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Simple Summary: The health of dairy cows is important for milk quality and the health of the
mammary gland. Traditionally, teat-end health has been assessed manually through visual inspection
of teat-end callosity thickness and roughness (i.e., hyperkeratosis), which is a risk-factor for mas-
titis. Here, we describe a computer-vision approach to replace the time-consuming and expensive
manual assessment of teat-end hyperkeratosis. Using separable confident transductive learning, a
convolutional neural network is trained with the goal of increasing the feature differences in the
images of teat-ends with different classifications of hyperkeratosis. When compared with the tra-
ditional approach of transfer learning of a convolution neural network for classifying the extent of
hyperkeratosis, the overall accuracy of our model increased from 61.8 to 77.6%. This substantial
improvement in accuracy renders the possibility of using image-based machine learning to routinely
monitor hyperkeratosis on commercial dairy farm settings.

Abstract: Teat-end health assessments are crucial to maintain milk quality and dairy cow health.
One approach to automate teat-end health assessments is by using a convolutional neural network
to classify the magnitude of teat-end alterations based on digital images. This approach has been
demonstrated as feasible with GoogLeNet but there remains a number of challenges, such as low
performance and comparing performance with different ImageNet models. In this paper, we present
a separable confident transductive learning (SCTL) model to improve the performance of teat-end
image classification. First, we propose a separation loss to ameliorate the inter-class dispersion.
Second, we generate high confident pseudo labels to optimize the network. We further employ
transductive learning to narrow the gap between training and test datasets with categorical maximum
mean discrepancy loss. Experimental results demonstrate that the proposed SCTL model consistently
achieves higher accuracy across all seventeen different ImageNet models when compared with
retraining of original approaches.

Keywords: transductive learning; dairy cows; teat-end health assessments

1. Introduction

Mastitis remains one of the most frequently occurring diseases in dairy cows, often
arising from intramammary infections by way of the teat canal. Machine milking can affect
teat canal integrity and lead to increased teat-end callosity, which can increase the risk of
bacterial infections of the mammary gland [1]. Frequent monitoring of teat-end callosity is
critical for a mastitis prevention program [2]. However, cow-side manual assessments of
teat-health, which is the current best practice, is time-consuming and suffers from inter- and
intra-rater variability [3]. Another challenge is the inability to assess the entire herd in large
dairy farms. To address some of these challenges, deep learning (DL) has been proposed
where GoogLeNet transfer learning was used to classify the extent of hyperkeratosis using
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a four-level classification scheme [4]. The overall accuracy of this approach was 46.7–61.8%,
suggesting feasibility but, as of yet, insufficient accuracy to be useful as a clinical decision
tool. As shown in Figure 1 with a t-SNE map, the training (red) and test (blue) data are
observed as mixed together after retraining GoogLeNet and unable to discriminate the four
classes. The indistinct boundaries of the classes lead to another challenge to improve the
performance of the teat-end condition classification problem.

In this paper, we propose a new paradigm that yields a substantial improvement in
accuracy of teat-end image classification while retaining the flexibility and accessibility of
commonly used ImageNet classifiers such as AlexNet [5], GoogLeNet [6], Xecption [7], and
NasNetLarge [8]. To address the aforementioned challenges, we aggregate four different
loss functions in one framework: classification loss, separation loss, pseudo labeled test
data classification loss, and categorical maximum mean discrepancy (MMD) loss. As shown
in Figure 2, using these proposed novel loss functions, our model can realize the inter-class
dispersion and intra-class compactness. This paper provides three specific contributions:

1. We propose a novel separable confident transductive learning model (SCTL) to im-
prove accuracy for the teat-end image classification. To improve the discrimination
of different classes, we first propose a separation loss to enlarge the dissimilarity
between different categories.

2. We develop a pseudo labeling adjustment learning paradigm to continuously generate
high confidence examples for the test data and further optimize the network with test
data information.

3. We narrow the gap between intra-class differences between training and test data
with transductive learning by minimizing categorical MMD loss and further align the
condition distribution between training and test data.

In this study, we performed experiments with seventeen benchmark ImageNet models
by optimizing these loss functions and increasing the way that differences are detected
between the images. The accuracy of our SCTL model with GoogLeNet is increased from
61.8 to 77.6%. This substantial increase in accuracy may render image-based hyperkeratosis
classifications feasible on commercial dairy farm settings.

Figure 1. t-SNE [9] view of training (blue) and test (red) dataset from a retrained GoogLeNet [4].
Different categories are mixed together after training.
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Figure 2. The learning scheme of our proposed SCTL model. We first fine-tune the classifier f
from seventeen well-known ImageNet models and then make predictions for the training (XR) and
test datasets (XT ). For the training data, we minimize the typical cross-entropy loss (LCE) and the
separation loss (LS) to improve the inter-class dispersion. For the test data, we generate confident
pseudo labeled examples ({C(XT t ), C(YT t

P
)}) in the t adjustment learning, and then we minimize the

pseudo labeled test data cross-entropy loss (LT
CE). To reduce the dataset differences, we also develop

a categorical maximum mean discrepancy loss LCMMD to improve intra-class compactness.

2. Related Work
2.1. Teat-End Classification

In the dairy industry, mastitis, which is an inflammation of one or more of the cow’s
mammary glands, is a frequently occurring disease that affects dairy cow health and milk
quality. Mechanical stresses on the cow’s teat-end can evoke circulatory changes to it and,
over the course of several weeks, can result in increased teat-end callosity thickness and
roughness [10]. These changes to the teat-end can increase the risk of pathogenic bacteria
infiltrating the cow’s udders. To monitor and reduce these risks, regular inspections of the
dairy cow’s teat-end health is recommended [11]. This is achieved by manually inspecting
the teat-ends of at least 20% of the cows in the herd [12]; however, herd-level assessments
are time-consuming, expensive, imprecise, and subjective [3]. Four classes scoring of
hyperkeratosis is a standard classification that is usually used in cow teat-end classification
(Score 1: no ring; Score 2: smooth ring; Score 3: rough ring; Score 4: very rough ring) [13].

Transfer learning has been applied in various computer vision tasks whose perfor-
mance relies on the diversity of image data and fine-tuning of network parameters. With
the invention of different ImageNet models, transfer learning has been widely adapted
in image classification, objection detection, and segmentation problems. Porter et al. [4]
recently described a machine-learning approach where images of teat-ends could be used
to train a convolution neural network (CNN), such as GoogleNet, to classify the extent of
teat-end hyperkeratosis using a four-point scoring system. Although the overall accuracy
of our original approach on test data showed promise of automatic teat-end assessment,
the accuracy was relatively low, which highlighted the need for improvement.

2.2. Transductive Learning

Transductive learning (TL) is a process that trains both labeled training data and
unlabeled test data [14,15]. It is generally used in semi-supervised learning scenarios.
Different from frequently used supervised inductive classification, which aims to train
a classification model based on the labeled training data to approximate test data class
distribution, the goal of transductive learning is to find an admissible function using the
unlabeled data to improve classification performance [16]. The key idea of TL is that the
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predicted labels for the test samples are viewed as optimization variables, which can be
iteratively updated in the training process [17]. When TL is applied, it is often assumed that
the training and test sets share a similar distribution [18]. As shown in Figure 1, the training
and test sets are not separated, suggesting they are sampled from the same distribution.
This observation has motivated us to employ TL for teat-end image classification and, as of
yet, has not yet been explored in our specific problem.

2.3. Pseudo Labeling

The purpose of pseudo labeling is to seek the generation of labels or pseudo labels
for unlabeled data to guide the learning process [19]. Pseudo labeling typically generates
pseudo labels for the unlabeled data either based on hard assigned labels (the predictions
from neural network [17,20]) or the predicted class probability [21–23]. Under such a regime,
label information from unlabeled data can be included during training. In deep networks,
the classifier from the training data is usually treated as an initial pseudo labeler to generate
the pseudo labels for the test data (and use them as if they were real labels). There are several
algorithms for obtaining pseudo labels and promote the performance of unlabeled data.
Xie et al. [22] proposed a Moving Semantic Transfer Network (MSTN) to develop semantic
matching and domain adversary losses to obtain pseudo labels. Iscen et al. [24] assigned
pseudo labels to unlabeled samples based on neighborhood graphs. Zhang et al. [25] offer
a label propagation with augmented anchors method to improve label propagation via the
generation of unlabeled virtual samples with label prediction. Haase et al. [26] trained re-
initialized networks and unlabeled datasets on each partition. The trained networks were
used to filter the labels for training the newer networks. However, most of their experiments
are conducted based on noisy data. Although previous pseudo labeling approaches are
general and domain-agnostic, they tend to underperform since noisy pseudo labeled
samples degrade model performance. In addition, most pseudo labeling methods employ
a two-stage paradigm. The pseudo labels in the first stage (using the trained training data
classifier) are generated and then used to train the model along with the labeled training
data in the second stage. Our work differs from these approaches by generating high
confidence examples with adjustment learning using a novel scheme, which allows for
competitive results for teat-end image classification.

3. Methods
3.1. Motivation

The scientific goal of our paper is to develop a fully automated deep learning model
that can accurately identify different categories of dairy cow teat-end conditions. The
utilitarian goal is to detect hyperkeratosis of the teat-end area (Score 3 and Score 4) in the
commercial dairy farm setting. Our research problem is the teat-end image classification
task, and we aim to improve the classification accuracy using transductive learning and
pseudo labeling.

3.2. Problem

Let D be a dataset and subscripts R and T refer to training or testing subsets of
the data. Image classification can be formulated as the problem of learning a classifier f
from a set of training data, DR = {(X i

R,Y i
R)}

NR
i=1, where yi is the ground-truth label in C

categories corresponding to xi, and NR is the number of samples in the training dataset. In
our setting, f is a classifier from the CNN. The goal of a vanilla image classification problem
is to improve the accuracy of the unlabeled T dataset examples: DT = {(X j

T ,Y j
T )}

NT
j=1.

However, due to the diversity of the datasets and fuzzy differences between different
categories, the accuracy of test samples remains difficult to improve.

3.3. Transfer Learning

With the emergence of different ImageNet models, fine-tuning one of the ImageNet
models with transfer learning is often applied in classifying new datasets. The parameters
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of these different ImageNet models are fit by optimizing a typical categorical cross-entropy
(CE) loss function L

LCE = − 1
NR

NR
∑
i=1

C

∑
c=1
Y i
Rc

log( fc(X i
R)), (1)

where Y i
Rc
∈ [0, 1]C is the binary indicator of each class c in true label for observation

Φ(X i
S ), and fc(X i

R) is the predicted probability of class c using classifier f .

3.4. Separation Loss

As shown in Figure 1, different classes of training and test datasets are mixed together.
The decision boundary for the trained network remains fuzzy, leading to poor model
performance and low accuracy of teat-end classification. Hence, it is necessary to improve
the discrimination between different classes.

The purpose of a new separation loss function, LS , is to improve the inter-class
dispersion so that the boundaries between different categories can be separable, and
samples in the same categories can be more closely associated with each other. The core
part of separation loss is to reduce the similarity between different classes. Since the network
is trained using batch-wise samples, we inevitably encounter situations where the number
of samples in different classes are imbalanced. We hence calculate the covariance matrix
of the output of each categories’ samples and then minimize the structural similarity [27]
between each two categories’ covariance matrix as follows.

LS =
1

∑C−1
i=1 ∑C

j=i+1

C−1

∑
i=1

C

∑
j=i+1

|SSIM(COV(ci( f (B(XR)))), COV(cj( f (B(XR)))))|, (2)

where B represents batch-wise data, ci/j generates the categorical output by ci/j( f (B(XR)))
= f (B(X YR==i/j)

R ). COV calculates the covariance matrix of categorical features as in
Equation (3) and | · | takes the absolute value to accelerate the convergence.

COV =
1
NB

NB

∑
z=1

(Bz
Z − µZ )(Bz

Z − µZ )
T , where µZ =

1
NB

NB

∑
z=1

Bz
Z (3)

where µZ is the data mean and BZ is either ci( f (B(XR))) or cj( f (B(XR))). The SSIM can
be computed in Equation (4).

SSIM(B1, B2) =
(2µB1 µB2 + C1)(2σB1B2 + C2)

(µ2
B1

+ µ2
B2

+ C1)(σ
2
B1

+ σ2
B2

+ C2)
(4)

where B1 = COV(ci( f (B(XR)))) and B2 = COV(cj( f (B(XR)))) are batch-wise features,
µB1 , µB2 , σB1 , σB2 , and σB1B2 are mean, standard deviations of domain invariant and specific
features batch, and cross-covariance for (B1, B2). C1 and C2 are two variables to stabilize
the division with weak denominator. This loss function is derived from structural similarity
index measure (SSIM) [27]. It has the advantages of measuring luminance, contrast, and
structural difference between B1 and B2. Therefore, LS has more capability of measuring
the similarity between any two different categorical samples. In addition, the range of the
LS is from 0 to 1, where 1 indicates high similarity between batch features and 0 means
they are not similar.

During the training, minimizing LS can lead to the minimal similarity between each
of the two categories. Hence, it can achieve the inter-class dispersion.

3.5. Confident Pseudo Labeling

By combining separation loss with cross-entropy loss, we can improve the discrimina-
tion of classifier f using training dataset. To improve the performance of the test dataset,
we leverage transductive learning to mitigate the difference between the training and
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test datasets. Transductive learning can train both labeled training data and test samples
(without true labels); hence, the difference between them can be minimized [15].

To obtain knowledge from the test dataset, we first generate confident pseudo labels.
Previous work either utilized hard pseudo labels or predicted class probability. In contrast
to previous approaches, we aim to continuously train the new confident pseudo labeled
test data. In this stage, we also take advantage of the initial training classifier f to generate
initial pseudo labels and examples for the test data. We define a confident pseudo label in
the following equation.

C(Y j
TP ) = arg max

c∈C
{ fc(X j

T )} if max( fc(X j
T )) > p, (5)

where C represents confidence. C(Y j
TP ) is the confident label and C(X j

T ) is its corresponding

confident sample. Here, fc(X j
T ) is the predicted probability in class c given the observation

X j
T . max(·) takes the dominant class probability, and it is higher than the threshold p, and

p is between 0 and 1. The confident samples and their confident labels are able to push the
decision boundary of classifier f toward the test dataset.

We can construct a pseudo label test domain DP = {X n
P ,Yn

P}
NP
n=1, which consists of

confident test examples with its confident pseudo labels, where NP ≤ NT , XP = C(XT )
and YP = C(YTP ), and NP is controlled by p. NP = 0 if p = 1, and NP = NT if p = 0.

However, this pseudo labeling method generates confident pseudo labels with only a
single high probability. The classifier f can be updated in the early stages of training but
may not be able to train more examples on successive iterations since all high probability
samples are treated as confident samples. Therefore, we propose to continuously generate
confident examples in T times adjustment learning so that the classifier f could be updated
in each adjustment learning. In adjustment learning, the pseudo label test domain becomes:

Dt
P = {X n

P t ,Yn
P t}
NP t
n=1 , where XP t = C(XT t) and YP t = C(YT t

P
), and t is between [1, T]. To

remove noisy pseudo labels of the predicted target domain in every t, we set the number
of t-th updated domain NP t is not larger than the target domain sample size NT , which
means NP t ≤ NT .

C(Y j
T t
P
) = arg max

c∈C
{ fc(X j

T t)} if max( fc(X j
T t)) > pt. (6)

In addition, C(Y j
T t
P
) is updated using Equation (6) with probability threshold pt of every

t, it also meets the requirements (pt+1 ≤ pt and 0 ≤ pt ≤ 1), and we could obtain
confident examples and pseudo labels during each t-th iteration and the classifier f will
lean toward the test data. In T times iterations, we then form a set of probability threshold
as pT = {pt}T

t=1. This approach produces confident examples and pseudo labels in each
recurrent training interval.

During training, the constructed pseudo labeled test data domain Dt
P will keep op-

timizing the trained classifier f after minimizing cross-entropy loss and separation loss
functions. The pseudo labeled test data are also minimized by the cross-entropy loss.
Therefore, the loss function for Dt

P in each training iteration is given by:

LT
CE = − 1

NP t

NP t

∑
n=1

C

∑
c=1
Yn
P t

c
log( fc(X n

P t)), (7)

where NP t is the number of confident samples of t-th adjustment learning. Yn
P t

c
∈ [0, 1]C is

the confident pseudo labeled binary indicator of each class c for the confident sample X n
P t

in the t-th adjustment training, and fc(X n
P t) is also the predicted probability of each class c

given the input of confident sample X n
P t .
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3.6. Categorical Maximum Mean Discrepancy

The proposed confident pseudo labeling process can optimize the network parameters,
and it is not necessary to minimize the differences between the training and test data. To
reduce the discrepancy between training and test data, we also compute the maximum
mean discrepancy (MMD) loss [28], which is a frequently used distance-based loss function
that reduces the divergence between the training and test data. However, MMD loss in
conventional form focuses on only the marginal distribution alignment, which is more
suitable for large domain divergence problems. As shown in Figure 1, the training and test
data overlap, suggesting the marginal distribution alignment is not important for these
cow teat images. Due to the fuzzy boundaries between different categories, conditional
distribution alignment is required. Hence, we propose a categorical MMD (CMMD) loss,
which attempts to align the conditional distribution of each category of training and
test data.

LCMMD =
1
C

C

∑
c=1

(
1
N 2
Rc

NRc

∑
i,j

κ(Li
Rc , Li

Rc) +
1
N 2
P c

NPc

∑
i,j

κ(Li
T c , Lj

T c)−
2

NRc · NP c

NRc ,N c
P

∑
i,j

κ(Li
Rc , Lj

P c)), (8)

where NRc and NP c are the number of samples in each class of training and confident
pseudo labeled test data, LRc = f (XRc), and LT c = f (XP c). XRc and XP c are categorical
samples. This proposed CMMD loss measures the discrepancy between training and
test datasets.

3.7. SCTL Model

The framework of our proposed SCTL model is depicted in Figure 2. Combining all
loss functions, our model minimizes the following objective function:

L(XR,YR,XT ) = arg min(LCE + αLS + βLT
CE + γLCMMD) (9)

whereLCE is the source classification loss, LS is the separation loss, andLCMMD minimizes
the categorical distance between training and test data. LT

CE is cross-entropy loss for
confident pseudo labeled test data. α, β, and γ are three trade-off parameters. Figure 3
shows a toy example of our SCTL model. The overall training algorithm is shown in
Algorithm 1.

Figure 3. A toy example of our SCTL learning paradigm. The blue color is the training data, and the
red color is the test data. “Original” is the binary classification problem, “CE” refers to performing
cross-entropy loss in training data, “CE + S” minimizes the proposed separation to enlarge differences
between the two classes. “CE + S + TCE” can additionally minimize the pseudo labeled test data using
the cross-entropy loss. “CE + S + TCE + C” adds another categorical maximum mean discrepancy
loss to reduce the divergence between training and test data and form our SCTL model.
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Algorithm 1 Separable Confident Transductive Learning Network. B(·) denotes the mini-
batch sets, I is the number of iterations. pT = {pt}T

t=1, and T is the number of adjustment
learning. itert is the t-th adjustment learning.

1: Input: labeled training data DR = {(X i
R,Y i

R)}
NR
i=1 and unlabeled test data DT =

{X j
T }
NT
j=1

2: Output: predicted test labels
3: repeat
4: Derive batch-wise data (B(XR), B(YR)) and B(XT ) from DR and DT
5: for iter = 1 to I do
6: Train classifier f using Equations (1) and (2)
7: if iter = itert then
8: Get pt
9: end if

10: Generate confident pseudo test labels C(YT t
P
) using Equation (6)

11: Optimize f using Equation (7)
12: Minimize the differences between training and test data using Equation (8)
13: Minimize overall loss with Equation (9)
14: end for
15: until converged
16: Make prediction for test samples based on trained classifier f

4. Experiments
4.1. Datasets

We utilize the dataset from [4]. A total of 398 digital images of dairy cows on two
commercial New York dairy farms were obtained: farm A milked approximately 1600
Holstein cows in a 60-stall rotary parlor, and farm B milked approximately 4000 Holstein
cows in a 100-stall rotary parlor. Thus, our dataset includes 398 dairy cows, and a total
of 1529 teat images were extracted in four categories (Score 1, Score 2, Score 3, and Score
4). A total of 380 teat images (around 70 cows) were utilized for the test dataset. For a fair
comparison of different algorithms, we split the dataset into training (75%, 1149 images,
around 288 cows) and test (25%, 380 images, around 70 cows) datasets. All results are
reported based on the test dataset. Table 1 shows the statistics of the teat-end images
dataset. Scores 3 and 4 are not common compared with Scores 1 and 2.

Table 1. Statistics of training and test data.

Label
Training Test

Number Percentage Number Percentage

Score 1 450 39.2 149 39.2
Score 2 491 42.7 163 42.9
Score 3 187 16.3 62 16.3
Score 4 21 1.8 6 1.6

4.2. Implementation Details

As shown in Figure 2, we utilize seventeen different ImageNet models as the backbone
network during the training. The parameters during the training are epochs (100), batch size
(16), learning rate (3 × 10−5), (α = 0.3), (β = 1), (γ = 0.5), (T = 3), and pt = {0.9, 0.8, 0.5}.
We report the accuracy of test dataset by: Accuray = 1

NT ∑NTi=1(Y
j
TP == Y j

T )× 100. We also
compare our results with [4] and conduct an ablation study to show the effect of different
loss functions on classification accuracy. Since four categories are unbalanced, we also
assigned the weight to each class according to the number of each category in the training
dataset, and the assigned weights are [0.71, 0.65, 1.70, 15.17] for four categories, respectively.
We implement our approach using PyTorch (version 1.7.1, CUDA version: 11.1). The model
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has trained on a Dell Latitude 7420 laptop (Windows 10) with 16 GB RAM using GeForce
1080 Ti GPU.

4.3. Results

As shown in Table 2, we compared the accuracy of seventeen different ImageNet
models. We observe that our proposed SCTL with GoogLeNet achieves the highest accuracy
when compared with all other models. Moreover, there is consistent improvement across
seventeen different ImageNet models, and we achieve 4.9% average improvement. We
conclude that our proposed SCTL model improves the performance of ImageNet models.
The accuracy of each category of the top-4 highest accuracy model is shown in Table 3. Our
model with GoogLeNet has the highest accuracy in the Score 4 category, suggesting our
SCTL paradigm is able to handle the unbalanced class problem. Score 4 corresponds to the
teat-end condition with the highest degree of hyperkeratosis. This result further indicates
the SCTL model can improve inter-class dispersion since SCTL can improve the accuracy in
detecting severe teat-end affection even with a small number of training samples. Although
the performance of Score 3 is slightly lower than NasNetLarge-SCTL, it is still much
higher than DenseNet161-SCTL and DenseNet201-SCTL. The confusion matrixes of these
four models are shown in Figure 4. We find that GoogLeNet-SCTL achieves the highest
performance, and it has better performance than the other three models in Scores 1 and
4. When compared with earlier work [4], our model improves performance by 15.8%; our
SCTL model substantially enhances the accuracy of teat-end image classification datasets.
We also notice that the accuracy of “Original” with GoogLeNet, which only minimizes
the cross-entropy loss, is still higher than the result from [4]. One possible explanation for
the difference is that Porter et al. [4] trained GoogLeNet using MATLAB, while our model
uses PyTorch. We also compare results from one transductive learning model (GSM) and
three domain adaptation methods (DAN, DCORAl, and CAN). Experimental results show
that our GoogLeNet-SCTL still achieves the highest performance. Tables 4 and 5 display
findings from the ablation studies.

Table 2. Accuracy of different ImageNet models and the ablation study. GoogLeNet demonstrated
the highest accuracy and greatest improvement when adopting SCTL.

Networks SCTL Original Improvement

SqueezeNet [29] 68.2 67.4 0.8
AlexNet [5] 69.5 67.1 2.5
GoogLeNet [6] 77.6 64.2 13.4
ShuffleNet [30] 66.3 64.5 1.8
ResNet18 [31] 75.3 72.6 2.7
VGG16 [32] 73.4 66.8 6.6
VGG19 [32] 74.5 67.9 6.6
MobileNetv2 [33] 72.6 70.5 2.1
ResNet50 [31] 72.9 70.8 2.1
ResNet101 [31] 74.0 68.4 5.6
DenseNet161 [34] 75.5 72.9 2.6
DenseNet201 [34] 76.8 70.5 6.3
InceptionV3 [7] 73.7 71.6 2.1
Xception [35] 75.0 70.5 4.5
InceptionResNetV2 [36] 72.1 66.3 5.8
NasNetLarge [8] 76.8 68.2 8.6
EfficientNetB7 [8] 74.7 71.3 3.4

Average 73.5 68.6 4.9

GoogLeNet [4] - 61.8 15.8
GSM [15] - 65.2 12.4
DAN [37] - 62.1 15.5
DCORAL [38] - 63.8 13.8
CAN [39] - 67.4 10.2
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Table 3. Accuracy of each class in the test dataset. Shown in bold are the highest performance of a
network for each score. Note that no single network achieves the highest accuracy for all scores.

Networks Score 1 Score 2 Score 3 Score 4 Ave.

DenseNet161-SCTL 83.9 75.5 61.3 16.7 75.5
DenseNet201-SCTL 85.2 77.3 62.9 0.0 76.8
NasNetLarge-SCTL 86.6 71.2 74.2 16.7 76.8

GoogLeNet-SCTL 87.3 72.4 71.0 50.0 77.6

Figure 4. Confusion matrix of DenseNet161-SCTL, DenseNet201-SCTL, NasNetLarge-SCTL, and
GoogLeNet-SCTL models. (a) DenseNet161-SCTL, (b) DenseNet201-SCTL, (c) NasNetLarge-SCTL,
(d) GoogLeNet-SCTL.

To demonstrate the effects of different loss functions (LS: “S” (separation loss),LT
CE: “T”

(cross-entropy loss of confident pseudo labeled test data), and LCMMD): “C” (categorical
MMD loss) an ablation study in shown in Table 5. Notice that cross-entropy loss is required
for the training data. “SCTL-T-S-C” is implemented without LT

CE, LS, and LCMMD loss.
It only reduces training data cross-entropy loss. “SCTL-T-S” minimizes the cross-entropy
loss and categorical MMD loss. “SCTL-C” reports results without performing categorical
MMD loss. Based on the average accuracy, we find LS > LCMMD > LT

CE. Therefore, the
proposed separation loss, categorical MMD loss, and confident pseudo labeling approaches
are effective in improving the performance of the test dataset. To show the effectiveness of
our proposed LS, LT

CE, and LCMMD , we also conducted an ablation study to show different
variants of them. In Section 3.4, we utilize the SSIM to measure the similarity between
the training and test data, and we take an absolute value to accelerate the convergence.
As shown in Table 4, we report the accuracy and the number of convergence of different
variants of our proposed separation loss. We find that Jaccard similarity has a lower
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accuracy than cosine similarity, although it has a longer convergence number. Furthermore,
compared with LS without taking the absolute value (w/o abs.), our model achieves high
accuracy with the fastest convergence times. When comparing LCMMD with original
MMD loss, our proposed loss function still achieves better accuracy and requires fewer
training iterations. Our proposed confident pseudo labeling with adjustment learning is
again better than the pseudo label strategy in [20]. Therefore, our proposed loss functions
can fast and accurately improve classification accuracy.

Table 4. Ablation study of LS and LCMMD .

Method Accuracy # Convergence

Cosine similarity 75.3 92
Jaccard similarity 74.5 83
w/o abs. 76.8 78

MMD 76.3 75

PL [20] 75.5 83

SCTL 77.6 70

Table 5. Ablation study of different loss functions on test accuracy.

Loss Accuracy

SCTL-T-S-C 64.2
SCTL-T-S 66.6
SCTL-T-C 71.1
SCTL-S-C 72.9
SCTL-T 74.7
SCTL-S 72.1
SCTL-C 74.4

SCTL 77.6

4.4. Parameter Analysis

There are five hyperparameters α, β, γ, T, and pt in our SCTL model. α, β, and
γ are three trade-off parameters to balance the weight between separation loss, pseudo
labeled test cross-entropy loss, and categorical MMD loss. T and pt control the number of
adjustment learning and the probability of selecting the confident examples, respectively.
To obtain the optimal parameters, we use GoogLeNet as the backbone network. We first
show the influence of α, β, and γ on test data accuracy. α, β, and γ are selected from
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} and fix one parameter while varying the others.
As shown in Figure 5a, the x-axis represents that different values of α, β, and γ. We
observed that the test data accuracy achieves the highest value when α = 0.5, β = 1, and
γ = 0.3, respectively. T is selected from {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and pt is selected from
{0.9, 0.8, 0.7, 0.6, 0.5}. Since we need to obtain confident examples, p1 should be a very
high probability. Thus, we set p1 ≥ 0.5. For t > 2, pt is selected from {0.9, 0.8, 0.7, 0.6, 0.5}
and require pt ≥ pt+1. As shown in Figure 5b, we observed that our model achieves the
highest test data accuracy when T = 3. We then examined how different pt values affect
the accuracy in Figure 6. We observed that when pt = {0.9, 0.8, 0.5}, the highest accuracy
in the test data is achieved. By carefully examining these parameters and their influence on
overall performance, we find the best hyperparameters for our SCTL model are: α = 0.5,
β = 1, γ = 0.3, T = 3, and pt = {0.9, 0.8, 0.5}.
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(a) (b)

Figure 5. Parameter analysis for α, β, γ, and T. The effect of different α, β, and γ on test accuracy is
shown in (a), and effect of different T on test accuracy is shown in (b). When α = 0.5, β = 1, and
γ = 0.3, and T = 3, accuracy is highest.

Figure 6. Effect of different pt on test accuracy.

4.5. Feature Visualization

To further demonstrate the effectiveness of different loss functions, we utilize t-SNE [9]
to visualize the deep features of network activations in 2D space. As shown in Figure 7a,
we cannot observe four distinctive classes if we only minimize the cross-entropy loss. From
Figure 7b to Figure 7g, the four classes become more distinctive after adding separation loss,
pseudo labeled test cross-entropy loss, and categorical MMD loss. Comparing Figure 7b,c
with Figure 7d, the four categories cannot be correctly classified if we only train the
network with a single loss (especially Score 4 in the test data which are missing). There is
also contamination between classes 1 and 2 among these three figures. These two issues are
ameliorated if we train the model with two losses (from Figure 7e to Figure 7g). Figure 7g
has a similar trend as Figure 7h with less class divergence. Finally, with SCTL (Figure 7h),
we see inter-class dispersion and intra-class compactness of the test dataset.

Figure 7. t-SNE view of training and test dataset with different loss functions. Blue color represents
training dataset and red represents test dataset. Numbers 1 to 4 mean the location of four classes
(Score 1 to Score 4).
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5. Discussion
5.1. Relationship between ImageNet Accuracy and Teat-End Accuracy

Previous work [40] noted that ResNet and DenseNet are usually the better neural
networks for transfer learning, and a better ImageNet model can produce better features for
domain adaptation [41], which is one special case of transductive learning. We explore how
different ImageNet models affect the teat-end classification accuracy, their correlation score,
and the R2 value as per [41]. As shown in Figure 8, both correlation score and R2 value
are low, which suggests no strong relationship between ImageNet model accuracies and
teat-end classification accuracies. This result differs from [40,41], suggesting the optimal
ImageNet model for teat-end classification may not be based on the ImageNet model with
the highest accuracy.

Figure 8. ImageNet models’ accuracy and teat-end classification accuracy. There is no strong
relationship between them since both correlation and R2 have a low value.

5.2. What Can We Draw from Our Experiments?

Fine-tuning different ImageNet models for transfer learning has been one of the
most popular methods for image classification problems. However, choosing the optimal
ImageNet for a given dataset remains a challenge. For our dataset, the teat images vary
from the ImageNet datasets and thus there is no strong relationship between ImageNet
model accuracy and teat-end classification accuracy. As shown in Table 2, GoogLeNet
unexpectedly achieved the highest performance. This suggests there is value in using
ImageNet models with lower memory size when first exploring such techniques, such as
(SqueezeNet and GoogLeNet) for transfer learning if the image data are very different from
the pre-trained ImageNet dataset. If image data are very similar to the ImageNet images,
there may be value in using more accurate networks such as Xception and EfficientNet.

5.3. Advantages and Limitations

There are several advantages of our proposed SCTL model. First, our proposed
separation loss enlarges the difference between different categories and leads to greater
inter-class dispersion. Second, we generate high confident pseudo labels for test data in
three times adjustment learning to optimize the network with pseudo labels information.
Last, we propose a categorical MMD loss to reduce the divergence between training and test
data. By aggregating all three of these novel loss functions, our SCTL model can enhance
the performance of the teat-end image classification problem.

One limitation of our work is that we have a small sample size of teat-end images
(1529 images). Especially, the category Score 4 is unbalanced. However, Score 4 corresponds
to the severe hyperkeratosis of the teat-end, which is less prevalent in the study population
when compared with the other three categories. As for future work, aside from collecting
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more data, improving the pseudo label quality of the test dataset can be a useful technique to
further improve performance. Our SCTL model can be applied to other image classification
tasks (e.g., teat skin condition assessments). However, five hyperparameters, α, β, γ, T, and
pt, should be adjusted according to different datasets.

6. Conclusions

In this paper, we propose a separation confident transductive learning model for
teat-end image classification. We first propose a separation loss to enlarge the differences
between different categories. We then generate confident labels for the test data using
adjustment learning to optimize the network. Finally, we employ transductive learning
to minimize the divergence between the training and test data with a categorical MMD
loss. Although the level of affection of cows’ teats can influence the performance of our
SCTL model, we demonstrate that the proposed SCTL model can achieve higher accuracy
when compared with ImageNet transfer learning models. We believe that through the aid
of SCTL, the detection of hyperkeratosis is feasible in the commercial dairy farm setting.
Our approach offers the opportunity for more frequent and automated teat-end condition
assessments. Such an automated hyperkeratosis detection method may help farmers
mitigate the risks of intramammary infections, decrease the use of antimicrobials, control
the costs associated with detecting and managing mastitis, and improve the quality of life
of dairy cows and farmers.
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