most of the important milk proteins. Sarda goat

[128–138,167]CSN2 β-Casein 6 9 2

CSN3
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-Casein 6 5 1 Norwegian, Saanen, Canaria, Malagueña,
Murciano-Granadina and Payoya goat

αLA LALBA (ALA) α-lactalbumin 5 4 1 Encodes for most of the important milk
serum proteins.

White Inner Mongolia Cashmere, Xinong,
Guanzhong, Laoshan, Leizhou, White and

Black Guizhou and Banjiao, Matou goat
[168]

β-LG
LGB (PAEP)

β-lactoglobulin/progestagen-
associated

endometrial protein
11 8 4 Zarayby, Damascus, Albino and Balady

Hybrid goat [142]

DGAT1 Diacylglycerol Acyltransferase 14 18 2 Involved in triglycerides synthesis. Xinong, Saanen and Guanzhong goat [169]
AGPAT6

(AGPAT6)
1-acylglicerol-3-phosohate-O-

acyltransferase 27 14 2 [144]



Animals 2022, 12, 988 17 of 25

Table 5. Cont.

Acronym Gene Name Chromosome Exon Count Transcripts Physiological Function Goat Breeds in Which the Gene Has
Been Described Reference

BTN1A1 Butyrophilin Subfamily 1 Member
A1 23 9 5 Essential in milk lipid micelles secretion in the

mammary gland.

Bamu wild goat, Khonj wild goat,
Australian feral rangeland goat, Boer and

Australian Cashmere goat
[84]

FASN Fatty Acid Synthase 19 42 1 Plays an important role in fatty acids synthesis. [84]

ACACA Acetyl-CoA Carboxylase 19 60 7 Involved in liver fatty acid synthesis. Saanen and ‘Grey local’ goat [147]

SCD Stearoyl-CoA Desaturase 26 6 1 Catalyze unsaturated to mono-satured fatty acids
transformation reaction. Boer, Xuhuai White and Haimen goat [170]

PPARγ
(PPARG)

Peroxisome Proliferator-activated
Receptor Gamma 22 6 1 Regulates lipogenesis and adipogenesis. Damascus goat [166]

PLIN3 Perilipin 3 7 8 2 Involved in tissue fatty acid synthesis.

Not specified/Dairy goats [149]

PLIN2 Perilipin 2 8 9 4

FABP3 Fatty Acid Binding Protein 3 2 5 2 Involved in cytoplasmatic fatty acid storage
and transport.

PNPLA2 Patatin-like Phospholipase Domain
Containing 2 29 11 3 Encodes for one of the proteins involved in fat

micelles formation.

SREBF1 Sterol Regulatory Element-binding
Protein 1 19 8 1 Transcription factors involved in lipid homeostasis.

NR1H3
Liver X Receptor-α (nuclear

receptor subfamily 1 group H
member 3)

15 10 2

OLR1 Oxidized Low Density Lipoprotein
Receptor 5 6 2 Involved in lipid transport and oxided-LDL

form degradation. Sirohi goat [171]

ALDH2 Aldehyde Dehydrogenase 2 17 13 1 Associated with triglycerides synthesis in
mammary glandular tissue.

Xinong Saanen goat [172]ACAT1 Acetyl-CoA Acetyltransferase 1 15 12 1
Involved in cholesterol metabolism.ACAT2 Acetyl-CoA Acetyltransferase 2 9 9 1

ACSL1 Long-chain Acyl-CoA Synthetase
Isoform 1 27 24 5 Participates in triglycerides, phospholipids and

cholesterol synthesis.

BDNF Brain-derived Neurotrophy Factor 15 6 5
Plays different roles in daily food intake and, in

consequence, in nutrient and energy availability in
the mammary gland.

Dairy cattle [162]

FTO Fat Mass and Obesity-associated
Protein 18 9 1

ABCG2 ATP Binding Cassete Subfamily G
Member 2 6 22 8 Related to milk production and milk

fat percentage. Dairy cattle [163]
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4. Conclusions

The knowledge concerning the main candidate genes affecting caprine meat and
milk’s qualitative and quantitative production offers new opportunities to direct breeding
practices towards the accurate and efficient selection of desirable traits. In this way, the latest
genomic advances may allow to increase the response to selection, enabling a further genetic
progress. There are pieces of evidence that suggest that the regulation of the expressions of
very diverse traits (from body growth to milk composition) may somehow intertwine. This
leads to the conclusion that gene regulation of the expression of caprine milk or meat very
likely occurs in a multidimensional manner, taking place at different levels from central
neurological control to the specific parts of the body, where, for instance, the meat and
milk nutrients are produced. Consequently, knowing these functional regions of genomes
may not only boost the efficiency, accuracy and progress of breeding schemes, but could
also permit the reinforcement of local breeds’ conservation strategies by enhancing the
sustainability and profitability of their products.
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