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Simple Summary: The most common genera in the piglet microbiome were Lactobacillus,
Escherichia-Shigella, Enterococcus, Bacteroides, and Fusobacterium. Bacteria of the Lactobacillus genus
dominated in healthy piglets. An increased number of Escherichia-Shigella and Enterococcus was
detected in diarrheal pigs. This indicates an important role of these bacteria in the pathogenesis of
diarrhea. A decreased number of Bacteroides was detected in diarrheal pigs. According to the assess-
ment of the microbiome composition in different sections of the intestine, bacteria of the Lactobacillus
genus were the most common in the ileum, while Fusobacterium and Bacteroides were more common
in the rectum. Our results show that the gut microbiome may make a significant contribution to the
pathogenesis of diarrhea.

Abstract: Determining the taxonomic composition of microbial consortia of the piglet intestine
is of great importance for pig production. However, knowledge on the variety of the intestinal
microbiome in newborn piglets is limited. Piglet diarrhea is a serious gastrointestinal disease with a
high morbidity and mortality that causes great economic damage to the pig industry. In this study, we
investigated the microbiome of various sections of the piglet intestine and compared the microbiome
composition of healthy and diarrheal piglets using high-throughput sequencing of the 16S rRNA
gene. The results showed that bacteria of the Lactobacillus genus were the most common in the
ileum, while Fusobacterium and Bacteroides dominated in the rectum. Comparing the microbiome
composition of healthy and diarrheal piglets revealed a reduced number of Lactobacillus bacteria
as a hallmark of diarrhea, as did an increased content of representatives of the Escherichia-Shigella
genus and a reduced number of Bacteroides, which indicates the contribution of these bacteria to the
development of diarrhea in piglets. The relative abundance of Enterococcus bacteria was higher in the
diarrhea group. Although some bacteria of this genus are commensals, a small number of species
may be associated with the development of diarrhea in piglets. Therefore, our results indicate that
the gut microbiome may be an important factor in the development of diarrhea in piglets.

Keywords: piglet; microbiome; 16S rRNA; sequencing; diarrhea; intestines

1. Introduction

The formation of the gut microbiome at an early age is of particular importance
for piglets’ health. Microbiome composition is a perspective predictive tool for health
and disease assessment; however, it stays poorly described in terms of predisposition
to diarrhea. Here, we aim to assess whether the composition of the gut microbiome is
associated with differences in the susceptibility of pigs to diarrhea.
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The gut microbiome has a complex organization, characterized by multiple options
for inter-bacterial interaction, which greatly contributes to the health and immunity of
mammals [1]. It is characterized by a large population diversity of microorganisms, the
composition and abundance of which are influenced by both external and internal factors,
such as environmental factors and the genetics of the host organism [2].

Populations of intestinal bacteria are essential in animal production. The development
of high-throughput sequencing technologies has significantly advanced the study of the
microbiomes of production animals [3,4].

The trend in recent years shows an exponential increase in the number of publications
using the 16S rRNA gene sequencing approach to study the gut microbiome of pigs [5–8].
Interestingly, the composition of the pig gut microbiome correlates with such indicators
as average body weight and daily weight gain [9,10], conversion factor, and food con-
sumption [11,12]. At the same time, quite a small number of studies are devoted to a
detailed analysis of microbiome profiles in different parts of the intestines of piglets [13–15].
In addition, only pigs over 120 days old or weaned pigs were analyzed in those studies.
The dynamics of gut microbiome formation in newborn piglets are of particular importance
as it affects the overall animal health and growth indicators [16].

It is known that from birth the digestive system of piglets is populated with facultative
aerobic or anaerobic bacteria. They receive this compound together with colostrum and then
from breast milk, which contains lactic acid bacteria such as Lactobacilli and Bifidobacterium
as the main probiotic bacteria. The gut microbiome composition of piglets then changes and
stabilizes, influenced by feeding and environmental characteristics [17,18]. The data show
that the intestines of piglets are mainly colonized by the Clostdiaceae and Enterobacteriaceae
families immediately after birth. One of the studies showed that the Streptococcaceae
family can be observed in the gastrointestinal tract of piglets 6 h after birth, and in the
period from 1 to 3 days it becomes the most numerous. Then, as a result of secondary
colonization, they are gradually replaced by Lactobacillaceae and Clostridiaceae [19]. Other
studies show the attendance of bacterial species such as Lactobacillus sobrius, Escherichia coli,
Lactobacillus reuteri, Shigella flexneri, and Lactobacillus acidophilus in two-day-old pigs [17].
E. coli and Clostridium spp. were observed during the first 6 h after birth. Bacteroidetes spp.
appear four days after birth and are therefore considered the latest representative of the
emerging microbiota [20]. According to a study by Petri et al. [19], Lactobacillaceae were
the most considerable part during the first 20 days of life, which contradicts the results,
according to which representatives of this group are replaced by Clostridium spp. [20,21].
According to some studies, the microbiological composition of the digestive tract of piglets
is quite stable during the lactation period [22–25]. Thus, the diversity of available data
indicates the demand to investigate issues related to the bacterial composition of different
parts of the intestine from the birth of piglets.

Pigs and piglets suffer from a variety of infections that can be caused by the environ-
ment, food, internal parasites, bacteria, viruses, and/or the simultaneous effect of these
factors. These infections are a serious threat to agronomic health and ultimately to human
health [26,27]. Hence, studying infectious conditions in pigs can help not only to improve
the health of livestock but also to develop new treatments against bacterial infections.
Diarrhea is considered to be one of the major microbial diseases in domestic piglets, and
can have devastating consequences for animal health and therefore the food industry [28].
Post-weaning diarrhea is an economically important intestinal disease because of the fi-
nancial losses that it causes [29]. It commonly occurs within 2 weeks after weaning and
is characterized by profuse diarrhea, dehydration, high mortality (up to 20–30% within
1–2 months [29]), and weight loss in surviving pigs [30].

The main aim of this investigation was to assess the differences between the intestine
microbiomes of piglets with diarrhea and healthy animals. We also studied the association
between the composition of the intestinal bacterial community and the susceptibility of
piglets to diarrhea. For this purpose, we studied the composition of the microbiome in four
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sections of the piglet intestine (ileum, cecum, colon, and rectum) using 16S rRNA gene
sequencing on the Ion Torrent Personal Genome Machine (PGM) platform.

2. Materials and Methods
2.1. Samples

Twelve 3- to 4-day-old piglets (F1 hybrids) were obtained by crossing animals of the
Large White and Landrace breeds. Six piglets with severe diarrhea and six healthy piglets
were selected for the experiment and kept in a room at 30 ± 2 ◦C with a humidity of
55 ± 7%. Piglets with diarrhea were identified by the following clinical picture: shaky,
unstable gait against the background of general dehydration, loose stools, fetid smell
of fecal masses, and general contamination of piglets with feces. Molecular analysis of
pathological material (feces, internal organs from piglets (thin and thick intestine, liver with
gallbladder, kidney, and spleen)) did not detect viral diseases. Microscopy of smears-prints
from the intestinal surface and in the feces did not detect pathogens of parasitic diseases.
The piglets were euthanized and portions of their gastrointestinal tract were immediately
removed. The contents of the intestinal lumen were collected from the ileum, cecum,
colon, and rectum. In total, 48 samples were obtained (24 from sick and 24 from healthy
animals), which were placed in microcentrifuge tubes and delivered to the laboratory on
ice. However, in the course of sample preparation, seven samples of the gastrointestinal
tract taken from the sick group of piglets were removed from the subsequent analysis,
including one sample of the ileum, three of the cecum, one of the colon, and two of the
rectum. Thus, a total of 41 samples of the gastrointestinal tract of pigs were sequenced:
in the sick group, 17 samples were examined, of which five were of the ileum, three were
of the cecum, five were of the colon, and four were of the rectum; in the healthy group,
24 samples were examined—six from each section of the intestine.

2.2. Isolation of DNA

DNA was extracted from each sample using a ZymoBiomics DNA Miniprep Kit
(Zymo Research, Los Angeles, CA, USA) according to the manufacturer’s instructions.
The isolated DNA was quantified using a Qubit 2.0 benchtop fluorometer (Invitrogen, San
Diego, CA, USA).

During DNA isolation from samples, we added the sample that served as a nega-
tive control for data analysis and contained only the Milli-Q water which is used in the
laboratory. This sample underwent sample preparation completely identically to the test
samples to exclude the contamination of the test samples in the laboratory. During the
bioinformatics analysis of the obtained data we used the decontam R package to identify
and subsequently remove any laboratory contaminants. This additional step makes it pos-
sible to obtain more accurate data on the composition of the studied bacterial communities,
which is based on the analysis of the V3 hypervariable region of the 16S rRNA marker gene
and metagenomic data.

2.3. Amplification of the 16S rRNA Gene

In our work, to study the gut microbiome of piglets using sequencing on the Ion
Torrent PGM platform we selected the hypervariable region V3 of the 16S rRNA gene. For
the amplification of bacterial DNA we used universal primers 337F and 518R (Table 1).

The amplification was performed with a 5 × ScreenMix-HS Master Mix kit (Evrogen,
Moscow, Russia) in the following regime: 94 ◦C for 4 min; 37 cycles of 94 ◦C for 30 s, 53 ◦C
for 30 s, and 72 ◦C for 30 s; and final elongation at 72 ◦C for 5 min.

Table 1. Primers used in the study.

Primer Sequence

337F 5′-GACTCCTACGGGAGGCWGCAG-3′

518R 5′-GTATTACCGCGGCTGCTGG-3′
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2.4. Ion Torrent PGM Sequencing

PCR products were purified using AMPureXP magnetic particles (Beckman Coulter,
Brea, CA, USA). The preparation of libraries for sequencing was performed using a NEB-
Next Fast DNA Library Prep kit (New England Biolabs, Ipswich, MA, USA) according to
the manufacturer’s protocol. After that, the obtained libraries were mixed in equimolar
amounts for emulsion PCR on a OneTouch 2 System (Thermo Fisher Scientific, Madison,
WI, USA). Sequencing was performed with an Ion PGM Hi-Q View Sequencing Kit (Thermo
Fisher Scientific, Madison, WI, USA) using an Ion Torrent PGM system.

2.5. Statistical Data Analysis

The sets of sequences for each sample were obtained in a BAM format. Next, the files
were converted into a FastQ format using SAMtools v.1.2 software and analyzed using the R
programming language in the RStudio environment. The raw reads were filtered by length
and the quality was controlled by using the functions of VSEARCH v.2.8.2 software. The
samples were pooled and unique sequences were identified before searching for operational
taxonomic units (OTUs). To find the OTUs, we used the UNOISE2 algorithm, which reduces
noise by correcting errors. To generate the OTUs and make the OTU table, we combined
all the reads for all the samples. After that, the processed reads were consistent with
the reference readings in the SILVA v.123 databases (https://www.arb-silva.de, accessed
on 26 October 2021) using the DADA2 package. The DADA2 package provides a native
implementation of the naive Bayesian classifier method for this purpose.

The statistical analysis was performed using GraphPad Prism 9 software (GraphPad,
Sand Diego, CA, USA). The differences in the bacterial composition of the microbiomes
from the intestine sections were analyzed using two-way analysis of variance (ANOVA).
The results are expressed as mean ± standard error of the mean (SEM).

3. Results

In this study, we investigated the bacterial profiles (at the level of genera) of the
ileum, cecum, colon, and rectum from twelve piglets. After filtering the reads obtained
by sequencing of 41 studied samples, a total of 307,977 unique sequences were identified,
which corresponded to 166 genera (99% identity) (Figure 1).

Animals 2022, 12, x FOR PEER REVIEW 5 of 15 
 

 
Figure 1. Relative abundance of identified bacterial genera. 

Figure 1 shows that 38% of the sequences belonged to members of the Lactobacillus 
genus. The next in numbers were Escherichia-Shigella and Enterococcus (11% each), Bac-
teroides (9%), Fusobacterium (8%), Streptococcus and Prevotella (3% each), and Blautia, Clos-
tridium sensu stricto 1, Rikenellaceae RC9 gut group, and Sphaerochaeta (1% each). The gen-
era with the content below 1% were combined into the “Others” group. 

The results revealed the differences between the microbial profiles of different sec-
tions of piglet gastrointestinal tract, as well as between sick and healthy piglets (the 40 
most common genera identified for each intestinal section are shown in Figure 2). The 
bacterial composition of individual samples can be found in Supplementary Material 
Figure S1. 

 
Figure 2. Microbiome composition (bacterial genera) of piglet intestine. 

Figure 2 shows that the Lactobacillus genus prevailed over other genera in all sections 
of the intestine; however, a greater number of these bacteria was found in healthy piglets 

Figure 1. Relative abundance of identified bacterial genera.

https://www.arb-silva.de


Animals 2022, 12, 320 5 of 14

Figure 1 shows that 38% of the sequences belonged to members of the Lactobacillus
genus. The next in numbers were Escherichia-Shigella and Enterococcus (11% each),
Bacteroides (9%), Fusobacterium (8%), Streptococcus and Prevotella (3% each), and Blautia,
Clostridium sensu stricto 1, Rikenellaceae RC9 gut group, and Sphaerochaeta (1% each). The genera
with the content below 1% were combined into the “Others” group.

The results revealed the differences between the microbial profiles of different sections
of piglet gastrointestinal tract, as well as between sick and healthy piglets (the 40 most
common genera identified for each intestinal section are shown in Figure 2). The bacterial
composition of individual samples can be found in Supplementary Material Figure S1.
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Figure 2 shows that the Lactobacillus genus prevailed over other genera in all sec-
tions of the intestine; however, a greater number of these bacteria was found in healthy
piglets (51% on average) vs. animals with diarrhea (30% on average). Bacteria of the
Escherichia-Shigella genus were also found in large numbers (24%) in sick piglets compared
to 1% in healthy animals. Representatives of the Bacteroides genus were more common
in the healthy group (14%) vs. 4% in sick piglets. The abundance of Streptococcus in the
healthy animals was 6%, while in piglets with diarrhea, the content of these bacteria was
approximately 1%. In the healthy group, the amount of Sphaerochaeta was 2%; in the sick
group, these bacteria were absent. The relative content of representatives of the Enterococcus
genus in the healthy and sick groups was 1% and 20%, respectively.

Figure 3 shows the bacterial genera, the intestinal content of which differed statistically
in the healthy and diseased groups.

Among all identified bacterial genera, statistically significant differences were found
for the representatives of Enterococcus, Lactobacillus, Escherichia-Shigella, and Bacteroides. The
content of Enterococcus and Escherichia-Shigella bacteria in the sick group increased (to 21 and
23%, respectively) compared to the healthy animals, in which their relative abundance was
1% for both genera. At the same time, in sick piglets, the content of Lactobacillus (31%) and
Bacteroides (3%) was reduced compared to 50% and 14%, respectively, in the healthy group.

We also carried out a comparative analysis of the bacterial composition in different
sections of the intestine from healthy piglets and revealed statistically significant differences
in the relative abundance of bacteria belonging to the Lactobacillus, Fusobacterium, and
Bacteroides genera (Figures 4–6).

Figure 4 shows that the amount of Lactobacillus bacteria in the ileum (72%) was signifi-
cantly higher than in the cecum (50%) and rectum (29%).
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The relative number of representatives of the Fusobacterium genus increases in the
direction from the small to the large intestine (Figure 5). However, a statistically significant
difference was observed only between the content of Fusobacterium bacteria in the ileum
and rectum (3% and 12%, respectively), i.e., in the most distant sections.

Figure 6 demonstrates a statistically significant difference in the content of Bacteroides
genus between the ileum (3%) and cecum (15%), as well as between the ileum (3%) and
colon (21%).

Next, we compared the bacterial composition of each intestinal section in the healthy
and sick groups (Figures 7–10).

In the ileum of sick piglets, the content of Enterococcus and Escherichia-Shigella bacteria
(14% each) was approximately 7 and 20 times higher than in the healthy animals (2 and
0.7%, respectively).
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Results are expressed as mean ± SEM (** p ≤ 0.01, **** p ≤ 0.0001).

In the cecum, a significant difference in the relative content was found only for the
Escherichia-Shigella genus (36% in sick animals vs. 0.6% in healthy piglets).

The relative content of Enterococcus (9.5%) and Escherichia-Shigella (28%) bacteria was
increased in the colon and ileum of sick piglets (compared to 0.5% and 1%, respectively, in
the healthy group).

In the rectum, a significant difference in the relative abundance was observed for the
three genera. The content of Enterococcus and Escherichia-Shigella bacteria was increased
in the sick group as compared to the healthy animals (27% and 23% vs. 0.5% and 1%,
respectively). However, the number of representatives of the Bacteroides genus was reduced
in sick piglets (5%) in comparison with the healthy ones (21%).
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4. Discussion

In this study, we discovered that Lactobacillus was one of the major genera of the pig
gastrointestinal tract (Figure 1). Lactobacillus representatives are common in both proximal
and distal sections of pig digestive tract, which they colonize shortly after birth [31].

Lactobacillus bacteria possess several probiotic properties necessary for resistance to
infections and diseases of the gastrointestinal tract. They exhibit antipathogenic activ-
ity [32,33] and antioxidant activity [34,35] and are involved in the regulation of immune
system [36]. All these traits affect gut microbial populations, such that propagation of
opportunistic pathogens, such as Salmonella, Clostridia, and Enterobacteriaceae, is controlled,
resulting in the prevention of infections and intestinal disorders [37–39]. It has been shown
that Lactobacillus species colonize piglet intestine shortly after birth and are stable members
of the gut microbiome throughout the entire intestinal tract [40]. The low abundance
of Lactobacillus representatives, which are considered beneficial, may be an indicator of
gastrointestinal problems in pigs. In our study (Figure 3), we observed a reduced amount
of Lactobacillus bacteria in piglets with diarrhea, which confirms the probiotic properties of
the Lactobacillus genus.

Physiological variations along the length of the intestine include chemical and nutrient
gradients, as well as compartmentalized host immune activity. All these factors influence
bacterial community composition [41]. It is well known that piglets experience extreme
stress when they are weaned from the sow. This can lead to the development of intestinal
dysfunction and immune system disorders, which ultimately leads to a deterioration in the
health of piglets, especially during the first week after weaning. We would like to point
out that only suckling piglets were involved in this study. This made it possible to exclude
the influence of stress endured during weaning on changes in the microbiome and, as a
consequence, the development of diarrhea [42].

According to the results of our study, Lactobacillus dominated in the distal part of
the small intestine (ileum) (Figure 4). Lactobacillus species grow in an oxygen-free or low-
oxygen atmosphere. Oxygen present in the small intestine is gradually depleted by aerobic
bacteria, and only a small amount of it remains in the ileum, where most Lactobacillus
bacteria are found. Some Lactobacillus species produce acetic acid, which has a fairly strong
antipathogenic effect [43].
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In our study, the content of Escherichia-Shigella bacteria was much higher in piglets
with diarrhea (Figure 3). Several Escherichia-Shigella species are believed to play an impor-
tant role in the development of diarrhea in piglets and to have a serious effect on the barrier
function of the animal intestine [44]. An increased number of Escherichia-Shigella bacteria
in sick piglets vs. healthy ones was observed in all sections of the intestine (Figures 7–10).
However, we found no differences in the number of these bacteria in the intestine sec-
tions in the healthy group. This suggests that Escherichia-Shigella bacteria are distributed
approximately evenly in the investigated sections of the intestine.

Members of the Bacteroides genus are often found in the digestive tract of mammals.
They are early colonizers of the intestines of healthy piglets [19]. Bacteroides species play an
important role in health promotion by producing butyrate, which activates T cell-mediated
immune response, thus limiting colonization of the digestive tract by potentially pathogenic
bacteria [45]. In the healthy group, bacteria of this genus were more common in the rectum
(Figure 6). The number of Bacteroides representatives in the rectum of piglets with diarrhea
was lower than in the control group (Figure 10).

We also found an increased number of Enterococcus bacteria in sick piglets (Figure 3).
Information on the enterococcal flora of healthy newborn piglets is scanty, but a small
number of representatives of this genus can be a part of the normal gut microbiota [46,47].
However, Enterococcus is sometimes associated with piglet diarrhea [48,49]. Although many
members of the Enterococcus genus are believed to be commensals of the intestinal tract,
some representatives cause diarrhea in suckling animals of various species [50–55].

We also found an increased number of Enterococcus bacteria in the ileum (Figure 7),
colon (Figure 9), and rectum (Figure 10) of piglets with diarrhea compared to healthy
animals. This may indicate that pathogenic Enterococcus representatives are prevalent in
the intestinal microbiome, which may be associated with the diarrhea of newborns piglets.

Fusobacterium species are anaerobic, Gram-negative, non-spore-forming, non-motile,
rod-shaped bacteria. The main metabolite produced by these bacteria is butyric acid [56].
According to numerous data, Fusobacterium is considered to be a normal representative of
the oropharyngeal, gastrointestinal and genital microbiota. At the same time, this genus
is the second most commonly isolated anaerobic microbial group from clinical samples
of both humans and animals, especially in the case of purulent-necrotic infections [57].
Fusobacterium is involved in various clinical anaerobic infections and can cause intestinal
inflammation [58]. Even though many studies have shown increased levels of Fusobacterium
in piglets with various intestinal disorders compared to the healthy ones [59–63], we did
not find statistically significant differences in the content of this genus in the studied
groups. However, we found an increased content of Fusobacterium members in the rectum
compared to the ileum of healthy pigs. The content of Fusobacterium bacteria in newborn
piglets requires further research.

We studied the bacterial composition inhabiting the intestines of healthy newborn
piglets, as well as piglets with diarrhea. Thus, our study, using high-throughput sequencing,
showed that microbial communities in the studied samples included many commensal and
opportunistic microorganisms. Compared to classical microbiological and immunological
approaches, as well as PCR, the advantage of this method is the ability to identify all bacteria
contained in the test sample, including non-culturable microorganisms [64]. We used the
universal primer pair 337F/518R (see Section 2.3. Amplification of the 16S rRNA gene) to
amplify a fragment of the 16S rRNA gene that includes the V3 region, which is considered
one of the most effective hypervariable regions for phylogenetic analysis and taxonomic
classification of bacterial species [65,66].

The results of this study can be used to predict bacterial taxa indicative of healthy
development of gut microbiome in suckling piglets, as well as to identify taxa that can be
used as probiotics to prevent post-weaning diarrhea.
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5. Conclusions

The most common genera in the piglet microbiome were Lactobacillus, Escherichia-Shigella,
Enterococcus, Bacteroides, and Fusobacterium. Bacteria of the Lactobacillus genus dominated
in healthy piglets, which once again proves their probiotic effect. An increased number
of Escherichia-Shigella representatives in diarrheal pigs indicates the contribution of these
bacteria to the development of diarrhea. A decreased number of Bacteroides may also
indicate the development of diarrhea. The content of Enterococcus bacteria was higher
in sick piglets. According to the assessment of the microbiome composition in different
sections of the intestine, bacteria of the Lactobacillus genus were most common in the ileum,
while Fusobacterium and Bacteroides were more common in the rectum.

Further studies are needed to understand the protective mechanisms of the gut micro-
bial community and to develop clinical interventions to improve gut health in piglets.
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