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Simple Summary: A total of 251 putative TRPs from saurian are divided into 2 groups, belonging to
6 TRPs subfamilies, excluding the TRPN subfamily. The most conserved proteins of TRP box 1 are
located in motif 1, and those of TRP box 2 are located in motif 10. The TRPA and TRPV in saurian
tend to be one cluster, as a sister cluster with TRPC, and the TRPM is a root of group I. TRPM, TRPV,
and TRPP are clustered into two clades, and TRPP is organized into TRP PKD1-like and PKD2-like.
Segmental duplications mainly occur in the TRPM subfamily, and the tandem duplications only occur
in the TRPV subfamily. Fifteen sites were under positive selection for TRPA1 and TRPV2 genes. The
branch model revealed that positive selection fit the data better than the null model for the genes
TRPC5 and TRPV3.

Abstract: The transient receptor potential plays a critical role in the sensory nervous systems of
vertebrates in response to various mechanisms and stimuli, such as environmental temperature. We
studied the physiological adaptive evolution of the TRP gene in the saurian family and performed a
comprehensive analysis to identify the evolution of the thermo-TRPs channels. All 251 putative TRPs
were divided into 6 subfamilies, except TRPN, from the 8 saurian genomes. Multiple characteristics
of these genes were analyzed. The results showed that the most conserved proteins of TRP box 1 were
located in motif 1, and those of TRP box 2 were located in motif 10. The TRPA and TRPV in saurian
tend to be one cluster, as a sister cluster with TRPC, and the TRPM is the root of group I. The TRPM,
TRPV, and TRPP were clustered into two clades, and TRPP were organized into TRP PKD1-like and
PKD2-like. Segmental duplications mainly occurred in the TRPM subfamily, and tandem duplications
only occurred in the TRPV subfamily. There were 15 sites to be under positive selection for TRPA1
and TRPV2 genes. In summary, gene structure, chromosomal location, gene duplication, synteny
analysis, and selective pressure at the molecular level provided some new evidence for genetic
adaptation to the environment. This result provides a basis for identifying and classifying TRP genes
and contributes to further elucidating their potential function in thermal sensors.

Keywords: TRP gene family; saurian; evolution; genome-wide; thermal sensors

1. Introduction

Ectotherms’ body temperature, an important physiological parameter, is essential
for the optimal performance of physiological functions within a narrow thermal environ-
ment [1–4]. The capacity to maintain body temperature directly indicates the fitness of
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individuals [5]. Changes in ambient temperature influence the individuals’ physiology,
performance, and fitness [6]. The thermally heterogeneous changes, including micro-
habitats, seasonality, and climate change, influence individuals’ body temperature [2].
Individuals employ behavioral or postural adjustments to control their body temperature
to avoid harmful extremes [7]. The interactions between ecological and physiological
traits directly determine thermal performance, which is the result of selective pressures
and evolution [1,8,9]. Changes in ambient temperature influence the individual physi-
ology, altering performance and fitness. To balance the trade-off of the heat exchange
between the individuals and their thermal environment, individuals have to evolve some
reliable thermosensory proteins, to rapidly respond with physiology or behavior to the
complex spatial and temporal changes in the thermal environment [10]. The ability to sense
environmental and internal temperatures is a prerequisite for the evolution of thermoregu-
lation [11]. Hence, individuals require a sophisticated physiological system to sense the
ambient temperature for survival [12].

Ectotherms employed sensory neurons in the peripheral nervous system, as temperature-
sensitive ion channels [13]. Transient receptor potential (TRPs) consists of Ca2+ permeable
non-selective cation channels, which function in numerous physiological processes and
homeostatic functions [14]. This response is due to a signaling cascade that produces a tran-
sitory change in receptor potential [15,16]. The TRPs were divided into seven subfamilies
based on their amino acid sequences and structures, as TRPA (Ankyrin), TRPC (Canonical),
TRPM (Melastatin), TRPML (Mucolipin), TRPN (Nompc), TRPP (Polycystin), and TRPV
(Vanilloid) [17]. Depending on the variations in the luminal/extracellular domain between
transmembrane helix 1 (S1) and S2 [18,19], the seven subfamilies are recognized and divided
into group I (TRPA/C/M/N/V) and group II (TRPML and TRPP). The TRPP subfamily
is an ancient member of the TRPs [19]. During the evolution of the TRPs, six subfamilies
have been observed in vertebrates [20], except TRPN, which only occurs in zebrafish and
invertebrates [21]. The thermo-TRPs, of the TRP channels activated by temperature, are
divided into heat-sensitive proteins (TRPV1-4) [22] and cold-sensitive proteins (TRPM8,
TRPC5, and TRPA1) [23–25]. The TRPV1, a classic thermo-TRP, is directly activated by high
temperatures (≥ 43 ◦C) in humans [26]. The TRPM8 regulates thermoregulation as it relates
to cold temperature sensation in lizards because it does not participate in regulating warm
temperature behaviors such as gaping [2]. To adapt to thermal niches, some changes in TRP
improve thermal perception and responses in the individual’s large-scale evolution. All
these findings indicate the important roles of TRP channels in the different environmental
stimuli. However, to date, most of the research on TRP proteins has mostly been performed
on mammals.

In reptiles, TRPs play a key role in interpreting thermal stimuli to rapidly and accu-
rately sense the environment around them [11,13,27,28]. Inhibition of TRPV1 and TRPM8
by the blocker capsazepine in Crocodylus porosus abolished the typical ectotherms shuttling
behavior and led to significantly altered body temperature patterns [11]. It indicates that
the function of TRPs in reptiles for thermoregulation is similar to that in mammals. In
Takydromus tachydromoides, cold treatment reduced TRPV4 expression in the brain, tongue,
heart, lungs, and muscles in the hibernation species, but levels of TRPV4 mRNA in the
skin remained unaffected after entering hibernation and cold treatment [29]. In Mauremys
reevesii, the embryos moved toward a mild heat source when the ambient temperature was
above 29 ◦C due to TRPA1 activation, but embryos moved away from the noxious heat
source when the ambient temperature was above 33 ◦C due to TRPV1 activation [30]. Ther-
mophis baileyi exhibited species-specific temperature-sensing molecular strategies (amino
acid replacements) in the TRPA1, which did not influence the temperature-response mar-
gin but increased the heat sensitivity [31]. Moreover, previous studies have shown that
thermosensitive gating in a given channel is species-specific, and multiple channels act
together to sense the thermal environment [10]. However, there is little information on the
TRP proteins’ gene family in reptiles.
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In this study, to test the physiological adaptive evolution of the TRP gene family in
saurian, we performed a comprehensive analysis of the genome sequence data of eight
saurian species and identified the TRP protein gene family. We analyzed their phylogenetic
relationships, conserved motifs, gene structure, and gene duplication. To improve the
understanding of the evolution of the thermo-TRP channels in saurian, we performed
selective pressure analysis on thermo-TRPs to identify the positive selection.

2. Materials and Methods
2.1. Identification of TRP Gene Family in Saurian

We downloaded the saurian genomes (Table S1), including those of Anolis caroli-
nensis, Gekko japonicus, Lacerta agilis, Podarcis muralis, Pogona vitticeps, Sceloporus undu-
latus, Sphaerodactylus townsendi, and Zootoca vivipara, from the NCBI database (https:
//www.ncbi.nlm.nih.gov/genome, accessed on 22 July 2022). We employed TBtools [32] to
generate the Hidden Markov Model (HMM) of TRPs based on Homo sapiens from HGNC
(https://www.genenames.org, accessed on 22 July 2022), Xenpus tropicalis from Xenbase
(https://www.xenbase.org/entry/, accessed on 22 July 2022), and Danio rerio from ZFIN
(https://www.zfin.org/, accessed on 22 July 2022) to identify the TRP members based
on the HMM of TRPs by using HMMER3 software [33]. To avoid missing probable TRP
members, we used a BLASTp algorithm-based search using molluscan TRPs amino acid
sequences as queries with a cutoff e-value ≤ 1e-5 [34]. Overlapping genes were man-
ually removed. All candidate TRP genes were filtered by using the NCBI Conserved
Domain Database (CDD, https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml, ac-
cessed on 22 July 2022) [35,36] and Multiple EM for the Motif Elicitation (MEME) online
tool (http://meme-suite.org/tools/meme, accessed on 22 July 2022) [37]. The MEME was
set with the following parameters: any number of repetitions, a maximum of 10 motifs, and
an optimum motif width of 6–50 residues [38], and MEME online was employed to analyze
the motif structure of TRP proteins. The Gene Structure View (Advanced) was employed
for the visualization of conversed domains and motifs in TBtools [32]. Next, using TBtools,
we detected the exact chromosomal locations of all TRP genes through a BLAST search
of the genome sequences. Due to the association with the highly conserved region of
23–25 amino acids C-terminal to the transmembrane domains [39], we ran a comparative
analysis of the conserved domain in saurian.

2.2. Phylogenetic Analysis

The TRPs were aligned using MAFFT [40] and implemented in PhyloSuite [41]. Ac-
cording to the best model as implemented in IQ-TREE2, the maximum likelihood (ML)
tree was computed and built with a bootstrap test (5000 replicates) and the SH-aLRT test
(1000 random addition replicates) [42]. Phylogenetic consensus trees were edited by using
iTOL (https://itol.embl.de, accessed on 22 August 2022) [43].

2.3. Chromosome Locations and Synteny Analysis

The chromosomal locations of TRP genes, except for Gekko japonicus and Pogona
vitticeps, were obtained from general feature format files. Gene location visualization from
the GFF was used to map the distribution of TRP genes. To identify the orthologous genes
among eight saurian genomes, we used OrthoFinder [44], and MCSanX was employed to
conduct colinearity analyses of all TRPs between and within species [45]. Circos was used
to visualize the colinear relationships of TRPs [46] and the distribution of these genes on
the chromosomes in TBtools.

2.4. Selective Pressure Analysis

Based on the previous research [12,47], we selected seven genes, including TRPA1,
TRPM8, TRPC5, and TRPV1-4, to analyze the selection pressure in the eight saurian
genomes, and then calculated the proportions of the non-synonymous (dN)/synonymous
(dS) evolutionary rate (ω) using EasyCodeML v1.12 [48] to represent the selective selection.

https://www.ncbi.nlm.nih.gov/genome
https://www.ncbi.nlm.nih.gov/genome
https://www.genenames.org
https://www.xenbase.org/entry/
https://www.zfin.org/
https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml
http://meme-suite.org/tools/meme
https://itol.embl.de
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Differentω values indicated a different type of selection: ω > 1 shows the positive selection,
ω = 1 represents the neutral selection, and ω < 1 represents the purifying selection [49].
We employed a fast unconstrained Bayesian approximation (FUBAR) on the Datamonkey
website to detect the positive selection implemented [50]. The analysis was calculated
based on the site model (M8a vs. M8) [51] and branch model (two ratios vs. one ratio)
with the likelihood ratio test (LRT) threshold of p < 0.05, elucidating adaptation signatures
within the genome. Amino acid sites under positive selection were detected using Bayesian
empirical bayes (BEB) inference, with an 80% posterior probability cutoff [52].

3. Results
3.1. TRP Genes in Saurian

A total of 32, 30, 30, 33, 27, 28, 28, and 31 TRPs were identified in A. carolinensis,
G. japonicus, L. agilis, P. muralis, P. vitticeps, S. undulatus, S. townsendi, and Z. vivipara,
respectively (Figure 1 and Table S1). Ten conserved motifs were identified using MEME
in saurian (Figure S1). Motif 2 was present in each saurian TRP protein, and the TRPM
included all 10 motifs. No TRPN proteins were found in the eight saurian genomes
(Figure 1). The most conserved proteins of TRP box 1 were located in motif 1, and those of
TRP box 2 were located in motif 10.
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Figure 1. Species tree of eight saurian and TRP numbers of each species. The time tree of the eight
saurian was built by the TIMETREE 5 (left, the number is the divergence time), and the numbers of
the TRP family detected in each species were listed accordingly (right).

3.2. Phylogenetic Relationships of TRPs in Saurian Genomes

To explore the evolutionary differences and origins of these TRP protein families
in saurian, we further analyzed the molecular histories of these genes. We performed
maximum-likelihood (ML) analysis on the amino acid sequences of all 251 TRPs using
the ML method with 1000 bootstrap replicates (Figure 2). The TRPs were clustered into
six subgroups (TRPA, TRPC, TRPP, TRPM, TRPML, and TRPV), which belong to two
monophyletic clades as group I and group II. Group I contained four subfamilies, TRPA,
TRPC, TRPM, and TRPV, and group II contained two subfamilies, TRML and TRPP,
respectively. Phylogenetic analysis indicated that TRPA and TRPV in saurian tended to be
one cluster, as the sister cluster with TRPC, and TRPM is the root of group I. The TRPM,
TRPV, and TRPP proteins clustered into two clades (Figure 2) and TRPM proteins contained
the αTRPM clade (including TRPM3, TRPM1, TRPM6, and TRPM7) and the βTRPM clade
(including TRPM4, TRPM5, TRPM2, and TRPM8). TRPV1, TRPV2, TRPV3, and TRPV4
belonged to TRPV protein group I, and the TRPV protein group II contained TRPV5 protein
and TRPV6 proteins, which were annotated as TRPV 5/6. TRPP was organized into
two clades: TRPP1-like (including TRPPREJ, TRPP1L2, and TRPP1L3) and TRPP2-like
(including TRPP2, TRPP2L1, and TRPP2L2).
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3.3. Syntenic Analysis of TRPs in Saurian Genomes

To further identify the orthologous relationships and evolutionary origins of TRPs in
saurian, we identified 737 orthologous gene pairs (Table S3). We investigated the synteny
among six saurian genomes with chromosome-level genomes using MCScanX, and the data
showed that high-level microsynteny was maintained among the saurian genomes (Figure 3).
There was a one-to-one correspondence between the gene lineages and syntenic orthologous
groups (Figure S2). The TRPs from saurian contributed at least one TRP to each subfamily.
In our study, most members of the TRP family were distributed on chromosomes (Figure S3
and Table S4). Based on the results of the syntenic analysis, the segmental duplications (SD)
and tandem duplications (TD) were the TRP duplication types in all genomes (Figure 4),
but the TRPs did not experience duplication events in A. carolinensis (Figure 4). The SD
mainly occurred in the TRPM subfamily, and TD only occurred in the TRPV subfamily.
There was only one SD in S. undulatus (rna-XM_042476030.1 vs. rna-XM_042451064.1),
two SD in L. agilis (rna-XM_033163651.1 vs. rna-XM_033166883.1 and rna-XM_033160619.1
vs. rna-XM_033140165.1), P. muralis (rna-XM_028749274.1 vs. rna-XM_028706666.1 and
rna-XM_028728955.1 vs. rna-XM_28718097.1), and Z. vivipara (rna-XM_035131044.1 vs. rna-
XM_035099594.1 and rna-XM_035137878.1 vs. rna-XM_035104957.1), and three SD in S.
townsendi (rna-XM_048513883.1 vs. rna-XM_048519142.1, rna-XM_048508742.1 vs. rna-
XM_048487239.1, and rna-XM_048519624.1 vs. rna-XM_048503482.1), respectively (Figure S4).
There was only one TD in S. townsendi (rna-XM_048504402.1 vs. rna-XM_048504571.1), two TD
in S. undulatus (rna-XM_042442354.1 vs. rna-XM_042442355.1 and rna-XM_042447702.1 vs. rna-
XM_042452285.1), three TD in P. muralis (rna-XM_028708247.1 vs. rna-XM_028708248.1, rna-
XM_028708530.1 vs. rna-XM_028708708.1, and rna-XM_028712426.1 vs. rna-XM_028712789.1)
and Z. vivipara (rna-XM_035141029.1 vs. rna-XM_035097275.1, rna-XM_035139054.1 vs.
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rna-XM_035139047.1, and rna-XM_035139316.1 vs. rna-XM_035139320.1), and four TD
in L. agilis (rna-XM_033145813.1 vs. rna-XM_033145814.1, rna-XM_033171541.1 vs. rna-
XM_033172593.1, rna-XM_033172595.1 vs. rna-XM_033171884.1, and rna-XM_033173257.1 vs.
rna-XM_033173677.1), respectively.
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Figure 4. Colinear region of the TRP gene of saurian. The gray lines represent all the colinear
blocks in TRP gene pairs among species, while the highlight-colored lines represent TRP gene pairs
subjected to segmental duplication within species. Chromosome numbers are shown at the bottom of
each chromosome.
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3.4. Selective Pressure Analysis in Saurian TRP Gene

To determine whether the individual codons in each gene were subjected to positive
selection, we used the site model (M8a vs. M8) in the dataset. The results showed that the
M8 model, which included positive selection, fit the data better than the neutral model M8a.
Specifically, the M8 model detected 15 sites to be under positive selection at TRPA1 and
TRPV2 genes (Table 1 and Figure 5), most of which were located in the coil of TRPA1 and
TRPV2 genes. Significant evidence of positive selection was further identified using the
FUBAR model implemented in Datamonkey. Additionally, FUBAR also identified 13 sites
in these two genes under diversifying selection with a posterior probability > 0.8.

Table 1. Positive selection at amino acid sites of saurian TRPs.

PAML Datamonkey

−2∆lnL Site Model ω Value FUBAR

TRPA1 10.58 4, 17, 147, 182, 216, 750, 757,
828, 873, 1110*, 1112* 3.18 92, 115, 147, 174, 182*, 216*,

232, 750, 757, 1110*, 1112
TRPV2 6.28 275, 715, 717*, 735* 4.35 38, 275, 563

Note: Positively selected sites inferred by both methods are underlined. *: Selective pressure > 0.9.
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Figure 5. Amino acid changes in selected sites across the saurian phylogeny. Amino acid changes
occurred in genes TRPA1 (green) and TRPV2 (yellow). The numbers represent the amino acid
positions in the genes TRPA1 and TRPV2.

A branch model with two ratios was used to explore whether saurian with daily
activity rhythms (classified into two groups, i.e., diurnal and nocturnal saurian) evolved
under different evolutionary pressures. The results revealed that the model that included
positive selection fit the data better than their null model at genes TRPC5 (two ratios vs.
one ratio: p = 0.025) and TRPV3 (two ratios vs. one ratio: p = 0.032) (Table 2).

Table 2. Log likelihood and omega values estimated under the branch model of Gekko japonicus on
TRP genes.

Model −lnL −2∆lnL p-Value
ω Value

Background Foreground

TRPC5
Two ratios −8267.20

4.99 0.025 0.03 0.07
One ratio −8269.69

TRPV3
Two ratios −7736.71

4.62 0.032 0.06 0.11
One ratio −7739.02
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4. Discussion

In this study, all 251 identified putative TRPs with 6 subfamilies, except TRPN, were
identified from 8 saurian genomes. This study is the first study to characterize the repertoire
and evolutionary patterns of the TRP gene family in saurian. All TRPs were highly con-
served in their sequences and structural features. Based on the selective pressure analysis
and the activity time of the species, we hypothesized that TRPA1, TRPV2, TRPV3, and
TRPC5 are the thermo-TRP channels of saurian. Our results provide a novel view of the
saurian thermal sensor system at the molecular level.

Over the past two decades, more and more species were sequenced since the genome
of A. carolinensis was reported, and genomic data provide us with convenient conditions
for analyzing evolution, including gene structure, chromosome location, gene duplication,
synteny analysis, and selective pressure. Genome-wide screening revealed 32, 30, 30,
33, 27, 28, 28, and 31 TRPs in A. carolinensis, G. japonicus, L. agilis, P. muralis, P. vitticeps,
S. undulatus, S. townsendi, and Z. vivipara, respectively (Figure 1 and Table S2). The TRPs
belonged to six TRP subfamilies, except for the TRPN subfamily. The TRPN members are
only present in worms, flies, and zebrafish, except in Antarctic fish [10], mammals [39], and
saurian. Reptiles share a common ancestor with mammals and have an important amniote
phylogeny position [53]. The number of members of each TRP subfamily is relatively
more stable in vertebrates than in invertebrates, but there are more TRPP-like genes in
saurian (Figure 1, right). We found a highly conserved motif named motif 2 in all saurian
TRP genes. The most conserved portions of the TRP domain were identified as the TRP
boxes 1 and 2 [39], and the results indicated that boxes 1 and 2 were located in motif 1 and
motif 10, respectively.

The results showed that the complement of TRPs in saurian was similar to that in
mammals. The finding supports those of recent analyses of the evolutionary history
of TRP. In the phylogenetic analysis, we restructured the initial reliability phylogenetic
relationship with the high topology consistency of TRPs, and further divided these TRPs
into two groups, which supported the previous results in the literature that members of
the TRPs are divided into group I and group II [10,54], and the TRPP is located at the root
of the ML tree, supporting the TRPP subfamily as the ancestor of TRP, where the members
of the TRPP subfamily extend from yeast to mammals [19]. TRPM proteins are divided
into the αTRPM and βTRPM. The βTRPM clade contains the TRPM2, TRPM4, TRPM5, and
TRPM8, where the TRPM2, TRPM4, and TRPM5 are activated by heat, but the TRPM8
responds to cold temperatures [55]. TRPV proteins belong to two groups that assist with
this function, TRPV1-4 proteins are defined as thermosensitive [46], and TRPV5/6 proteins’
function is to maintain Ca2+ homeostasis [47]. In lizards, TRPP channels are organized into
PKD1-like and PKD2-like, except for the brivido subfamily, which differs from the previous
studies [54,56].

Moreover, the syntenic analysis showed the number of homology pairs within and/or
among species, but the TRPs have not experienced the duplication event in A. carolinensis.
Gene duplication events, such as large-scale duplication (whole-genome duplication or
segmental duplication) and tandem duplication, are the main drivers for the generation of
novel genes. Large-scale duplication events play a key role in gene family evolution, and
tandem duplication does not increase the number of conserved genes [57]. In saurian, the
SD mainly occurs in the TRPM subfamily, but the TD only occurs in the TRPV subfamily.
TRPM and TRPV proteins clustered into two clades, which appears to be due to the ancestral
saurian genome duplication, and the event is still observed in fish [10]. The number of
duplicated gene pairs in TRPs (from 3 to 6, including SD and TD) did not correlate with the
genome size and chromosome number in saurian (Figure S3). It is similar in the genome
size and chromosome number in saurian, but the number of colinear TRP gene pairs varied
among species, associated with the phylogenetic site.

The vulnerability of lizards to climate warming depends on the sensitivity of the
individuals to temperature variation [7], which increases the risk of population decline
and extinction [58]. However, the diel activity pattern reflects the capacity of adaptation
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to the variable environment [59], in which the ambient temperature at night is lower than
that during the daytime. The ancestral state of geckos is nocturnal, except for Phelsum and
Lygodactylus in Gekkonidae and Sphaerodactylidae species [60]. Hence, most geckos have
lower body temperatures than diurnal species [61,62], reducing the metabolic rate and
metabolic by-products as well as oxidative damage [63]. In this study, the selection analysis
showed significant evidence of positive selection, including TRPA1, TRPC5, TRPV2, and
TRPV3 in saurian (Tables 1 and 2). In vertebrates, TRPV1’s physiological role in sensing
noxious high temperatures is well-conserved among vertebrate species [12]. TRPC5 and
TRPM8 were identified as cold-relative genes [24,64]. In lizard (Takydromus tachydromoides)
and snake (Elaphe quadrivirgata), TRPV4 in the skin may act as an environmental tempera-
ture sensor throughout the reptilian lifecycle [32]. In C. porosus, hot-sensing TRPV1 and
cold-sensing TRPM8 have the potential to act as internal and external temperature sensors,
respectively [11].

5. Conclusions

In this study, all 251 putative TRPs were divided into 6 subfamilies, except TRPN,
from 8 saurian genomes, such as A. carolinensis, G. japonicus, L. agilis, P. muralis, P. vitticeps,
S. undulatus, S. townsendi, and Z. vivipara. The results provided a comprehensive analysis
of the subfamily classification, gene structure, chromosomal location, gene duplication,
synteny analysis, and selective pressure of TRPs in saurian and provided new evidence
for the physiological adaptive evolution of environmental changes. This investigation
provides a basis for identifying and classifying TRP genes and contributes to elucidating
their potential function in thermal sensors, facilitating future functional characterization of
thermo-TRPs and providing important clues for saurian thermal sensors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani12243593/s1, Figure S1: Phylogenetic relationships, gene
structure, and motif distributions of saurian TRP genes. Figure S2: Analysis of ML tree and ortholo-
gous gene pairs among the saurian. The different color links suggested orthologous gene relationships
of different saurian. Figure S3: Distribution of TRP gene pairs within species. The gray lines represent
all the colinear blocks in gene pairs within species, while the red lines represent TRP gene pairs
subjected to segmental duplication within species. Chromosome numbers are shown at the bottom of
each chromosome. Table S1: List of saurian genomes and TRP gene sequences information in this
study. Table S2: The link between gene ID and gene symbol. Table S3: Duplicated TRP gene pairs in
saurian. Table S4: The divergence between duplicated TRP gene pairs in saurian.
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