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Simple Summary: Injurious behavior prevention is a critical issue in the poultry industry due to
increasing social stress, leading to negative effects on bird production and survivability, consequently
enhancing gut microbiota dysbiosis and neuroinflammation via the microbiota–gut–brain axis. Pro-
biotics have been used as potential therapeutic psychobiotics to treat or improve neuropsychiatric
disorders or symptoms by boosting cognitive and behavioral processes and reducing stress reactions
in humans and various experimental animals. The current data will first report that probiotic Bacillus
subtilis reduces stress-induced injurious behavior in laying hens via regulating microbiota–gut–brain
function with the potential to be an alternative to beak trimming during poultry egg production.

Abstract: Intestinal microbiota functions such as an endocrine organ to regulate host physiological
homeostasis and behavioral exhibition in stress responses via regulating the gut–brain axis in humans
and other mammals. In humans, stress-induced dysbiosis of the gut microbiota leads to intestinal
permeability, subsequently affecting the clinical course of neuropsychiatric disorders, increasing
the frequency of aggression and related violent behaviors. Probiotics, as direct-fed microorganism,
have been used as dietary supplements or functional foods to target gut microbiota (microbiome)
for the prevention or therapeutic treatment of mental diseases including social stress-induced psy-
chiatric disorders such as depression, anxiety, impulsivity, and schizophrenia. Similar function of
the probiotics may present in laying hens due to the intestinal microbiota having a similar function
between avian and mammals. In laying hens, some management practices such as hens reared in
conventional cages or at a high stocking density may cause stress, leading to injurious behaviors
such as aggressive pecking, severe feather pecking, and cannibalism, which is a critical issue facing
the poultry industry due to negative effects on hen health and welfare with devastating economic
consequences. We discuss the current development of using probiotic Bacillus subtilis to prevent or
reduce injurious behavior in laying hens.
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1. Introduction

Numerous studies have revealed that the intestinal microbiota regulates host physio-
logical homeostasis and behavioral exhibition in response to stress and related neurological
disorders via the microbiota–gut–brain (MGB) and microbiota–gut–immune (MGI) axes
in humans and other mammals [1–10]. Stress has a major impact on gut physiological
homeostasis, leading to increased intestinal permeability (gut dysbiosis), subsequently
causing neuroinflammation [11] and affecting the clinical course of neuropsychiatric dis-
orders and behavioral exhibition including aggression [12–16]. Gastrointestinal diseases
such as inflammatory bowel disease and irritable bowel syndrome have been linked to
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psychological disorders [17,18]. Fecal microbiota transplantation has potential to treat
neuropsychiatric disorders [3,19,20]. Probiotics (or named direct-fed microbials) have been
defined as: “live microorganisms which when administered in adequate amount confer
a health benefit on the host” [21,22]. Numerous probiotics such as Lactobacillus plantarum
and Bifidobacterium lactis have been used as dietary supplements or functional foods with
therapeutic potential to target gut microbiota for the prevention or potential therapeutic
treatment of mental diseases including social stress-induced psychiatric disorders such as
depression, anxiety, and schizophrenia [15,19,23–30]. Similar function of the probiotics via
modification of the gut microbiota may present in poultry.

Some management practices used in the poultry industry such as hatched under
commercial conditions, reared in conventional cages or at high stocking density, mixed
with strangers, and transported between housing facilities may cause stress in birds, leading
to abnormal behavior such as injurious pecking (aggressive pecking and severe feather
pecking) and cannibalism [31–33]. Injurious behavior prevention is a critical issue in the
poultry industry due to the negative effects on bird production and survivability with
devastating economic consequences [34–38]. Beak trimming (BT), the removal of 1/3 to 1/2
of a beak using hot blaze or infrared, is a routine husbandry procedure practiced in laying
hens to prevent or reduce injurious behavior [39,40]. However, BT causes tissue damage,
which may increase somatosensory sensitization of the damaged nerve tissues, resulting in
pain (acute, chronic or both) in the trimmed birds [31,39,40]. Both enriched-caging and free-
range production systems have been developed to meet the chickens’ ‘natural’ behavioral
needs, however, injurious behavior still occurs within the flocks, and other management
strategies must be implemented [32,41–43]. With the growing public concern for laying
hen health and welfare, there is a pressing need to identify and develop alternatives to
BT. This review focused on the recent findings to provide an overview of the feasibility of
using probiotics as a management strategy to inhibit or reduce these injurious behaviors in
laying hens.

2. Production Environments and Related Stress in Commercial Laying Hens

Chickens as well as other farm animals are constantly selected by both nature (natural
selection) and humans (artificial selection). During selection, the animals’ biological and
behavioral characteristics have been constantly changed [44,45]. The process is affected by
multiple factors including their surrounding environments, by which the animals have been
selected for increased fitness (that is survival and reproductive success) over generations.

Commercial chickens have been selected for production (laying hens for eggs and
broilers for meat) to meet the increasing demand for poultry products [46,47]. The con-
sumption of chicken meat and eggs represents cheap, healthy, and quality protein sources
in human nutrition globally. However, the breeding programs may subject chickens to
physiological dysfunction and immunosuppression by simply focusing on reproduction
and or growth rates [48,49], subsequently increasing susceptibility to metabolic disorders
and management-associated stressors [50,51]. For example, a laying hen produces approx-
imately 310 eggs annually with a low feed consumption of just 110 g per day [52]. The
extreme selection for one trait (production) could affect other biological traits, causing
negative impacts on animal health and welfare such as aggression and related injurious
behavior [53]. Selection for production increases aggression as, from an evolutionary point
of view, aggression in animals is a natural behavior associated with competition to deal
with life-threating situations affecting an individual’s survival, growth, and reproductive
success within a group [54,55]. Controversially, selection based on hen behavior may reduce
feather pecking, but it may result in an unfavorable correlated selection response, reducing
egg production [56].

Currently, the conventional (battery) cage system is the most common housing facility
for laying hens in the United Sates (U.S.), which was estimated to be 70.7% of the table egg
layer flocks (approximately 231.7 million laying hens) at the end of 2020 [57]. Typically,
commercial laying hens are housed in groups ranging from five to nine birds per cage
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or greater at a density of 67–86 in2/hen, starting at about 18 weeks of age. The high
stocking density of hens and limited space for hens to display their “natural” behavior
(such as foraging, exploration, perching, and nesting) negatively impact their welfare status,
resulting in a chronic state of stress [58]. One of the possible strategies to improve hen
health and welfare is to modify their rearing environments, and several alternatives to the
conventional cage system have been developed such as enriched cage system (consisting of
a nest, litter bath or scratch area, perches, and abrasive strip) and cage-free systems with or
without outdoor access such as aviaries (single- and multiple-tiered) [59]. Although hens
housed in the enriched cage system and non-cage systems seem to be possible ways to
improve their welfare by displaying some degree of “natural” behavior such as nesting,
roosting, and scratching [60,61], there is a high risk of increased exhibition of injurious
behavior (feather pecking, aggression, and cannibalism) resulting from large group sizes
and social instability [41–43,62,63]. Social stress and associated injurious behavior are major
concerns in all current housing environments including cage and cage-free systems [41,42].

3. Injurious Behavior in Laying Hens

Chickens as well as other farm animals were domesticated from wild animals several
thousand years ago. During domestication and subsequent artificial selection (breeding),
the selected animals have continuously had their physiological stress response (adaptive
capability, i.e., effect of reactive ability on growth, metabolism, and reproduction) and
behavioral profile (social and emotional exhibitions as well as cognitive ability) changed to
‘fit’ the given environments and related management practices. However, not all individuals
and species (phenotype and or genotype) of animals have equal capability to adapt to their
environments or to modify their physiological and behavioral characteristics in response to
environmental challenges [64]. Consequently, animals that exhibit less adaptation to their
rearing environment may have a risk of poor health and welfare by reducing fitness [65].

3.1. Feather Pecking

Feather pecking in laying hens is a behavior performed by birds pecking repetitively
to conspecifics. It includes two categories: gentle and severe feather pecking [66], driven by
different motivational systems [67]. Gentle feather pecking, repeated pecking at the tips and
edges of feather without removal of the feather from the receivers, has been considered as a
common behavior related to social discrimination and exploration [68] without association
of severe feather pecking [69]; others have suggested that gentle feather pecking acts as a
precursor of severe feather pecking and is associated with plumage damage [66]. Severe
feather pecking, forcefully pecking at and pulling of feather, could be redirected foraging
behavior [66,70], which is significantly increased if the hens’ foraging motivation cannot
be fulfilled [71], if a suitable substrate is not provided [72,73] or removed [74]. A recent
study indicates that feather pecking is a more complex reward and motivation procedure
rather than redirected food-related foraging behavior, and is involved in multiple factors
including motivation, foraging, exploration, and food selection [73]. Feather pecking,
especially severe feather pecking, is a serious health and welfare problem in the poultry egg
industry [37], which could affect up to 80% of birds in current housing systems [43,75]. In
addition, feather pecking is associated with social stress-induced fearfulness [36]. Feather
pecking in extreme cases leads to cannibalistic pecking, removing, and eating flesh from
the victims, which can be further enforced via the gut–brain reward system (the central
serotonergic and dopaminergic systems) [76,77], and spreads among the conspecifics (as a
socially transmitted learning behavior) [78], leading to death. Cannibalistic pecking can be
also induced by aggressive pecking following skin damage.

3.2. Aggressive Pecking and Cannibalism

Aggression within a group is to establish a dominance hierarchy when the animals
are first brought together in a common environment [55,79]. In chickens, aggressive peck-
ing, directly to the head and comb area, occurs to establish hierarchy within a group or
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in response to stress-induced social instability during rearing practices such as mixing
individuals with unfamiliar birds during transfer from grower to layer facilities [80]. From
an evolutionary perspective, aggression (also called combativeness) in animals is related
to survival, growth, and reproduction [54,80,81]. Based on the natural selection theory, an
animal’s productivity is correlated with its competitive ability. Dominance research has
revealed a shift from a focus on species characteristics to the modern recognition of rich
inter-individual variation (the behavioral and physiological phenotypes) [82]. Traditional
techniques used for the selection of animals for breeding are primarily based on individ-
uals with great targeted biomarkers (characteristics), mostly focused on productivity or
profitability, resulting in a high risk of impaired ability to cope with their environment
and biological problems, increasing competition and aggression [83]. In addition, based
on the “frustration-aggression hypothesis”, aggression is a predictable reaction to exter-
nal stimuli such as ambient conditions [84,85]. When restrictive environments such as
conventional cages do not allow chickens to perform their natural behavior, they enter a
state of frustration, with stress reactions and increased aggression [86,87]. In poultry, for
example, egg production may have been increased through breeding selection while poten-
tially injurious feather pecking and cannibalism have concurrently increased. For example,
through more than 30 years of selection, egg production has been increased significantly
in a former commercial Dekalb XL strain reared in conventional cages, whereas mortality
due to aggression and cannibalism in non-beak trimmed hens had also increased about
10-fold [88,89] (Figure 1).
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3.3. Management and Beak Trimming in Laying Hens

In response to growing public pressures relating to poultry welfare, the management
practices of laying hens have been modified, and various methods have been used to
prevent or reduce social stress and stress-induced injurious behavior. For example, reducing
light intensity, modifying nutritive value or taste of diets [64], providing straw, grain, or
pelleted diets [42,91], rearing dual-purpose hybrids [38], housing hens in floor-pens [72],
development of enriched cages [92,93], and aviary systems [41]. These management
strategies have certain positive effects on laying hen welfare, but none of them provides a
guarantee of preventing these injurious behaviors entirely.

Beak trimming (BT, also termed debeaking, beak tipping, beak mutilation, and partial
beak amputation) is a routine procedure practiced in the U.S. egg industry and in most non-
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EU countries for preventing or reducing social stress and related injurious behavior [52].
The process involves the use of either infrared beak treatment (at the hatchery) or hot-blade
beak trimming (prior to 10 days of age) to remove a portion of the upper, or upper and
lower mandibles (i.e., the remaining length is 2–3 mm from the upper beak distal to the
nostrils) [52]. A chicken’s beak is a complex, functional, and highly innervated organ
that contains a great number of various sensory receptors including mechanoreceptors,
thermoreceptors, and nociceptors [39,94]. Worldwide, BT continues to solicit a great deal of
debate pertaining to the relative impact of BT on bird welfare. While the bestowed benefits
of lowered aggression, feather pecking, and cannibalism may indeed favor improved well-
being during the laying cycle [93,95], there are considerable anatomical, physiological, and
biochemical changes that occur in cut peripheral nerves and damaged tissues, resulting in
pain (acute, chronic, or both) with a negative impact on the welfare of billions of chickens
annually [39]. There is growing pressure from animal welfare and consumer groups
advocating the banning of this practice and to develop alternatives [96].

Injurious behavior can be improved through genetic selection such as group selection
in which social interaction is included [34,97,98]. However, there is no sign that breeders
will be able to guarantee ‘non-peck’ layers any time soon. One possibility is to develop
an alternative to BT that minimizes social stress and pain, thereby preventing injurious
behavior and related damage, by which it increases the health and welfare of laying
hens. Recent studies have indicated that modification of gut microbiota composition,
as a potential method, to prevent or reduce stress-induced gut dysbiosis and related
inflammation [99–102], by which it further affects the hosts’ social behavior via the MGB
and MGI axes [103].

4. Gut Microbiota, Stress, Injurious Behavior, and the Microbiota–Gut–Brain Axis

Gut microbiota is the collection of a large community with highly diverse microorgan-
isms that reside within the gastrointestinal tract (GIT) of chickens as well as warm blooded
animals. Its function resembles an endocrine organ engaged in multiple pathways (biologi-
cal systems) including metabolic, immune, endocrine, and neural regulations by integrating
the signals received from the internal and external stimulations via the bidirectional com-
munications between the gut and brain [6,104–109]. Maintenance of gut microbial balance
is essential for chickens to keep their physiological and behavioral homeostasis, which is
critical for optimal growth, reproduction, health, and welfare under the current poultry
industry globally. To meet the continuously growing demand for human consumption,
the current breeding programs and management practices (focused on high production
and economic efficiency) may result in multiple stressors affecting chicken health and
welfare [31,106–111] (Figure 2).

Under normal rearing conditions, chickens adapted to rearing-related factors have a
balanced gut microbiota composition, maintaining its optimal function in feed digestion,
nutrient resorption, synthesis of biochemicals, and neural and immune regulation [112,113].
However, under certain conditions, these management-associated stressors have nega-
tive effects on the gut microbial structure and functions by (1) disrupting the commensal
bacterial populations and colonization (the stability of the gut microbiota), thus reducing
beneficial bacteria and increasing pathogenic variant (low-grade inflammation); (2) in-
creasing pathogen survival and invasive capability (bacterial translocation to increase
neuroinflammation); (3) disrupting the absorption of nutrients and minerals including
calcium, a key bone mineral; (4) disrupting microbial neuroendocrine functions (producing
several signaling molecules and neurochemicals including serotonin (5-HT); (5) disrupting
the gut epithelial barrier, thereby increasing intestinal permeability causing the gut to
leak certain bacteria and harmful substances into the bloodstream (leaky gut), resulting
in inflammation and or infection; and (6) damaging epithelial cells, thus producing free
radicals and reducing antioxidant efficacy (oxidative stress) [31,114–118]. These changes
resulted from the gut microbiota alterations (imbalanced microbiota composition with dys-
function) that influenced host behavioral display and health status via the nerve systems
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(i.e., the vagus nerve, enteric nerve, and autonomic nervous system), hormone signaling,
immune system, and microbial metabolites (such as short chain fatty acids) to regulate
the function of the gut–brain and gut–immune axes (Figure 3). Intestinal bacteria, for
example, are involved in tryptophan metabolism [119–121]. Tryptophan, a precursor of
5-HT, directly affects brain 5-HT synthesis as tryptophan can pass the brain–blood barrier
(BBB) [122,123], being a direct link between the gut microbiota and brain [122]. Tryptophan
has long been used to attenuate aggressive behavior, control stress, and modulate immune
function in humans and several species of farm animals including chickens [124,125]. In
chickens, both genetic and phenotypic feather peckers of divergently selected high (HFP)
and low (LFP) feather pecking lines have lower plasma tryptophan concentrations com-
pared to their non-pecking counterparts [126]. Tryptophan-enriched diet (neurodietary
supplements) fed chickens have elevated serotonergic activity (5-HIAA/5-HT ratio) in
the hypothalamus, which results in a decreased stress response accompanied by a signif-
icant reduction in cortisol levels when exposed to social-mixing related stress [127–129].
The hypothalamic–pituitary–adrenal (HPA) axis is functionally involved in the patho-
physiology of many neuropsychiatric disorders including major depressive disorder and
cognitive dysfunction [130]; and tryptophan hydroxylase 2 (TPH2), rate-limiting enzyme
of 5-HT synthesis in the brain, has been used as a therapeutic target for psychiatric disor-
ders [131,132]. It has been proposed that the potential novel strategies of psychotherapy
aim at increasing tryptophan concentrations through restoring the normal gut microbiota
composition and intestinal homeostasis to prevent or reduce stress-induced abnormal
behavior in humans [127,133] and various animals including laying hens [125,134].

Animals 2022, 12, x FOR PEER REVIEW 6 of 23 
 

 
Figure 2. Factors affecting the gut microbiota composition and the mechanisms of its effects on 
chicken health and welfare via the bilateral gut–brain connections based on inputs and outputs 
animal welfare measurements (modified according to Chen et al. [106] and Shehata et al. [107]). 
Figure was created with BioRender.com, accessed on 15 March 2022. 

Under normal rearing conditions, chickens adapted to rearing-related factors have a 
balanced gut microbiota composition, maintaining its optimal function in feed digestion, 
nutrient resorption, synthesis of biochemicals, and neural and immune regulation 
[112,113]. However, under certain conditions, these management-associated stressors 
have negative effects on the gut microbial structure and functions by (1) disrupting the 
commensal bacterial populations and colonization (the stability of the gut microbiota), 
thus reducing beneficial bacteria and increasing pathogenic variant (low-grade 
inflammation); (2) increasing pathogen survival and invasive capability (bacterial 
translocation to increase neuroinflammation); (3) disrupting the absorption of nutrients 
and minerals including calcium, a key bone mineral; (4) disrupting microbial 
neuroendocrine functions (producing several signaling molecules and neurochemicals 
including serotonin (5-HT); (5) disrupting the gut epithelial barrier, thereby increasing 
intestinal permeability causing the gut to leak certain bacteria and harmful substances 
into the bloodstream (leaky gut), resulting in inflammation and or infection; and (6) 
damaging epithelial cells, thus producing free radicals and reducing antioxidant efficacy 
(oxidative stress) [31,114–118]. These changes resulted from the gut microbiota alterations 
(imbalanced microbiota composition with dysfunction) that influenced host behavioral 
display and health status via the nerve systems (i.e., the vagus nerve, enteric nerve, and 
autonomic nervous system), hormone signaling, immune system, and microbial 
metabolites (such as short chain fatty acids) to regulate the function of the gut–brain and 
gut–immune axes (Figure 3). Intestinal bacteria, for example, are involved in tryptophan 
metabolism [119–121]. Tryptophan, a precursor of 5-HT, directly affects brain 5-HT 
synthesis as tryptophan can pass the brain–blood barrier (BBB) [122,123], being a direct 
link between the gut microbiota and brain [122]. Tryptophan has long been used to 
attenuate aggressive behavior, control stress, and modulate immune function in humans 

Figure 2. Factors affecting the gut microbiota composition and the mechanisms of its effects on
chicken health and welfare via the bilateral gut–brain connections based on inputs and outputs
animal welfare measurements (modified according to Chen et al. [106] and Shehata et al. [107]).
Figure was created with BioRender.com, accessed on 15 March 2022.

BioRender.com


Animals 2022, 12, 870 7 of 22

Animals 2022, 12, x FOR PEER REVIEW 7 of 23 
 

and several species of farm animals including chickens [124,125]. In chickens, both genetic 
and phenotypic feather peckers of divergently selected high (HFP) and low (LFP) feather 
pecking lines have lower plasma tryptophan concentrations compared to their non-
pecking counterparts [126]. Tryptophan-enriched diet (neurodietary supplements) fed 
chickens have elevated serotonergic activity (5-HIAA/5-HT ratio) in the hypothalamus, 
which results in a decreased stress response accompanied by a significant reduction in 
cortisol levels when exposed to social-mixing related stress [127–129]. The hypothalamic–
pituitary–adrenal (HPA) axis is functionally involved in the pathophysiology of many 
neuropsychiatric disorders including major depressive disorder and cognitive 
dysfunction [130]; and tryptophan hydroxylase 2 (TPH2), rate-limiting enzyme of 5-HT 
synthesis in the brain, has been used as a therapeutic target for psychiatric disorders 
[131,132]. It has been proposed that the potential novel strategies of psychotherapy aim at 
increasing tryptophan concentrations through restoring the normal gut microbiota 
composition and intestinal homeostasis to prevent or reduce stress-induced abnormal 
behavior in humans [127,133] and various animals including laying hens [125,134].  

 
Figure 3. The effects of stressors and probiotics on the gut microbiota–host interaction. Stressors 
increase gut permeability, consequently increasing host stress response and stress-induced 
physiological and behavioral disorders via the neural, endocrine, and immune pathways. Probiotics 
reverse the stress-induced gut microbial disorders and recover the physiological and behavioral 
changes in hosts via multiple pathways (modified from Yarandi et al. [12]). 

Gut microbial alteration in humans is associated with depression, anxiety, and 
neuropsychiatric disorders caused by various neurodegeneration or neuroinflammation 
[11,135–139]. Similarly, the gut microbiota (microbiome) in chickens affect their health and 
emotion, memory, social, and feeding behavior [102,132]. Breeding-induced changes of 
gut microbiota (composition and or diversity) have been recognized as the major reason 
causing the changes in behavior, such as anxiety-like behavior in quails and social and 
feeding behavior in chickens and turkeys [140]. For example, selection for digestive 
efficiency in chickens causes the differences in gut microbiota compositions co-localizing 
with loci involved in feeding behavior, consequently, the most efficient birds have great 
feed intake with less fear [141]. In addition, feather pecking in laying hens has been 
proposed to be a consequence of the gut–brain axis dysregulation. Meyer et al. [142] 
reported that there were differences in intestinal microbial metabolites between HFP and 
LFP birds, which could impact on the function of the gut–brain axis. Recent studies have 
further revealed that the gut microbiota diversity is different in layer strains divergently 
selected HFP and LFP lines [143,144]. High feather pecking birds have a higher genera of 
Clostridiales but lower Staphylococcus and Lactobacillus compared to LFP birds [143,144]. 
Early-life homologous microbiota transplantation from adult HFP and LFP birds (i.e., 
receiving microbiota from the same line) influences the active behavior of recipient birds 
with long-lasting effects on developing feather pecking through the regulation of the 
serotonergic and immune systems [145]. In one of our recent studies, the chicks (a third 
line) that received cecal microbial transplantation (CMT) from line 63 adult birds (a gentle 
line) displayed significantly less aggressive behavior (during paired behavioral test) with 
higher concentrations of brain serotonin than the chicks that received CMT from line 72 
adult birds (an aggressive line) and the controls (orally administrated saline) [146]. This 

Figure 3. The effects of stressors and probiotics on the gut microbiota–host interaction. Stressors
increase gut permeability, consequently increasing host stress response and stress-induced physiolog-
ical and behavioral disorders via the neural, endocrine, and immune pathways. Probiotics reverse
the stress-induced gut microbial disorders and recover the physiological and behavioral changes in
hosts via multiple pathways (modified from Yarandi et al. [12]).

Gut microbial alteration in humans is associated with depression, anxiety, and neuropsy-
chiatric disorders caused by various neurodegeneration or neuroinflammation [11,135–139].
Similarly, the gut microbiota (microbiome) in chickens affect their health and emotion,
memory, social, and feeding behavior [102,132]. Breeding-induced changes of gut micro-
biota (composition and or diversity) have been recognized as the major reason causing
the changes in behavior, such as anxiety-like behavior in quails and social and feeding
behavior in chickens and turkeys [140]. For example, selection for digestive efficiency
in chickens causes the differences in gut microbiota compositions co-localizing with loci
involved in feeding behavior, consequently, the most efficient birds have great feed intake
with less fear [141]. In addition, feather pecking in laying hens has been proposed to be a
consequence of the gut–brain axis dysregulation. Meyer et al. [142] reported that there were
differences in intestinal microbial metabolites between HFP and LFP birds, which could
impact on the function of the gut–brain axis. Recent studies have further revealed that
the gut microbiota diversity is different in layer strains divergently selected HFP and LFP
lines [143,144]. High feather pecking birds have a higher genera of Clostridiales but lower
Staphylococcus and Lactobacillus compared to LFP birds [143,144]. Early-life homologous
microbiota transplantation from adult HFP and LFP birds (i.e., receiving microbiota from
the same line) influences the active behavior of recipient birds with long-lasting effects
on developing feather pecking through the regulation of the serotonergic and immune
systems [145]. In one of our recent studies, the chicks (a third line) that received cecal
microbial transplantation (CMT) from line 63 adult birds (a gentle line) displayed signifi-
cantly less aggressive behavior (during paired behavioral test) with higher concentrations
of brain serotonin than the chicks that received CMT from line 72 adult birds (an aggressive
line) and the controls (orally administrated saline) [146]. This suggests that aggression
in chickens, similar to humans [84], could be prevented or reduced by the modification
of gut microbiota composition and function. Similarly, fecal microbiota transplantation
from aged broilers to young broilers daily from day 5 to day 12 altered recipient birds’
behavior, intestinal morphology, and gut microbiota composition [147]. The recipient birds
exhibited lower fearfulness during both the novel arean test and vigilance test (a preda-
tor model) than the controls (orally administrated saline). The recipient birds also had a
higher relative abundance of Lentisphaeae at the phylum level, while a lower Megamonas
at the genus level, with increased activities of the glutamatergic synapse and N-glycan
biosynthesis pathways revealed by the functional capabilities of microbial community
analysis [147]. In addition, there were biological differences in gut motility (contraction
velocity and amplitude) in chickens, which was corrected with the distinct feather pecking
phenotypes [148]. In contrast, a recent study reported that the differences in gut microbiota
compositions between the divergently selected HFP and LFP lines were not associated with
feather pecking and antagonistic behavior due to there not being significant differences in
microbial abilities [149]. Thus, the current results provide insights into understanding the
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function of gut microbiota in the regulation of stress response and injurious behavior in
poultry, which are summarized in Table 1.

Table 1. A list of recent studies showing the relationship between intestinal microbiota composition
and injurious behavior in laying hens.

Treatment Effects Conclusion Reference

H & L birds of the
HFP & LFP lines

Selection caused line’s differences in intestinal
microbial metabolites.

These changes could relate to
lines’ differences in behaviors

via the MGB axis.
[142]

Birds of the HFP &
LFP Lines

HFP birds had ↓cecal microbial beta diversity with
↑relative abundance of Clostridiae but ↓Lactobaccillacae.

Selection causes differences in
the cecal microbial profile;

cecal microbiota may involve
in FP behavior.

[143]

Genotypes: Selected
HFP & LFP lines

HFP birds had ↑genera of Clostridiales, ↓Staphylococcus
& Lactobacillus in LM.

HFP birds had ↑diversity & evenness for both cecal
MAM & LM.

HFP neutral birds had ↑genera of Clostridiales,
↓Lactobacillus with ↑diversity & evenness in LM but

not MAM.

Feather pecking genotype but
not phenotype affects LM

composition; but the
correlation between FP and

microbiota composition
remains to be elucidated.

[144]

Phenotypes: Feather
peckers & neutrals

HFP & LFP
recipients received

microbiota from the
same line (HMT)

during the 1st
two weeks

HMT influenced immune characteristics in both lines.
HMT influenced active behavior and peripheral

serotonin in the LFP line.
HMT without effects on gut microbiota composition,

stress response, and FP.

Early MT may influence the
development of FP due to its

effects on FP-associated
behavioral and physiological

characteristics.

[145]

Birds of the HFP &
LFP lines

HFP birds had ↓genera Lactobacillus, ↑Escherichia in
ileum digesta, and ↓Faecalibacturium & Blautia in cecal

digesta & mucoa.

Gut microbial composition
and its functions are not

associated with FP &
antagonistic behavior.

[149]

DXL recipients
received CMT from
lines 63, 72 or saline
orally from day 1 to
day 10, then boosted
once from week 3 to

week 5

HFP birds had ↑tryptophan metabolism & lysine
degradation in digesta & mucosa. There were no line

effects on microbial abilities.
[146]

63-CMT recipients displayed less aggressive behavior
during paired aggression test with higher

concentrations of serotonin.

Early-life CMT has the
potential to reduce aggressive

behavior through the
GMB axis.

Line 63: gentle birds; Line 72: aggressive birds; CMT: cecal microbiota transplantation; FP: feather pecking, H:
high feather-pecking birds; HFP: high feather pecking line; HMT: microbiota transplantation within the same line;
L: low feather-pecking birds; LFP: low feather line; LM: luminal microbiota, MAM: mucosa-associated microbiota;
MGB axis: the microbiota–gut–brain axis.

5. Probiotics, Bacillus subtilis-Based Probiotics, Social Challenge-Induced Aggression

Probiotics are commensal bacteria (“direct-fed microbials”, DFM) that offer potential
health beneficial effects to the host’s stress response (acute, chronic or both). Several
commercial probiotics have been used in poultry production [150,151], and numerous
studies have shown that probiotics aid chickens in adapting to their environment and
improving their health and welfare by: (1) altering the microbiota profile with beneficial
bacteria to prevent the growth of pathogens and to compete with enteric pathogens for
the limited availability of nutrient and attachment sites; (2) producing bacteriocins (such
as bacteriostatic and bactericidal substances) with antimicrobial function and short chain
fatty acids to regulate the activity of intestinal digestive enzymes and energy homeostasis;
(3) modulating gut and systemic immunity; (4) restoring the intestinal barrier integrity
preventing pathogens from crossing the mucosal epithelium; (5) stimulating the endocrine
system and attenuating stress-induced disorders of the HPA and/or sympathetic-adrenal-
medullary (SMA) axes via the gut–brain axis; (6) inducing epithelial heat shock proteins to
protect cells from oxidative damage; and (7) synthesis and secretion of neurotransmitters
such as 5-HT and tryptophan [104,107,113,115,152] (Figure 3).
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It has been stated in humans and non-human primates that the gut microbiota have
potential effects on their hosts’ aggressive behaviors and anxiety symptoms [153–155]. In
rodent studies, germ-free (GF) animals with exaggerated HPA responses to social stress
can be normalized by certain probiotics [126,156,157]. In addition, probiotics have success-
fully attenuated anxiety and depressive behaviors in rat offspring separated from their
mother [158,159] and the obsessive-compulsive-like behaviors in mice [160,161]. These
results support the psychobiotics theory [15,162] (i.e., a special class of probiotics (beneficial
bacteria) delivering mental and cognitive health benefits (such as anxiolytic and antidepres-
sant effects) to individuals) and provide a potential to use probiotics as a biotherapeutic
strategy for improving a host’s mental and cognitive function in humans and other animals
including chickens [163–170]. Probiotics may have similar effects on chicken behavior due to
the human–animal transmission occurs during the evolution and ecology of gastrointestinal
microbial development (the host–microbial coevolution) [171,172]. Several probiotics have
been used in preventing injurious damage in poultry. For example, probiotic Lactobacillus
rhamnosus JB-1 supplementation (5 × 109/mL in drinking water provided from week 19 to
week 28) reduces chronic stress (social disruption, physical and manual restraint, and block-
ing nest boxes and perch usage applied from week 24 to week 26) induced feather pecking
and cecal microbiota dysbiosis, along with increased T cell populations in the spleen and
cecal tonsils of adult chickens regardless of the genetic lines (HFP and LFP lines) [173]
(Table 2). Probiotic Lactobacillus rhamnosus supplement (applied from day 1 to week 9) also
counteracted stress-induced decrease in T cells, along with a short-term (from week 10 to
week 13) increase in plasma tryptophan and the TRP:(PHE + TYR) ratio (from week 14 to
week 15), but without effects on feather pecking in pullets [126]. The TRP:(PHE + TYR)
ratio has been used as an indicator of the competition between tryptophan and other amino
acids for uptake across the BBB [174]. In addition, the number of feather pecking bouts was
positively correlated with intestinal contraction velocity and amplitude in peckers, which
can be modulated by administrated L. rhamnosus [148]. Lactobacillus-based probiotic supple-
ments also reduced stress-associated immobility behavior in rodents during the forced swine
test [175]. Parois et al. [176] also reported that probiotic Pediococcus acidilactici reduced fear-
fulness in selected short tonic immobility birds, indicated by a short immobility during the
tonic immobility test via regulation of the MGB axis. Reduced fearfulness was also found in
a synbiotic study [177]. It consisted of a probiotic (Enterococcus faecium, Pediococcus acidilactici,
Bifidobacterium animalis, and Lactobacillus reuteri) and a prebiotic (fructooligosaccharides).
The synbiotic fed broilers had a shorter latency to make the first vocalization with a higher
vocalization rate during an isolation test, and a greater number of synbiotic fed birds reached
the observer during a touch test. There results revealed a potential strategy to use probiotics
to reduce stress response and stress-induced injurious behavior during poultry production.
However, large gaps about probiotic functions in improving neuropsychiatric disorders
remain, which are affected by multiple factors including the type of probiotic bacteria and
duration and dosage of the intervention.

Table 2. Non-comprehensive list of recent studies showing the effects of probiotics modifying gut
microbiota on behaviors in poultry.

Birds/Treatment Effects Conclusion Reference

Layers

L. rhamnosus
(5 × 109 CFU/mL)

in-drinking water of stressed
HFP birds, LFP birds, & a

unselected pullets

Pecks (phenotypic and genotypic) had
lower plasma TRP.

L. rhamnosus caused a short-term increase in
plasma TRYP and the TRP:(PHE + TYR)

ratio and all subsets of T cell proportions.

A transient effect on
the immune and TRP

catabolism with
minimal changes in
behavior in pullets.

[126]

L. rhamnosus (5 × 109/mL)
in-drinking water of chronic

stressed adult HPF &
LPF hens

L. rhamnosus prevented stress-induced FP.
L. rhamnosus increased T cells in the spleen

and cecal tonsil.
L. rhamosus reduced cecal

microbiota dysbiosis.

Reduces
stress-induced FP;

and improves
hen welfare.

[173]
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Table 2. Cont.

Birds/Treatment Effects Conclusion Reference

Layers

L. rhamnosus
(5× 108 CFU/mL) orally fed

peckers & non-peckers

L. rhamosus caused ↑cecal contractions and
their amplitude; It positively correlated

with the number of FP of peckers.

Impacted gut motility
with FP

phenotypic effects.
[148]

B. subtilis (1 × 106 CFU/g)
fed dominant &

subordinate hens
B. subtilis caused ↓threat kick and
↓aggressive pecking during paired

aggression test, and ↓plasma serotonin.
B. subtilis caused ↓HS-associated behavior

but ↑eating, foraging, standing,
and walking.

B. subtilis led to ↓hepatic IL-6, HSP70, cecal
IgA & IgY but ↑hepatic IL-10.

Dietary probiotic
could be a suitable

strategy for
controlling
aggression
in chickens.

[178]

Broilers

B. subtilis (1 × 106 CFU/g)
fed HS broilers

Reduces HS-induced
inflammatory

reactions via the
microbiota-immune
axis, while increases
broilers to copy HS

more effectively.

[179]

* A synbiotic fed HS broilers

Snybiotic fed birds had a shorter latency to
make the first vocalization, with higher

vocalization rates during the isolation test
and a greater number of birds reached the

observer during the touch test.

The synbiotic can
reduce the fear

response and stress
state of HS broilers.

[177]

Turkeys B. amyloliquefaciens fed
turkey poults

Probiotic increased the feeding time and
decreased distress call and

aggressive behaviors.

Probiotics regulates
behavior in turkey

poults via
modulation of
gut microbiota.

[180]

Quails P. acidilactici (2.54 × 106/g)
fed STI & LTI quails

Probiotic reduces immobility duration of
STI birds during TI test.

The probiotic affected
host behavior and
memory via the

effects on
gut microbiota

[176]

B. amyloliquefaciens: Bucillus amyloliquefaciens; B. subtilis: Bacillus subtilis; CMP: cecal microbiota transplantation;
FP: feather pecking; HMT: homologous microbiota transplantation from the same line; HPF: high feather pecking
birds; HS: heat stress; HSP: heat shock protein; IL: interleukin; L. rhamosus: Lactobacillus rhamnosus; IL: interleukin;
LFP: low feather pecking birds; LTI: long tonic immobility quails; P. acidilactici: Pediococcus acidilactici; PHE:
phenylalanine; STI: short tonic immobility quails; T: T lymphocytes; TI: Tonic immobility test; TRP: tryptophan;
TYR: tyrosine. * Synbiotic consisted of a probiotic (Enterococcus faecium, Pediococcus acidilactici, Bifidobacterium
animalis, and Lactobacillus reuteri) and a prebiotic (fructooligosaccharides).

Bacillus subtilis

Bacillus subtilis is one of the three most common species of probiotic products in the
U.S. [181] and has been used widely as a functional feed supplement such as in several dairy
and non-dairy fermented foods for improving human health and well-being [182–185].
Similarly, Bacillus subtilis-based probiotics have been used as antibiotic growth promoter
alternatives in poultry [186–189]. Bacillus subtilis are spore-forming bacteria. They are
heat stable, low pH-resistant (the gastric barrier), and tolerate multiple environmental
stressors [190,191]. Several mechanisms of actions of Bacillus spp. have been proposed: reg-
ulating intestinal microstructure [192] and digestive enzymes [193,194]; synthesizing and
releasing antimicrobial and antibiotic compounds [187]; increasing immunity [193,195,196],
and neurochemical activities including 5-HT [197–199] as well as affecting animal behav-
ior [198] following various stressors. For example, in response stimulations, Bacillus subtilis
alleviates oxidative stress, provokes a specific biological response, and improves the mood
status of hosts via the gut–brain axis [79,200]. In addition, Bacillus subtilis can overpro-
duce L-tryptophan [201–203], and consequently increase 5-HT in the hypothalamus [204].
Tryptophan functions as an antidepressant and anti-anxiety agent [204–207] and eliminates
nervous tension in mice [208,209]. In one study, chickens were used as an animal model to
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assess whether dietary supplementation of the probiotic Bacillus subtilis reduced aggressive
behaviors following social challenge [178].

Chickens, as social animals, show fear, depression, and or anxiety in novel environ-
ments [172] and show aggression toward others for establishing aa social dominance rank
in unfamiliar social groups [210–212], which is similar to the rodents used in human psy-
chopharmacological studies [213–215]. The paired social ranking-associated behavioral
test used in this study [206] has been routinely performed in chicken behavioral analy-
sis [201,216,217]. The rationale of the test is similar to the resident-intruder test, which is a
standardized method used in rodents for detecting social stress-induced aggression and
violence [180,218–220].

In the study [208], the role of the probiotic Bacillus subtilis on the aggression in hens of
the Dekalb XL (DXL) line was examined. One-day-old female chicks were kept in single-
bird cages [178]. The hens at 24-weeks-old were paired based on their body weight for
the first behavioral test (pre-probiotic treatment, day 0) in a novel floor pen. To determine
the dominant individual per pair, behaviors were video-taped for 2 h immediately after
the release of two hens simultaneously into the floor pen. After the test, the subordinate
and dominant hens were fed the regular diet or the diet mixed with 250 ppm probiotic
(1.0 × 106 cfu/g of feed) for two weeks, respectively. The probiotic contained three propri-
etary strains of Bacillus subtilis (Sporulin®, Novus International Inc., Saint Charles, MO,
USA). After the treatment (day 14), the second aggression test was conducted within the
same pair of hens. The injurious behaviors were detected and analyzed (Table 3).

Table 3. Behavioral ethogram 1.

Behavior Description

Feather Pecking
One bird pecking at feathers of another bird can be (a) gentle peck (nibbling or gentle pecking in

which feathers are not removed or pulled) or (b) severe peck (vigorous pecking to feathers in which
feathers are often pulled, broken, or removed).

Threat One bird standing with its neck erect and hackle feathers raised in front of another bird.
Aggressive pecking Forceful downward pecks directed at the head or neck of other birds

Threat Kick One bird forcefully extending one or both legs such that the foot strikes another bird.
1 Modified from Hu et al. [178].

The results indicated that compared to their initial levels at day 0, the levels of threat
kick were reduced (Figure 4A. p = 0.04), the frequency of aggressive pecking tended to be
lower (Figure 4B. p = 0.053), and the levels of feather pecking was reduced but without
statistical significance (Figure 4C. 60%. p = 0.33) in probiotic fed dominant hens. There was
no change in injurious behaviors in the regular diet fed subordinate hens between day 0 and
day 14 (Figure 4A–D). The behavioral changes in probiotic fed dominant hens were cor-
related with the changes in blood 5-HT concentrations. Post-treatment (day 14), plasma
5-HT levels were reduced toward the levels of the controls (subordinates) in the probiotic
fed dominant hens (Figure 5. p = 0.02) compared to their related levels prior to treatment
(day 0). Similarly, the effects of probiotic dietary supplements on behavior have been found
in turkeys [180]. The turkey poults fed probiotic Bacillus amyloliquefaciens had increased
feeding frequency and duration with decreased distress call and aggressive behavior.

The similar relations between reduced aggressive behavioral exhibition and blood
5-HT concentrations were identified in our previous studies [53,89], genetic selection for
prevention of social stress-induced feather pecking, and aggression. Compared to MBB
mean bad birds (MBB), kind gentle birds (KGB) had lower blood 5-HT concentrations as
well as lower concentrations of blood dopamine (DA) and corticosterone (CORT) and a
lower heterophil/lymphocyte (H/L) ratio, a stress marker, with lower frequency of injuri-
ous pecking [53,91] (Table 4). Bolhuis et al. [221] also reported that peripheral serotonin
activity reflected the predisposition to develop severe feather pecking in laying hens. Sim-
ilarly, individuals with a lower blood 5-HT level that showed less aggressiveness were
found in humans [222–224] and canine [225] while an elevated level of blood 5-HT has been



Animals 2022, 12, 870 12 of 22

revealed in patients with aggressive behavior [226,227] and in aggressive teleost fish [228].
These results provide evidence for serotonergic mediation for aggressive behavior and
stress coping strategy; and chicken aggression can be reduced or inhibited by probiotic
supplementation by directly or indirectly regulating the serotonergic system.
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Figure 4. Frequency of aggressive behaviors at day 0 (pre-treatment) and day 14 (post-treatment)
in probiotic fed hens and regular diet fed hens followed by the paired social test (n = 12). (A) The
frequency of threat kick. (B) The frequency of aggressive pecking. (C) The frequency of feather
pecking. (D) The frequency of threat. The exhibition of aggressive behaviors in the regular diet fed
subordinates was not affected by treatment (p > 0.05, respectively), while the frequency of threat
kick (p = 0.04) was reduced, aggressive pecking (p = 0.053) tended to be lower, and feather pecking
was lower (60%, p = 0.33) in probiotic fed dominant hens post-treatment. Notes: The treatment
effects on the measured behaviors were reversed between dominants and subordinates during the
second social rank test. a,b Between the frequency at day 0 and day 14, least square means lacking
common superscripts differ (p < 0.05); and † trend difference (0.05 ≤ p < 0.10). A modified copy from
Hu et al. [178].

Whether the changes in blood 5-HT levels in probiotic fed dominant hens represent
a similar change in 5-HT concentrations in the brain is unclear as 5-HT cannot pass the
blood–brain barrier and is regulated differently between brain neurons and peripheral
tissues [229]. The plasma 5-HT is synthesized mainly by the enterochromaffin (EC) cells
(also known as Kulchitsky cells), types of enteroendocrine and neuroendocrine cells, of
the gut and stored in the platelets [230]. However, it has been proposed that platelet 5-HT
uptake is a limited peripheral marker of brain serotonergic synaptosomes [229]. Lactobacillus
plantarum strain PS128, a dietary probiotic that causes an increase in the levels of striatal
5-HT as well as DA, is correlated with improving anxiety-like behavior in germ-free (GF)
mice [230]. Similar results have been obtained from our current studies [178,179]. In
another study, chickens (broilers) were fed Bacillus subtilis from day 1 to day 43. The results
indicate that Bacillus subtilis fed chickens had higher levels of 5-HT in the raphe nuclei and
lower levels of norepinephrine (NE) and DA in the hypothalamus compared to the controls
fed a regular diet [230]. Probiotic fed chickens also had improved skeletal traits (bone
mineral density, bone mineral content and robusticity index). In one heat stress (32 ◦C for
10 h) study, Bacillus subtilis fed chickens (broilers) had lower heat stress-related behaviors
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including panting and wing spreading and inflammatory response in the hypothalamus
compared to the controls [203]. Further studies, however, are needed to examine how
the correlations present between injurious behavior and peripheral and or brain 5-HT in
probiotic fed chickens.
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probiotic fed dominant hens and regular diet fed subordinate hens. The plasma 5-HT concentration
was measured by using the high performance liquid chromatography (HPLC). Compared to subordi-
nate hens, plasma 5-HT concentrations were higher in dominant hens at day 0 but without statistical
difference (p = 0.24); the difference disappeared at day 14. Compared to the levels at day 0, blood
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Table 4. Selection-induced alterations in blood concentrations of dopamine, serotonin, and corticos-
terone in laying hens.

Lines Corticosterone
(ng/mL)

Dopamine
(ng/mL)

Epinephrin
(ng/mL)

Serotonin
(ng/mL)

H/L Ratio 2

(×100)

KGB 1 1.87 + 0.19 0.59 + 0.08 a 0.30 + 0.06 a 11.8 + 0.07 a 13.0 a

MBB 1.49 + 0.21 2.42 + 0.76 b 0.59 + 0.13 b 14.3 + 0.06 b 29.4 b

a,b Means within a column with different superscript are statistically different (n = 12, p < 0.05). 1 The KGB
(kind gentle bird) and MBB (mean bad bird) lines were selected for high and low productivity and survivability
resulting from cannibalism and flightiness, respectively. 2 Heterophil/lymphocyte ratio [90].

6. Conclusions and Perspectives

Injurious behavior is a critical issue facing the poultry industry due to increasing
social stress, leading to negative effects on bird production and survivability. Numerous
studies have revealed that enteric microbiota play a critical role in the hosts’ response
to acute and chronic stress. Social stress-induced changes of the gut microbiota lead to
inflammation and ‘leaking out’ of bacterial metabolites, affecting brain function, especially
the function (activation) of both the HPA axis and the SMA axis. These changes, conse-
quently, negatively affect the physiological and behavior homeostasis, leading to mental
disorders with abnormal behaviors including aggression. Several recent studies suggest
that dietary inclusion of probiotics such as Bacillus subtilis have positive effects on reducing
agonistic behavior in laying hens through the modification of the serotonergic system. The
novel approach could be transferred directly or indirectly to other species of farm animals
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that are subjected to painful husbandry procedures such as the dehorning of calves and
teeth-clipping of piglets to prevent body injuries.
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