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Simple Summary: Soybean curd residue (SCR) is a potential ruminant feed, offering a rich source of
fiber, protein, and lipids. However, the excessively high water content of SCR may lead to difficulty
in its storage. For ruminants, corn stover and rice straw are common sources of roughage, but these
are often restricted because of their low digestibility. Mixed ensiling of SCR with corn stover (CS) or
rice straw (RS) may provide a solution to the problem of the SCR being difficult to preserve. This
study aimed to evaluate the chemical constituents, fermentation quality, and microbial community of
CS or RS silage mixed with SCR. Such mixing with SCR increased the lactic acid and protein contents
and decreased the pH value, the content of neutral detergent fiber (NDF) and acid detergent fiber
(ADF), ammonia nitrogen concentration, and bacterial diversity in both CS and RS silage mixtures
and improved their nutritional value and fermentation quality as well.

Abstract: The objective of this study was to investigate the fermentation quality and microbial
community of corn stover (CS) or rice straw (RS) silage mixed with soybean curd residue (SCR).
In this study, SCR and CS or RS were mixed at ratios of 75:25, 70:30, and 65:35, respectively, and
measured for nutrient content, fermentation indices, and bacterial diversity after 30 days of ensiling.
The results showed an increase in lactic acid (LA) concentration (p < 0.01) and crude protein (CP)
content (p < 0.0001), a decrease in pH value (p < 0.01), the content of NDF (p < 0.01) and ADF
(p < 0.01), and ammonia nitrogen (AN) concentration (p < 0.01) as the proportion of SCR in raw
materials (CS or RS) increased. The addition of SCR to silage led to a decrease in bacterial diversity
and contributed to an increased relative abundance of beneficial microorganisms, such as Lactobacillus,
and a corresponding decrease in the relative abundance of undesirable microorganisms, such as
Clostridium and Enterobacter. Collectively, the mixed silage of soybean curd residue with corn stover
or rice straw preserved more nutrients and helped improve fermentation quality.

Keywords: soybean curd residue; corn stover; rice straw; mixed silage; fermentation quality;
microbial community

1. Introduction

Soybean curd residue (SCR) is the main byproduct in the process of producing bean
curd (tofu) and soymilk. SCR has a high nutritional value, provides a rich source of fiber,
protein, and lipids, and has potential for use in ruminant feeds [1]. In addition, SCR is a
rich source of bioactive compounds, such as unsaturated fatty acids, isoflavones, phenolic
lignans, phytosterols, coumestans, saponins, and phytates, which not only have biological
activity including antioxidant and antimicrobial properties, but could potentially contribute
to the prevention of cardiovascular disease and even certain types of cancer [2]. The annual
production of SCR reached 2.8 million tons in China in 2012 [1]. Such a large amount of
SCR could result in serious environmental pollution if discarded improperly. However,
the high water content (greater than 80%) and low sugar substrate levels in fresh SCR may
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make it difficult to produce high-quality silage by natural fermentation, increasing the
risk of Clostridium fermentation and nutrient losses and resulting in excessive dry matter
loss, extensive proteolysis, and an increase in butyric acid production, thereby decreasing
feed digestibility, N utilization efficiency, and feed intake [1,3]. However, the problem of
high-moisture content could be solved by mixing with dry agricultural byproducts such as
peanut hulls or straw [4].

Corn stover (CS) and rice straw (RS) are the main residues of corn and rice production
in northeast China and, therefore, are abundantly available annually [5,6]. A large amount
of CS and RS are discarded or inappropriately burned each year, wasting a potential re-
source, and increasing environmental problems. Ensiling is a common preservation method
for straw which can prolong its storage time and provide fodder for ruminants throughout
the year. However, CS and RS contain low levels of crude protein and digestibility as well
as prominent levels of lignin, making them poor candidates for fermentation alone which
would cause rapid protein breakdown and high ammonia production, making it difficult to
ensure feed quality [7,8]. However, several studies have shown that mixed ensiling could
improve silage quality and promote the stability of the fermentation process compared
with sole fermentation [9,10]. Mixed ensiling of SCR with CS or RS may have potential
advantages: (1) CS or RS can serve as water absorbents (reducing the SCR problems of
high water content and poor storage stability) and can provide additional water soluble
carbohydrates (WSC) to promote advantageous silage fermentation; (2) SCR can improve
the nutritional quality by increasing the protein content of fodder; and (3) the isoflavones
and other major bioactive components in SCR could inhibit undesirable bacterial growth,
such as Enterobacter, and may help with protein preservation, reduce nutrient loss, and
improve fermentation quality during ensiling [11]. However, the mixed ensiling of SCR
with CS or RS should be evaluated to determine the effect of different mixed ratios on
fermentation quality. In addition, the microbial community related to mixed ensiling of
SCR with CS or RS has rarely been investigated.

Therefore, this study aimed to investigate: (1) the nutrient content and fermentation
quality of CS or RS silage mixed with SCR; and (2) the microbial community of CS or
RS silage mixed with SCR. This might provide technical support for the preparation of
high-quality silage and its application in ruminant feeding.

2. Materials and Methods
2.1. Raw Materials and Silage Preparation

Soybean curd residue was obtained from a plant for the processing of soy products
(Harbin, China). CS and RS were cultivated at the experimental field of Northeast Agri-
cultural University (Harbin, China). CS and RS were harvested in June 2018 and chopped
to the approximate length of 2 cm using a crop chopper. Soybean curd residue (SCR) and
CS or RS were mixed at ratios of 75:25 (C25/R25), 70:30 (C30/R30), and 65:35 (C35/R35),
respectively. After thorough mixing, the silage mixtures for each treatment (approximately
2 kg fresh weight) were tightly packed separately in polythene bags and sealed by using a
vacuum packing machine; each bag was equipped with a hole that only enabled gas release.
A total of 18 bags (2 materials × 3 treatment ratios × 3 replicates) were prepared and stored
at ambient temperature (25−30 ◦C) for 30 days of ensiling. The silage bags were unsealed
to determine fermentation quality, chemical composition, and bacterial communities after
the 30-day ensilage period.

2.2. Analysis of Microbial Population, Nutritional Composition, and Fermentation Quality

The microbial population was determined according to Ni et al. [10]; 30 g of sample
was evenly mixed with 270 mL of sterilized saline, and then a series of gradient bacterial
solutions were obtained by serial dilution. The lactic acid bacteria were grown at 37 ◦C in
plate count on lactobacilli de Man, Rogosa, and Sharpe (MRS) agar medium (Sinopharm
Chemical Reagent Co., Ltd., Shanghai, China), and colonies were counted 48 h later. Molds
and yeasts were counted on potato dextrose agar medium (Sinopharm Chemical Reagent
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Co., Ltd., Shanghai, China) and then kept in an incubator at 30 ◦C for 2–3 days. Finally,
colonies were counted as the number of viable bacteria in colony forming units (CFU) per
gram of fresh matter (FM).

The dry matter (DM) content of the sample was determined by drying at 65 ◦C for
48 h in a forced-draft oven (DGX-9243B-1, Fuma Laboratory Co., Ltd., Shanghai, China).
The dried sample was pulverized through a 1 mm screen in a grinding machine (FZ102,
Taisite Instrument Co., Ltd., Tianjin, China) and analyzed for crude protein (CP) content
by the methods of the Association of Official Analytical Chemists [12]. The contents of
neutral detergent fiber (NDF) and acid detergent fiber (ADF) were determined following
the methods detailed by Van Soest et al. [13]. Water soluble carbohydrates (WSC) were
analyzed by the method described by Owens et al. [14].

In addition, the sample (20 g) was mixed uniformly with 180 mL distilled water and
suspended in a refrigerator at 4 ◦C overnight for aqueous extraction, and then the extracts
were filtered through four layers of cheesecloth. The filtrate was used for subsequent
determination of the pH value, and the concentrations of organic acids and ammonia
nitrogen (AN). The pH value was measured with a glass electrode pH meter (Sartorius
Basic pH Meter, Göttingen, Germany). The concentrations of lactic acid (LA), acetic acid
(AA), propionic acid (PA), and butyric acid (BA) were measured by high-performance liquid
chromatography (HPLC) [15]. The concentration of ammonia nitrogen was determined
using the indophenol-blue method [16].

2.3. Microbial Diversity Analysis

A 10 g sample was removed from each silage bag and 40 mL sterile saline (0.9% sodium
chloride) was added and mixed thoroughly by vortexing. The filtrate was centrifuged at
10,000 r/m for 10 min at 4 ◦C and the supernatant was discarded. Then, the remaining
sediment was suspended in 3 mL of sterile saline. Genomic DNA was extracted using
the TIAN amp Bacteria DNA Kit (TIANGEN Co., Ltd., Beijing, China) following the
manufacturer’s instructions. The extracted DNA was subjected to PCR using the Q5 High-
Fidelity DNA Polymerase System (New England Biolabs, Ipswich, MA, USA), and the
V3–V4 regions of the 16S rRNA gene were processed for amplification with the primers.
The following primers were used: 338F (5′-ACTCCTRCGGGAGGCAGCAG-3′) and 806R
(5′-GGACTACCVGGGTATCTAAT-3′). Purified DNA was sequenced on an Illumina MiSeq
platform (Illumina, Inc., San Diego, CA, United States) at Baimaike Co., Ltd. (Beijing, China).
The sequences obtained from the MiSeq platform were processed using the open-source
software pipeline QIIME (version 1.8.0).

Alpha diversity indices, Beta diversity, and a bacterial composition histogram were
calculated by QIIME (version 1.8.0) pipeline software. Alpha diversity indices (including
the Chao1 and Shannon) were used for the richness and diversity indices of the bacterial
community. Beta diversity was used to evaluate the differences in bacterial community
compositions in the silage samples and visualized by principal coordinates analysis (PCoA).
Furthermore, the relative abundance of the distinct bacterial communities of each silage
sample was determined at the genus level, and a heatmap analysis was performed. The
Venn diagram and Heatmap were analyzed and drawn using R (version 1.0.8) plotrix and
Pheatmap package, respectively.

2.4. Statistical Analyses

The microbial diversity data, chemical composition, and fermentation quality of silage
were subjected to a one-way Analysis of variance (ANOVA) using the general linear
models (GLM) procedure of the Statistical Analysis System (SAS) software (version 9.3, SAS
Institute Inc., Cary, NC, USA). Statistical significance (p < 0.05) was examined by Duncan’s
test for multiple comparisons.
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3. Results
3.1. Characteristics of Raw Materials before Ensiling

The chemical compositions of SCR, CS, and RS before ensiling are presented in Table 1.
SCR is high in CP content (129.3 g/kg DM) and thus has a high nutritional value. However,
SCR does not meet the requirements of high-quality silage for raw materials (DM content
300–350 g/kg and WSC > 50 g/kg DM) [17] because of the low DM and WSC content
(166.2 g/kg and 22.9 g/kg DM). Low moisture content CS and RS were selected as the
test materials in the present study and the DM content was 922.3 g/kg and 953.9 g/kg,
respectively. Additionally, the DM based (g/kg DM) CP, NDF, ADF and WSC component
contents of CS were 36.7, 659.0, 399.1, and 123.8, respectively. The DM based (g/kg DM)
CP, NDF, ADF, and WSC component contents of RS were 34.0, 652.8, 393.0, and 146.5,
respectively.

Table 1. Chemical composition of soybean curd residue, corn stover, and rice straw (Mean ± SD,
n = 3).

Items 1 Soybean Curd
Residue Corn Stover Rice Straw

DM, g/kg FM 166.2 ± 3.21 922.3 ± 8.45 953.9 ± 5.82
CP, g/kg DM 129.3 ± 0.31 36.7 ± 0.65 34.0 ± 0.94

NDF, g/kg DM 552.9 ± 8.01 659.0 ± 5.49 652.8 ± 5.77
ADF, g/kg DM 300.5 ± 4.26 399.1 ± 5.60 393.0 ± 3.67
WSC, g/kg DM 22.9 ± 0.13 123.8 ± 5.24 146.5 ± 4.65

1 FM, fresh matter; DM, dry matter; CP, crude protein; NDF, neutral detergent fiber; ADF, acid detergent fiber;
WSC, water soluble carbohydrate.

3.2. Nutritional Composition of CS or RS Silage Mixed with SCR

From Tables 2 and 3, the contents of DM, CP, and WSC in each group decreased after
silage. CP losses gradually decreased as the proportion of SCR in raw materials increased.
As shown in Table 3, both SCR and CS mixed silage and SCR and RS mixed silage was
dramatically influenced by the mixing ratio of raw material as measured by the content
of DM, CP, NDF, and ADF (p < 0.01). In addition, the mixing ratio also had a significant
effect on the WSC content in the SCR and CS mixed silage treatment groups (p = 0.0011). By
comparing the chemical composition of SCR mixed with CS or RS, the content of DM, NDF,
ADF, and WSC in the C25 group was significantly lower than that in the other two groups
(p < 0.01), while the CP content was significantly higher than that in the other two groups
(p < 0.01). Similarly, in the SCR and RS mixed silage treatment group, the content of DM,
NDF, and ADF in the R25 group was significantly lower than that in the other two groups
(p < 0.01), while the CP content was significantly higher than that in the other two groups
(p < 0.01).

3.3. Fermentation Quality of CS or RS Silage Mixed with SCR

As shown in Table 4, the pH value was below 4.2 and the number of molds was low
(<2 log10 CFU/g FM) and free of BA in all mixed silage samples. By comparing the organic
acid concentration, pH, and microbial population of SCR mixed with CS or RS, the pH
value, the concentration of LA, AA, and AN, and the population of LAB were dramatically
influenced by the mixing ratio of raw material (p < 0.01). The data support the following
observations, the pH value in the C25 group was significantly lower than that in the C35
group (p = 0.0030), and the concentration of AN was significantly lower than that in the
C30 and C35 groups (p = 0.0016), while the LA concentration and LAB population was
significantly higher than that in the C30 and C35 groups (p < 0.01). On the other hand, pH
value and AN concentration in the R25 group were significantly lower than that in the R30
and R35 groups (p < 0.01), while the LA concentration was significantly higher than that in
the R30 and R35 groups (p = 0.0010) and the LAB population was significantly higher than
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that in the R35 group (p = 0.0004). Additionally, the population of yeast was less than 2
log10 CFU/g FM in the C25 and R25 groups.

Table 2. Chemical composition of each group before mixed silage (Mean ± SD, n = 3).

Items 1 C35 C30 C25 R35 R30 R25

DM, g/kg FM 431.2 ± 6.15 385.7 ± 3.76 349.1 ± 3.74 437.1 ± 3.05 402.9 ± 1.39 361.5 ± 4.42
CP, g/kg DM 96.2 ± 1.24 101.5 ± 0.38 107.1 ± 0.35 95.4 ± 0.63 101.3 ± 0.86 106.5 ± 0.55

NDF, g/kg DM 595.4 ± 1.55 584.8 ± 1.16 578.3 ± 6.77 586.7 ± 2.94 580.2 ± 3.06 574.5 ± 1.49
ADF, g/kg DM 337.2 ± 3.72 330.2 ± 1.54 322.3 ± 1.16 334.9 ± 2.88 326.8 ± 3.89 320.4 ± 2.31
WSC, g/kg DM 58.1 ± 0.51 53.3 ± 1.21 50.8 ± 0.37 67.7 ± 1.59 59.0 ± 1.12 53.7 ± 0.79

1 FM, fresh matter; DM, dry matter; CP, crude protein; NDF, neutral detergent fiber; ADF, acid detergent fiber;
WSC, water soluble carbohydrate; C35 (R35), soybean curd residue: corn stover (rice straw) at 65:35; C30 (R30),
soybean curd residue: corn stover (rice straw) at 70:30; C25 (R25), soybean curd residue: corn stover (rice straw) at
75:25.

Table 3. Chemical composition of soybean curd residue mixed with corn stover or rice straw.

Items 1
Corn Stover Rice Straw

C35 C30 C25 SEM p Value R35 R30 R25 SEM p Value

DM (g/kg FM) 421.0 a 380.1 b 347.9 c 1.87 <0.0001 430.1 a 394.9 b 354.2 c 2.26 <0.0001
CP (g/kg DM) 34.0 c 55.6 b 78.9 a 1.27 <0.0001 29.6 c 52.0 b 75.4 a 0.73 <0.0001

NDF (g/kg DM) 606.3 a 581.4 b 568.3 c 4.36 0.0023 629.7 a 609.3 b 586.0 c 4.78 0.0020
ADF (g/kg DM) 377.0 a 357.6 b 342.3 c 2.27 0.0001 389.3 a 370.7 b 363.6 c 3.01 0.0026
WSC (g/kg DM) 36.5 a 32.3 b 28.6 c 0.77 0.0011 39.2 a 34.7 ab 31.8 c 1.69 0.0560

1 FM, fresh matter; DM, dry matter; CP, crude protein; NDF, neutral detergent fiber; ADF, acid detergent fiber;
WSC, water soluble carbohydrate; SEM, standard error of means; C35 (R35), soybean curd residue: corn stover
(rice straw) at 65:35; C30 (R30), soybean curd residue: corn stover (rice straw) at 70:30; C25 (R25), soybean curd
residue: corn stover (rice straw) at 75:25. a–c Means in the same column followed by different letters differ
significantly (p < 0.05).

Table 4. Organic acids concentration, pH, and microbial population of soybean curd residue mixed
with corn stover or rice straw.

Items 1
Corn Stover Rice Straw

C35 C30 C25 SEM p Value R35 R30 R25 SEM p Value

pH 4.01 a 3.93 b 3.86 b 0.02 0.0030 3.96 a 3.88 b 3.85 c 0.02 0.0019

AN (g/kg TN) 50.8 a 47.8 b 45.1 c 0.59 0.0016 47.5 a 43.6 b 39.9 c 0.67 0.0007

LA (g/kg DM) 15.8 c 18.2 b 21.5 a 0.51 0.0007 11.5 c 14.1 b 16.4 a 0.50 0.0010

AA (g/kg DM) 21.4 b 27.3 a 27.1 a 0.58 0.0006 30.2 b 43.3 a 42.5 a 0.63 <0.0001

PA (g/kg DM) 5.37 2.61 ND - - 4.17 ND ND - -

BA (g/kg DM) ND ND ND - - ND ND ND - -

LAB (log10
CFU/g FM) 7.11 c 7.87 b 8.25 a 0.04 <0.0001 7.33 b 7.85 a 7.96 a 0.06 0.0004

Yeast (log10
CFU/g FM) 2.82 2.48 <2.00 - - 2.84 2.01 <2.00 - -

Mold (log10
CFU/g FM) <2.00 <2.00 <2.00 - - <2.00 <2.00 <2.00 - -

1 FM, fresh matter; DM, dry matter; AN, ammonia-N; TN, total N; LA, lactic acid; AA, acetic acid; PA, propionic
acid; BA, butyric acid; LAB, lactic acid bacteria; CFU, colony forming units; ND, not detected; SEM, standard
error of means. a–c Means in the same column followed by different letters differ significantly (p < 0.05).

3.4. Microbial Community of CS or RS Silage Mixed with SCR

The bacterial community richness and diversity indices in each group of mixed silage
samples are shown in Table 5. All the samples had a coverage index that reached 0.99,
indicating that the identified sequences represented the majority of microbiota in silage. The
results of mixed silage of SCR and CS showed that the Chao1 index first increased and then
decreased as the proportion of SCR in raw materials increased, the Shannon diversity index
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gradually decreased, whereas the Simpson diversity index gradually increased. Group
C30 had the highest Chao1 index. Group C25 had higher Simpson diversity index values
and lower Shannon diversity index values. The results of mixed silage of SCR and RS
showed that the Chao1 index and Simpson diversity index had an increasing trend as the
proportion of SCR in raw materials increased, while the Shannon diversity index gradually
decreased. From Figure 1, the number of overlapping OTUs among the seven groups of
silage samples was 186 for the bacterial communities, and the OTU number of mixed SCR
and CS silage was higher than that of mixed SCR and RS silage. In addition, the OTU
numbers of C30 and R35 were higher than those of the other two groups under the same
treatments.

Table 5. Alpha diversity of the bacterial community of corn stover or rice straw silage mixed with
soybean curd residue.

Item
Corn Stover Rice Straw

C35 C30 C25 R35 R30 R25

Chao1 833.64 901.73 775.93 657.68 707.66 710.39
Shannon 5.91 5.80 5.77 5.59 5.52 5.48
Simpson 0.918 0.948 0.954 0.936 0.943 0.949
Coverage 0.997 0.996 0.997 0.997 0.997 0.997
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Figure 1. The Venn analysis of operational taxonomic units (OTUs) for corn stover or rice straw silage
mixed with soybean curd residue.

Principal coordinates analysis (PCoA) was used to show the differences between the
silage samples in each group according to the distance matrix of beta diversity. PCoA of
bacterial communities for SCR mixed with CS or RS is shown in Figure 2; Axis 1 (18.5%)
and Axis 2 (7.7%) could be interpreted as the proportion of the variance explained by the
respective principal coordinate axis. The projection distance between the CS group and
the RS group in Axis 1 was large, indicating that the bacterial community was clearly
separated. There were some differences in the bacterial community of samples with
different proportions of SCR in the CS group, while the bacterial community distances of
samples with different proportions of SCR were relatively close in the RS group, indicating
that they were not completely separated, and similar bacterial communities might exist.



Animals 2022, 12, 919 7 of 13

Animals 2022, 12, x 7 of 13 
 

samples with different proportions of SCR were relatively close in the RS group, indicat-

ing that they were not completely separated, and similar bacterial communities might ex-

ist. 

 

Figure 2. The unweighted Principal coordinate analysis (PCoA) of bacterial communities for corn 

stover or rice straw silage mixed with soybean curd residue (S, soybean curd residue; C35/R35, soy-

bean curd residue: corn stover/rice straw at 65:35; C30/R30, soybean curd residue: corn stover/rice 

straw at 70:30; C25/R25, soybean curd residue: corn stover/rice straw at 75:25). 

The bacterial communities of each group were identified and 20 dominant bacteria 

were screened. The relative abundances of dominant bacteria in the silage samples at the 

genus level are shown in Figure 3. In the SCR and CS mixed silage treatment groups, 

Rahnella (41.5%) was the dominant genus in the C35 group, followed by Lactobacillus 

(39.6%), Pantoea (3.2%), Serratia (2.7%), and Leuconostoc (1.7%). The relative abundance of 

the dominant bacteria in silage samples gradually changed with the increase in the pro-

portion of SCR in raw materials. The dominant genera in the C30 group were Lactobacillus 

(55.3%), Rahnella (23.8%), Brachybacterium (2.7%), Serratia (2.3%), and Leuconostoc (2.2%). 

The dominant genera in the C25 group were Lactobacillus (66.2%), Rahnella (18.4%), Leuco-

nostoc (2.5%), Lactococcus (2.2%), and Cupriavidus (1.9%). In the SCR and RS mixed silage 

treatment group, Lactobacillus (65.8%), Lactococcus (17.6%), Leuconostoc (8.1%), Cupriavidus 

(2.8%), and Weissella (2.0%) were dominant genera in the R35 group. As the proportion of 

SCR in raw materials increased, the relative abundance of Lactobacillus increased to 77.8% 

in the R25 group, while the relative abundance of Lactococcus, Leuconostoc, Cupriavidus, 

and Weissella decreased to 13.4%, 3.8%, 1.7%, and 0.9%, respectively. From Figure 4, the 

relative abundance of Janthinobacterium of SCR was higher. In the RS treatment group, as 

the proportion of SCR in raw materials increased, the relative abundance of Janthinobacte-

rium and Lactobacillus increased, while that of Weissella and Leuconostoc decreased. In the 

RS treatment group, the relative abundance of Serratia, Pseudomonas, and Rahnella de-

creased with increasing proportions of SCR. 

Figure 2. The unweighted Principal coordinate analysis (PCoA) of bacterial communities for corn
stover or rice straw silage mixed with soybean curd residue (S, soybean curd residue; C35/R35, soy-
bean curd residue: corn stover/rice straw at 65:35; C30/R30, soybean curd residue: corn stover/rice
straw at 70:30; C25/R25, soybean curd residue: corn stover/rice straw at 75:25).

The bacterial communities of each group were identified and 20 dominant bacteria
were screened. The relative abundances of dominant bacteria in the silage samples at the
genus level are shown in Figure 3. In the SCR and CS mixed silage treatment groups, Rah-
nella (41.5%) was the dominant genus in the C35 group, followed by Lactobacillus (39.6%),
Pantoea (3.2%), Serratia (2.7%), and Leuconostoc (1.7%). The relative abundance of the domi-
nant bacteria in silage samples gradually changed with the increase in the proportion of
SCR in raw materials. The dominant genera in the C30 group were Lactobacillus (55.3%),
Rahnella (23.8%), Brachybacterium (2.7%), Serratia (2.3%), and Leuconostoc (2.2%). The dom-
inant genera in the C25 group were Lactobacillus (66.2%), Rahnella (18.4%), Leuconostoc
(2.5%), Lactococcus (2.2%), and Cupriavidus (1.9%). In the SCR and RS mixed silage treatment
group, Lactobacillus (65.8%), Lactococcus (17.6%), Leuconostoc (8.1%), Cupriavidus (2.8%),
and Weissella (2.0%) were dominant genera in the R35 group. As the proportion of SCR
in raw materials increased, the relative abundance of Lactobacillus increased to 77.8% in
the R25 group, while the relative abundance of Lactococcus, Leuconostoc, Cupriavidus, and
Weissella decreased to 13.4%, 3.8%, 1.7%, and 0.9%, respectively. From Figure 4, the relative
abundance of Janthinobacterium of SCR was higher. In the RS treatment group, as the
proportion of SCR in raw materials increased, the relative abundance of Janthinobacterium
and Lactobacillus increased, while that of Weissella and Leuconostoc decreased. In the RS
treatment group, the relative abundance of Serratia, Pseudomonas, and Rahnella decreased
with increasing proportions of SCR.
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Figure 4. Heatmap analysis of the main bacterial community of corn stover or rice straw silage mixed
with soybean curd residue (S, soybean curd residue; C35/R35, soybean curd residue: corn stover/rice
straw at 65:35; C30/R30, soybean curd residue:corn stover/rice straw at 70:30; C25/R25, soybean
curd residue: corn stover/rice straw at 75:25).
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4. Discussion
4.1. Characteristics of Raw Materials before Ensiling

Silage alone SCR may cause clostridial fermentation and nutrient loss and increase
the risk of considerable effluent loss because of the low DM and WSC content [18]. Studies
have revealed that mixing high-moisture feed with drier feedstocks, such as wheat bran,
lowers moisture content and might be helpful in improving fermentation quality [19].
Furthermore, WSC plays a key role in silage fermentation processes, and a WSC content
greater than 50 g/kg DM is critical for successful fermentation. As the major raw materials
of ruminant feedstuff in China, CS and RS have dried sufficiently (922.3 and 953.9 g/kg for
DM content, respectively), and the WSC content are 123.8 and 146.5, respectively, to support
adequate fermentation. In this study, the CP content of SCR was 129.3 g/kg DM which
is much higher than that of CS and RS. According to the properties of the raw materials,
SCR was mixed with CS and RS in different proportions. SCR was used to improve the
nutritional value, and CS and RS were added to absorb water and increase the content of
WSC to improve fermentation quality.

4.2. Nutritional Composition of CS or RS Silage Mixed with SCR

During silage fermentation, the microorganisms in the raw material metabolize sugars
to produce lactic acid, causing the content of DM and WSC to decrease. An increase in the
lactic acid content results in a decrease in the pH value which inhibits the proliferation of
harmful bacteria that require a large consumption of nutrients and helps in the retention
of nutrients such as CP [20,21]. It has been reported that ruminants require more than
70 g/kg DM CP content in their feed to ensure normal ruminal microbial activity, and low
CP content may reduce the proliferation of rumen microbes [22]. In this study, both the CP
content of the C25 and R25 groups complied with the requirements (78.9 and 75.4 g/kg DM,
respectively) and benefited from the abundant protein in the SCR. In addition, the SCR
contained more nutrients and amino acids were abundant. Some nitrogenous substances
were utilized by silage microorganisms, which synthesized the bulk of microbial protein
that could be utilized by ruminants [23], thus demonstrating that the SCR can improve
the nutritional value of feed. The measures of NDF and ADF were important to evaluate
the nutritional value of ruminant feed. NDF and ADF are difficult to digest and absorb
in feed; the acceptability of feed and animal intake decreased as NDF increased, and the
digestibility of the forage decreased as ADF increased [24]. In this study, an increase in the
proportion of SCR decreased the content of NDF and ADF and improved the feeding value
of the mixed silage. The reason for this could be that the fiber content of the SCR was lower
than that of the CS and RS.

4.3. Fermentation Quality of CS or RS Silage Mixed with SCR

Anaerobic environments were created by aerobic microorganisms due to the consump-
tion of oxygen during the early stage of ensiling; aerobic microorganisms’ activity was
inhibited with the growth of anaerobic microorganisms. Meanwhile, anaerobic microorgan-
isms utilize soluble sugars to produce substantial amounts of LA under favored conditions,
causing the pH to drop. In this study, the pH value was below 4.2 in all mixed silage
samples and was in line with quality standards for high-quality silage.

LA concentrations and the abundance of LAB increased, while the pH value decreased
as the proportion of SCR in raw materials increased. This was most likely due to the
presence of multiple bioactive components such as isoflavones in SCR. As a class of im-
portant flavone compounds, soy isoflavones exist in three forms: daidzein, genistein, and
glycitein [25]. In addition, soy isoflavone has better bacteriostatic effects, with two main
mechanisms of action. One mechanism is to destroy the integrity of bacterial cell walls and
increase the permeability of the cell membrane with the result of disrupting normal cell
morphology. Another mechanism is to inhibit the growth and reproduction of bacteria by
affecting DNA, RNA, and protein synthesis [26–28]. Isoflavones in SCR may suppress the
growth and reproduction of undesirable microorganisms such as Staphylococcus, Bacillus,
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Albicans, Listeria, and Enterobacter during ensilage. The relative abundance of lactic acid
bacteria increased with decreasing populations of harmful bacteria because of competition
for limited nutrients, resulting in copious amounts of lactic acid being produced and a rapid
decrease in pH value as well as improving the fermentation quality of mixture silages [29].

In this study, an increased proportion of SCR was accompanied by increased acetic
acid content and two possible reasons that may account for this result. First, the lower levels
of sugar in SCR may induce a further reduction in available sugar content during the silage
process. Under sugar deficiency conditions, the silage mixture tends to transition from
homofermentation to heterofermentation, producing not only lactic acid but also acetic
acid, ethanol, and CO2 [30]. A second reason was that in the acidic environment, there was
a protective mechanism wherein fermentation products transformed into compounds of
weak acidity [31]. Because the acidity of acetic acid (PKa = 4.8) was weaker than that of
lactic acid (PKa = 3.9), a portion of the product was converted to acetic acid. However,
the protective mechanism might have limitations, it will be dampened when an external
condition such as pH value is beyond this limit. This also explains why the content of acetic
acid in the C25/R25 group was similar to the content of acetic acid in the C30/R30 group.

Propionic acid content progressively decreased until it disappeared as the proportion
of SCR in the raw materials increased because propionate-producing mechanisms do not
tolerate low pH values. Compared to lactic acid, acetic acid and propionic acid showed a
stronger ability to inhibit yeast growth, so SCR might contribute to the increased aerobic
stability of the silage mixture [31].

The ammonia nitrogen concentration was related to the degree of protein decom-
position. An ammonia nitrogen concentration that was too high indicated the excessive
decomposition of protein and may be caused by clostridial fermentation. In this study, as
the proportion of SCR in raw materials increased, a rapid pH decline resulted in a lack of
butyric acid, inhibited clostridial fermentation, reduced concentration of ammonia nitrogen,
and reduced the consumption of protein.

4.4. Microbial Community of CS or RS Silage Mixed with SCR

The Alpha diversity analysis mainly included important indicators such as richness,
diversity, and evenness. The Chao1 index of silage mixtures in the C30 and R25 groups
was higher than that of the other silages which suggests the bacterial community richness
of mixture silages in both groups. Shannon diversity gradually decreased while Simpson
diversity gradually increased as the proportion of SCR in raw materials increased, sug-
gesting that the bacterial diversity was gradually reduced. This is probably due to the
fermentation quality of the silage mixture being improved by SCR; the lower pH value
inhibited the growth of harmful bacteria and increased the relative abundance of lactic
acid bacteria which caused a decrease in the diversity of silage microorganisms. It has
been reported that the larger the relative abundance of dominant bacteria, the smaller the
diversity of the microbial community will be [32], which is consistent with the findings of
this study. The number of overlapping OTUs in all silage samples was 186 for the bacterial
communities, indicating that even though the raw materials and ratio were different, some
similar microbial communities were still involved in silage processes.

The beta diversity elucidated the change in bacterial communities in the silage mix-
tures. Compared with principal analysis (PCA), principal coordinates analysis (PCoA)
takes the distance of the sample as a whole to consider, which was more consistent with the
characteristics of the ecological data. Figure 2 shows that the bacterial communities of the
two mixture silages were clearly separated which suggested that the silage raw materials
had an impact on the composition of the microbial community. In addition, the silage
mixture in the CS group was greatly affected by the ratio of raw materials, while the ratio
of raw materials had less impact on the silage mixture in the RS group.

It was reported that the difference in microbial communities could be a critical factor
in contributing to differences in silage quality [33]. During the silage process, bacteria
such as Lactobacillus, Weissella, and Lactococcus are the main microbial species involved
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in acidogenic fermentation, whereas their ability to tolerate acid stress differs [10]. From
Figure 3, the increase in SCR was accompanied by a drop in the pH value and an increase
in the relative abundance of Lactobacillus, while the relative abundances of Leuconostoc,
Lactococcus, and Weissella were decreased. This is attributed to the fact that these bacteria
were outcompeted by acid-resistant Lactobacillus during the late phases of silage. In the
silage mixtures of SCR and CS, Rahnella (18.4–41.5%) was the dominant bacteria in addition
to Lactobacillus. Rahnella is a beneficial microbe in the plant rhizosphere and belongs to the
Enterobacteriaceae family, which can inhibit the growth of phytopathogenic fungi and can
improve the growth status of plants by nitrogen fixation [34,35]. This may be beneficial for
the preservation of protein and decrease in the concentration of ammonia nitrogen.

Some studies have demonstrated that microbial metabolism would result in nutrient
consumption during silage. DM is an important indicator to evaluate the nutrient contents
of the silage mixture. DM content decreased with prolonged ensilage time [3] which was
consistent with the findings of this study. In these mixed silages, Lactobacillus, Lactococcus,
Leuconostoc, and Weissella were the dominant bacterial species with high relative abundance
which decomposed the sugar substrate into compounds such as lactic acid, resulting
in the decrease in WSC content. Protein breakdown was mostly caused by Clostridium
fermentation and a relatively high plant protease activity during silage [36]. In this study,
CP losses gradually decreased with the increase in the proportion of SCR in raw materials.
The reason for this result could lie in the lower relative abundance of Clostridium. Moreover,
a rapid decrease in pH with the increase in the relative abundance of Lactobacillus, results
in a decrease in plant protease activity in the silage mixture, inhibiting the breakdown of
protein.

Fermentation of Clostridium leads to the breakdown of protein, and Enterobacter and
lactic acid bacteria also compete for the limited nutrient composition, so Clostridium and
Enterobacter were not conducive to maintaining the fermentation quality and nutrient of
mixed silage. It is worth noting that among all silage mixtures, Clostridium and Enterobacter
were present at an exceptionally low relative abundance. This is probably due to their
poor acid tolerance [37] or was possibly caused by a bacteriostatic effect of isoflavones in
SCR. It was reported that Pantoea could reduce the concentration of ammonia nitrogen
and Serratia could produce prodigiosin which inhibited the growth of fungi [32,38]. In
this study, the relative abundance of Pantoea and Serratia decreased as the proportion of
SCR in raw materials increased and was probably due to Pantoea and Serratia’s similarity to
Rahnella, also belonging to Enterobacteriaceae families, exhibiting a somewhat lower survival
rate in an acidic environment.

Interestingly, Figure 4 shows the high relative abundance of Janthinobacterium in SCR
which creates violacein in the fermentation process. Violacein inhibits most Gram-positive
bacteria such as Bacillus subtilis and Staphylococcus aureus and was inhibitory to the prolifer-
ation of fungi such as Yeast [39]. This may also be a reason why increased SCR could inhibit
the growth of harmful bacteria in this study. In addition, violacein has biological activities
as an antioxidant, anti-parasitic, anti-diarrheal, and immunomodulatory agent [40]. In
conclusion, SCR could enhance mixture silage quality by beneficially mediating the change
in the microbial community.

5. Conclusions

A better quality of nutrition and fermentation was shown by mixed silage with 75%
SCR and 25% CS as well as 75% SCR and 25% RS. The nutrients and bioactive constituents
in SCR contribute substantially to inhibiting protein degradation during silage as well as
preserving the nutritional value and fermentation quality of silage mixtures by influencing
the composition of the microbial community structure, increasing the relative abundance of
beneficial microorganisms, and decreasing the relative abundance of undesirable microor-
ganisms.
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