
Citation: Rui, Y.; Qiu, G. Analysis of

Gut Microbial Communities and

Resistance Genes in Pigs and

Chickens in Central China. Animals

2022, 12, 3404. https://doi.org/

10.3390/ani12233404

Academic Editors: Wanjiang Zhang

and Yang Yu

Received: 1 November 2022

Accepted: 1 December 2022

Published: 2 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

animals

Article

Analysis of Gut Microbial Communities and Resistance Genes
in Pigs and Chickens in Central China
Yapei Rui † and Gang Qiu *,†

College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University,
Xinyang 464000, China
* Correspondence: 2007200008@xyafu.edu.cn
† These authors contributed equally to this work.

Simple Summary: Objectives: The goal of this study was to reveal the gut microbiota of pigs and
chickens in central China and the dynamics of antibiotic resistance genes carried by microorganisms.
Methods: Free range and factory-farmed Gushi chickens and Huainan pigs were divided into
eight groups. Faecal samples were collected from each group, and the metagenomic sequencing
method was used to detect each group of samples. Results: The resistance genes showed the
following trend, from high to low relative abundance: tetW was the highest, followed by tetW/N/W,
then lnuA; and others from high to low were mdtB, lnuC, ANT6-la, ErmB, mdtC, ErmQ, tetBP, vatE,
evgS, acrB, cpxA, mefA, Escherichia coli-ampC, tetL, yojl, AcrF and mdtA. Conclusions: All groups
administered enrofloxacin and oregano oil did not develop a drug-resistant phenotype during the
5-day treatment period, as grouped in this trial. In 2022, after Announcement No. 194 of the Ministry
of Agriculture and Rural Affairs in China, the antimicrobial resistance (AMR) trend declined, but it
did not fundamentally change, presumably due to the impact of environmental pollution caused by
the long-term use of antimicrobials.

Abstract: Background: Basic data concerning the gut microbiota of the main animal husbandry breeds
(pigs and chickens) are scarce in China. The dynamics of gut microbiota (pigs and chickens) in China
and antibiotic resistance genes carried by microorganisms in the natural environment are unknown.
Methods: Free range and factory-farmed Gushi chickens and Huainan pigs were divided into eight
groups. Faecal samples were collected from each group, and the metagenomic sequencing method
was used to detect each group of samples. Results: The resistance genes showed the following
trend, from high to low relative abundance: tetW was the highest, followed by tetW/N/W, then lnuA;
and others from high to low were mdtB, lnuC, ANT6-la, ErmB, mdtC, ErmQ, tetBP, vatE, evgS, acrB,
cpxA, mefA, Escherichia coli-ampC, tetL, yojl, AcrF and mdtA. All groups administered enrofloxacin
and oregano oil did not develop a drug-resistant phenotype during the 5-day treatment period, as
grouped in this trial. In 2022, after Announcement No. 194 of the Ministry of Agriculture and Rural
Affairs in China, the antimicrobial resistance (AMR) trend declined, but it did not fundamentally
change, presumably due to the impact of environmental pollution caused by the long-term use
of antimicrobials.

Keywords: gut microbial communities; resistance genes; pig; chicken; China

1. Introduction

The discovery and widespread use of antimicrobials in the development of human
civilization has an indelible meaning [1]. The extensive clinical application of antibiotics has
greatly reduced the morbidity and mortality of bacterial infectious diseases in humans and
animals [2], but due to the irregular use of antimicrobials in China (the largest producer and
consumer of antimicrobials), severe bacterial resistance has emerged. Even the prevalence
of cross-resistance [3] and multidrug resistance [4–11] has increased. In recent years, to
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reduce the irrational use of antimicrobials and control drug resistance, the government
of China has introduced a series of policy measures, including the National Action Plan
for Containment of Bacterial Resistance. The Ministry of Agriculture and Rural Affairs
issued the National Action Plan for Restraining Bacteria of Animal Origin and the National
Five-Year Action Plan for Comprehensive Management of Veterinary Drugs (Antibacterial
Drugs), aimed at curbing bacterial resistance. The antimicrobial resistance (AMR) of
bacteria in China’s livestock and poultry breeding industry has begun to improve.

However, in the long term, AMR has become a major threat to human health in the
21st century. The animal breeding industry is generally believed to be one of the main
sources of AMR, which causes resistant bacteria and genes to circulate through the entire
chain of animals, food, environment, and humans, and threatens human health. At present,
AMR is common in bacteria of animal origin. Multidrug resistant and even pandrug
resistant strains are constantly appearing [12–16], which has a huge impact on food safety
and public health [17].

Irrational use of antimicrobials promotes the emergence of AMR, resulting in changes
in the composition and diversity of animal gut microbiota, which adversely affect host
health [18]. Quantitative data on antibiotic resistance genes (ARGs) in pigs and chickens,
the main food animals in China, are still lacking, and the relationship between ARGs and
bacterial species in the gut microbiome of pigs and chickens has not been elucidated [19].
For most bacteria, metagenomic sequencing technology can predict AMR with high accu-
racy and has become an effective tool for analysing AMR [20].

The study of microorganisms has been based mainly on pure culture for the hundreds
of years since Antoni van Leeuwenhoek invented the microscope. Among the trillions of mi-
crobial species, only 0.1–1% of the species are culturable [21], which greatly limits the study
of microbial diversity and molecular mechanisms of population resistance phenotypes.

Metagenomics is a method that was first proposed by Handelman [22] to study all the
genomic information contained in the microbial population. Then, Kevin et al. defined
metagenomics as a discipline that bypasses the isolation and culture of microbial individ-
uals and applies genomics technology to study the microbial community in the natural
environment. Metagenomics avoids the isolation and cultivation of microorganisms in the
sample, provides a way to study microorganisms that cannot be isolated and cultivated,
and more realistically reflects the composition and interaction of microorganisms in the
sample to study their metabolic pathways and gene function at the molecular level [23].

In recent years, with the rapid development of sequencing technology and information
technology, the use of next-generation sequencing technology to study metagenomics can
quickly and accurately obtain a large amount of biological data and rich microbial research
information [24–26]. Sequencing technology is an important means of characterisation
that provides a powerful tool for better understanding the molecular mechanism of the
microbial resistance phenotype.

According to the statistics of the World Food and Agriculture Organization, China’s
number of live pigs, total pork production and poultry egg production ranks first in the
world, and poultry egg production has ranked first in the world for many consecutive
years. China has become one of the most important animal husbandry countries. The
current understanding of the pig and chicken gut microbiome is limited, due mainly to the
lack of comprehensive pig and chicken gut microbial reference gene sets and genome sets,
which severely limits the mining and use of metagenomic sequencing data.

Fluoroquinolones are important antimicrobials used to treat Salmonella infections in
poultry. Studies have shown that high-dose enrofloxacin (ENR, 100 mg/kg body weight
(BW)) has a good killing effect on Salmonella enterica in chickens, but at the same time, the
composition and structure of intestinal flora are greatly affected [27].

The observed intestinal ENR concentrations were shown to be both theoretically
(based on pharmacokinetic and pharmacodynamic principles) and effectively (in vivo mea-
surement) capable of significantly reducing the intestinal E. coli wild-type population [28].
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In this study, the characteristics of drug resistance groups, drug-resistant bacteria and
ARG contamination levels of pigs and chickens on different farms under different feeding
modes were studied to provide a reference for the optimisation of antibiotic use in farms.

2. Methods
2.1. Group Test and Sample Collection

In this study, ten fresh faeces of Gushi chickens were collected from an intensive farm
in Gushi County, Henan Province, P.R. China, on 15 July 2022, and ten fresh faeces of
Gushi chickens were collected from a family farm. Ten fresh faeces of Huainan pigs were
collected from an intensive Huainan pig farm, and 10 fresh faeces of Huainan pigs were
collected from a mountain farm. The above collected subjects had not used antimicrobials
in the past 2 months. On 19 July 2022, 10 faeces of the factory-bred Gushi chicken oregano
oil group, 10 faeces of the enrofloxacin group (treatment amount), and 10 faeces of the
factory-bred Huainan pig oregano oil group and enrofloxacin group (treatment amount)
were collected, respectively. All animal-related work was carried out in strict accordance
with the “Administrative Regulations on Laboratory Animals” formulated by the Ministry
of Agriculture and Rural Affairs of China, and the project was approved by the Animal
Ethics and Welfare Committee (AEWC) of Xinyang Agriculture and Forestry University,
and then transported to the laboratory for extraction of total nucleic acid from the samples.
Total DNA and total RNA were extracted from 80 samples.

Considering the consistency of animal species, age, weight, feeding place, feed and
drinking water, the following test scheme was adopted in order to reduce the impact of the
test on animal production. The sample size of this experiment was sufficient to reflect the
basic distribution situation of the intestinal flora of the animals.

A. Free-range Gushi chicken without an additive group;
B. Factory-bred Gushi chicken oregano oil group (0.25 mL/kg BW);
C. Factory-bred Gushi chicken ENR group (5.0 mg/kg BW);
D. Free-range Huainan pigs without an additive group;
E. Factory-bred Huainan pigs without an additive group;
F. Factory-bred Huainan pigs (2021011803). All samples were stored in the sample

preservation solution, mixed with pig oregano oil group (0.25 mL/kg BW);
G. Factory-bred Huainan pigs ENR Group (5.0 mg/kg BW)
H. Factory-bred Gushi chicken without an additive group.

Factory or intensive breeding was performed by industrial production in a factory farm
in the following manner. First, the scale of factory breeding was large (>10,000). Second, the
hybrid combination or mating line of animals with a consistent body shape, appearance, and
balanced growth, were selected. Third, some mechanised and automatic equipment, such
as automatic drinking fountains, automatic feeding troughs, and automatic dung cleaning,
were used. Fourth, fewer staff, less land occupation, and high labor productivity, occurred.
Fifth, scientific operation and management methods were used to organise production,
so that production conditions and technological processes operated in accordance with
standards and rules, including full price compound feed, modern epidemic prevention
measures and all inflow and all outflow production process.

The family farm, or mountain farm, operated under the free-range breeding model.
The family farm or mountain farm engaged in animal husbandry with an annual production
of more than 500 pigs, more than 5000 chickens for broilers, more than 2000 laying hens,
or more than 3000 mixed breeding poultry. The animals moved freely. The animals were
fed full price compound feed, and wild and green feed. Normal epidemic prevention and
expulsion of parasites occurred.

The above animals were all adult animals. Pigs were in the fattening stage (5–8 months),
and chickens were in the laying stage (19–28 weeks). The ENR group and oregano oil group
were administered oregano orally twice a day for 5 days. The water intake of the animals
was controlled in the experiment.
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The raw samples or the extracted nucleic acid samples was transported cold (in dry
ice, −78.5 °C) to the biotech company. The received samples were tested for eligibility.
Qualified DNA samples were detected, and library construction and library detection were
performed. Illumina NOVASEQ 6000 (Illumina, Inc., San Diego, CA, U.S.A.) was used to
sequence the qualified library, and the raw data obtained by sequencing were used for later
information analysis.

2.2. DNA Sample Detection

Library construction and sequencing yielded a sufficient amount of high-quality
nucleic acids. The detection of DNA samples mainly included the analysis of DNA purity
and integrity by agarose gel electrophoresis (AGE), and Qubit accurately quantified the
DNA concentration.

2.3. Library Construction and Library Inspection

Qualified DNA samples were randomly broken into fragments of approximately 350
bp in length with a Covaris ultrasonic breaker, and the entire library was prepared through
the steps of end repair, A-tail addition, sequencing adapter addition, purification, and
PCR amplification.

After the library was constructed, Qubit 2.0 was used for preliminary quantifica-
tion, the library was diluted to 2 ng/µL, and then an Agilent 2100 (Agilent, Santa Clara,
CA, U.S.A.) was used to detect the insert size of the library. After the insert size met
expectations, the Q-PCR method was used to determine the effective concentration of the
library. Accurate quantification (library effective concentration > 3 nM) was performed to
ensure library quality.

2.4. On-Board Sequencing

After the library was qualified, the different libraries were pooled according to the re-
quirements of effective concentration and target data volume, and then Illumina NOVASEQ
6000 sequencing was performed.

2.5. Information Analysis Process
2.5.1. Data Quality Control

There was a certain proportion of low-quality data in the raw data obtained by se-
quencing. To ensure the accuracy and reliability of subsequent information analysis results,
quality control and host filtering of the raw data were first carried out to obtain valid data.

Reads that contained low-quality bases (quality value ≤ 38) that exceeded a certain
percentage (set to 40 bp by default) were removed.

Reads with a certain proportion of N bases (default was 10 bp) were removed.
Reads whose overlap with the adapter exceeded a certain threshold (set to 15 bp by

default) were removed.

2.5.2. Metagenome Assembly

Metagenome assembly started from clean data after the quality control of each sample
was performed.

After preprocessing, clean data were obtained, and MEGAHIT assembly software was
used for assembly analysis.

The assembly parameters were: presets meta-large.
The assembled scaffolds were interrupted from N junctions to obtain sequence frag-

ments without N, called scaftigs (i.e., continuous sequences within scaffolds).
After quality control, the clean data of each sample were compared with the assembled

scaftigs of each sample using Bowtie2 Version 2.4.5 software.
The alignment parameters were: –end-to-end, –sensitive, -I 200, -X 400.
For scaftigs generated by single-sample assembly, fragments below 500 bp were filtered

out, and statistical analysis and subsequent gene prediction were performed.
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2.5.3. Gene Prediction

Gene prediction started from scaftigs assembled from single samples. MetaGeneMark
was used for gene prediction, and the genes predicted from each sample were combined
to remove redundancy and construct a gene catalogue. Based on the clean data of each
sample, the abundance information of the gene catalogue in each sample was obtained.

The basic steps of gene prediction and abundance analysis were as follows.
Starting from the scaftigs (≥500 bp) of each sample, MetaGeneMark was used to

perform an open reading frame (ORF) prediction, and information of length less than 100 nt
was filtered out.

The open reading frame (ORF) prediction results assembled by each sample were
made de-redundant using CD-HIT software to obtain a nonredundant initial gene catalogue
(here, in operation, the nucleic acid sequences encoded by nonredundant continuous genes
are called genes). The default was identity 95%, coverage 90% for clustering, and the
longest sequence was selected as the representative sequence.

The parameters were: -c 0.95, -G 0, -aS 0.9, -g 1, -d 0.
The clean data of each sample were compared with the initial gene catalogue by

Bowtie2, and the number of reads of the gene in each sample was calculated.
The alignment parameters were: –end-to-end, –sensitive, -I 200, -X 400.
The genes that supported the number of reads ≤2 in each sample were filtered out,

and the final gene catalogue (unigenes) for subsequent analysis was obtained.
Based on the number of reads and gene length in the alignment, the abundance

information of each gene in each sample was calculated, and the calculation formula was
as follows:

Gk =
rk
Lk

× 1
∑n

i=1
ri
Li

where r is the number of reads of the gene in the alignment, and L is the length of the gene.
Based on the abundance information of each gene in each sample in the gene cata-

logue, the basic information statistics, core–pan gene analysis, correlation analysis between
samples, and Venn diagram analysis of the number of genes were performed.

2.5.4. Species Annotation

The species annotation information of each gene (Unigene) was obtained from the
gene catalogue and compared with the MicroNR library, and the species abundance table
of different taxonomic levels was obtained by combining the gene abundance table.

Based on the species abundance table and functional abundance table, the abundance
clustering analysis, PCA and NMDS dimensionality reduction analysis, ANOSIM analysis
and sample clustering analysis were able to be performed. When group information was
available, multivariate statistical analysis of Metastat and LEfSe and comparative analysis
of metabolic pathways were also able to be performed to explore the differences in species
composition and functional composition among samples.

2.5.5. Resistance Gene Annotation

The gene catalogue and the Comprehensive Antibiotic Resistance Database (CARD)
were used for annotation, the abundance distribution of resistance genes was obtained, and
the species attribution and resistance mechanism of these resistance genes were found.

3. Results
3.1. Sequencing Data Preprocessing Results

The sequencing data preprocessing results are shown in Tables 1–3 and Figure 1.
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Table 1. Data preprocessing statistics table.

#Sample InsertSize (bp) RawData CleanData Clean_Q20 Clean_Q30 Clean_GC (%) Effective (%)

A 350 6633.18 6629.30 96.2 89.95 40.72 99.941
B 350 6982.84 6969.06 96.11 89.8 41.56 99.803
C 350 6714.52 6708.95 96.27 90.09 40.08 99.917
D 350 6155.96 6152.45 96.03 89.66 41.1 99.943
E 350 6822.24 6818.75 95.88 89.34 39.31 99.949
F 350 6528.38 6524.90 95.99 89.38 35.21 99.947
G 350 6884.02 6881.10 95.95 89.5 39.52 99.958
H 350 6645.17 6639.25 96.39 90.44 42.14 99.911

#Sample, sample name; InsertSize (bp), insert fragment length (default 350 bp library); RawData, the raw data of
the computer; CleanData, the valid data obtained and filtered; Clean_Q20, percentage of bases with a sequencing
error rate of less than 0.01 (quality value greater than 20) in CleanData; Clean_Q30, percentage of bases in
CleanData with a sequencing error rate less than 0.001 (quality value greater than 30); Clean_GC (%), GC content
of bases in CleanData; Effective (%), the percentage of effective data (CleanData) to raw data (RawData).

Table 2. The assembly results of each sample. Scaftig information (≥500 bp).

Sample ID Total Len. (bp) No. Average Len. (bp) N50 Len. (bp) N90 Len. (bp) Max Len. (bp)

A 77,097,982 50,858 1515.95 2087 625 304,611
B 103,806,670 79,760 1301.49 1565 598 94,301
C 53,150,756 34,873 1524.12 2127 628 182,450
D 114,767,070 76,524 1499.75 2000 634 269,282
E 91,187,139 64,129 1421.93 1804 619 395,129
F 98,440,700 58,234 1690.43 2689 644 185,631
G 85,667,957 51,678 1657.73 2510 637 297,861
H 77,519,231 54,238 1429.24 1830 617 157,857

Sample ID, indicates the sample name; Total Len. (bp), indicates the total length of the assembled scaftigs; No.,
indicates the total number of scaftigs assembled; Average Len. (bp), indicates the average length of scaftigs; N50
Len. (bp), indicates that the scaftigs were sorted by length and then summed from long to short. When the sum
value reached 50% of the total length of scaftigs, the length value of scaftigs was found; N90 Len. (bp), indicates
that the scaftigs are sorted by length and then summed from long to short. When the sum value reaches 90% of
the total length of scaftigs, the length value of scaftigs was found; Max Len, indicates the length of the longest
scaftigs assembled.

Table 3. Gene catalogue basic information. ORFs No. indicates the number of genes in the gene catalogue.

ORFs No. 445,260

integrity:end 82,047 (18.43%)
integrity:start 93,479 (20.99%)
integrity:all 237,785 (53.4%)

integrity:none 31,949 (7.18%)
Total Len. (Mbp) 300.11

Average Len. (bp) 674.02
GC percent 39.44

integrity:start, indicates the number and percentage of genes that only contain start codons; integrity:end, indicates
the number and percentage of genes that only contain stop codons; integrity:none, indicates the number and
percentage of genes with no start codon and no stop codon; integrity:all, indicates the percentage of the number
of complete genes (both start codons and stop codons); Total Len. (Mbp), indicates the total length of genes in the
gene catalogue, in millions; Average Len. (bp), indicates the average length of genes in the gene catalogue; GC
percent, indicates the predicted overall GC content of genes in the gene catalogue.



Animals 2022, 12, 3404 7 of 22

Figure 1. Scaftig length distribution statistics of each sample (≥500 bp). The first vertical axis
(Frequence (#)) represents the number of scaftigs; the second vertical axis (Percentage (%)) represents
the percentage of the number of scaftigs; the horizontal axis represents the length of scaftigs.

3.2. Metagenome Assembly (≥500 bp)

Based on the assembly results, the distribution of the length of scaftigs in each sample
was counted and plotted, and the results are shown in Figure 1.

The gene catalogue length distribution is shown in Figure 2.
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Figure 2. Gene catalogue length distribution. The first vertical axis (Frequence (#)) represents the
number of scaftigs; the second vertical axis (Percentage (%)) represents the percentage of the number
of scaftigs; the horizontal axis represents the length of scaftigs.

3.3. Core–Pan Gene Analysis

Based on the abundance table of genes in each sample, the number of genes in each
sample can be obtained. By randomly extracting different numbers of samples, the number
of genes between combinations of different numbers of samples can be obtained. Therefore,
we constructed and mapped the dilution curve of the core and pan genes, and the results
are shown in Figure 3.

Figure 3. Dilution curve of the core and pan genes. (a) Pan gene dilution curve. (b) Core gene
dilution curve. The abscissa indicates the number of samples. The vertical axis represents the number
of genes in the samples (1–8: A–G). 4E+5: 4 × 105, Same with the rest.

To examine the number of genes between the specified groups, the coexistence and
unique information between different groups were analysed, and a Venn graph, or petals,
were drawn. The results are shown in Figure 4.
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Figure 4. Number of genes. In the figure, each circle represents a sample; the numbers in the
overlapping parts of the circles represent the number of genes shared between the samples; the
numbers without the overlapping part represent the unique number of genes of the sample.

3.4. Gene Number-Based Correlation Analysis between Samples

Biological repetition is necessary for biological experiments, and high-throughput
sequencing technology is no exception. The correlation between the genetic abundance of
the sample is an important indicator for testing the reliability of the experiment and whether
the sample is selected. The closer to the correlation coefficient, the higher the similarities of
the gene abatement mode between the samples. The results are shown in Figure 5.

Figure 5. Heatmap of the correlation coefficient between samples. In the figure, different colours
represent the Spearman correlation coefficient; see the legend on the right for the relationship between
the correlation coefficient and colour. The darker the colour is, the greater the absolute value of
the correlation coefficient between samples. The right deviation of the ellipse indicates that the
correlation coefficient is positive and the left deviation is negative. The flatter the ellipse, the larger
the absolute value of the correlation coefficient.

3.5. Microbial Species Annotation
3.5.1. Basic Steps for Species Annotation

Genes were compared in various functional databases by DIAMOND software. Uni-
genes were compared with sequences for alignment (basic local alignment search tool
(BLAST)p, e-value ≤ 1 × 10−5).
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Alignment result filtering: for the alignment result of each sequence, the alignment
result with evalue ≤ minimum evalue*10 was selected for subsequent analysis.

After filtering, since each sequence may have multiple alignment results and obtain
multiple different species classification, to ensure its biological significance, the lowest
common ancestor (LCA) algorithm (applied to the systematic classification of MEGAN
software) was applied.

The taxonomic level before a branch represented the species annotation information
of the sequence.

Based on the LCA annotation results and gene abundance table, the abundance
information of each sample at each taxonomic level (Jiemenae, genus and species) was
obtained. The abundance of a species in a sample was equal to the sum of gene abundances
that the species annotated as the species.

Based on the LCA annotation results and the gene abundance table, the number
of genes in each sample at each taxonomic level (Kingmenae, genus and species) was
obtained. Among the genes of the species, the number of genes whose abundance was not
0 was presented.

Based on the abundance table at each taxonomic level (Jiemenae genus and species)
and Krona analysis, the relative abundance overview was displayed, the abundance cluster
heatmap was displayed, PCA and nonmetric multidimensional scaling (NMDS) dimen-
sionality reduction were analysed, the ANOSIM difference between (within) groups was
analysed, and Metastat and LEfSe multivariate statistical analyses of different species
between groups were performed.

3.5.2. Overview of the Relative Abundance of Species

To comprehensively and intuitively display the relative abundance of different classifi-
cation levels in each sample, we used Krona to display the species annotation results. The
results are shown in Figure 6.

Studies have shown that the gut microbiota is individual-specific, and the composition
of the microbiota of pigs under different feeding conditions and different intestinal parts
is different.

Based on the relative abundance tables of different classification levels, the top
10 species with the largest relative abundance were selected in each group, the rest
of the species were set as Others, and the species annotation results corresponding to
each sample in the column chart of relative abundance at different taxonomic levels are
shown in Figure 7.

Figure 6. Cont.
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Figure 6. Cont.
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Figure 6. (a–h). Annotate results for species using Krona. In Figure 6, the circles represent different
taxonomic levels (kingdom, phylum, class, order, family, genus, species) from inside to outside; the
size of the sector represents the relative proportion of different species.

Studies have shown that the gut microbiota is individual-specific, and the composition
of the microbiota of pigs under different feeding conditions and different intestinal parts
is different.

Based on the relative abundance tables of different classification levels, the top
10 species with the largest relative abundance were selected in each group, the rest
of the species were set as Others, and the species annotation results corresponding to
each sample in the column chart of relative abundance at different taxonomic levels are
shown in Figure 7.
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Figure 7. The relative abundance of species was presented at the phylum and genus levels.
(a) Histogram of relative abundance was shown at the gate level. (b) Histogram of relative abundance
was presented at the genus level. The horizontal axis represents the sample name. The vertical axis
represents the relative proportion of species annotated to a certain type. The legend on the right is
the species category corresponding to each colour block.

3.5.3. Cluster Analysis of the Number and Relative Abundance of Annotated Genes

Based on the relative abundance tables of different classification levels, the top
35 genera in terms of abundance and their abundance information in each sample were
selected to draw a heatmap, and were clustered at the species level to facilitate the display
of results and information discovery to determine the species with more aggregation in the
sample. The results are shown in Figure 8.

Figure 8. Cluster heatmap of the number and abundance of genes at the genus level. (a) Unannotated
number statistical heatmap; the horizontal axis is the sample name; the vertical axis is the species
information; and different colours represent the number of unigenes. (b) Cluster heatmap of relative
abundance at the genus level; the horizontal direction is the sample information; the vertical direction
is the species information. The cluster tree on the left in the figure is a species cluster tree. The value
corresponding to the intermediate heatmap is the Z-value obtained after the relative abundance
of species in each row is normalised; that is, the Z-value of a sample in a certain classification is
the value obtained by dividing the difference between the relative abundance of the sample in that
classification and the average relative abundance of all samples in that classification by the standard
deviation of all samples in that classification.

3.5.4. Dimension Reduction Analysis Based on Species Abundance

At present, principal component analysis (PCA) and nonmetric multidimensional
scaling (NMDS) are the main methods of dimension reduction analysis applied to ecological
research. Among these methods, PCA is a dimension reduction analysis based on a linear
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model that applies the method of variance decomposition to reduce the dimension of
multidimensional data to extract the most important elements and structures in the data.
PCA can extract two coordinate axes that reflect the differences between samples to the
greatest extent to reflect the differences of multidimensional data on the two-dimensional
coordinate map and then reveal the simple laws in the complex data background. NMDS
is a nonlinear model whose purpose is to overcome the shortcomings of linear models
and better reflect the nonlinear structure of ecological data. NMDS analysis is applied
to reflect the species information contained in the sample in the form of points in the
multidimensional space, while the difference between different points is reflected by the
distance between points, which can reflect the differences between groups or within groups
of samples. Based on the species abundance tables at different classification levels, we
conducted PCA and NMDS analysis. If the species composition of the samples was more
similar, then the distance between them was closer, as shown in the PCA and NMDS
diagrams in Figure 9.

Figure 9. PCA and NMDS results of species based on the phylum level. (a) For phylum–level PCA,
the abscissa represents the first principal component, and the percentage represents the contribution
value of the first principal component to the sample difference. The ordinate represents the second
principal component, and the percentage represents the contribution value of the second principal
component to the sample difference. Each point in the figure represents a sample, and the samples in
the same group are represented by the same colour. (b) For gate-level NMDS analysis, each point in
the figure represents a sample, the distance between points represents the degree of difference, and
the samples in the same group are represented by the same colour. When the stress is less than 0.2,
NMDS analysis has a certain reliability.

3.5.5. Dimension Reduction Analysis of Bray–Curtis Distance Based on Species Abundance

Principal coordinate analysis (PCoA) extracts the most important elements and struc-
tures from multidimensional data through a series of eigenvalues and eigenvector ordering.
We conducted PCoA based on the Bray–Curtis distance and selected the principal coor-
dinate combination with the largest contribution rate for graphic display. If the sample
distance was closer, the species composition structure was more similar. Therefore, the
samples with high similarity in community structure tended to gather together, and the
samples with large differences in community were far apart. The Bray–Curtis distance
matrix was obtained based on species abundance tables at different taxonomic levels. The
results of the PCoA analysis based on the gate level are shown in Figure 10.
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Figure 10. Species PCoA results based on the phylum level. Note: the abscissa represents one
principal component, the ordinate represents another principal component, and the percentage
represents the contribution value of the principal component to the sample difference. Each point in
the figure represents a sample, and the samples in the same group are represented by the same colour.

3.6. Cluster Analysis of Samples Based on Species Abundance

To study the similarity of different samples, a clustering tree of the samples was
constructed by clustering the samples. The Bray–Curtis distance is the most common
distance indicator used in systematic clustering. It is used mainly to describe the similarity
between samples, and its size is the main basis for sample classification. Starting from
the abundance table of genes in each sample, the Bray–Curtis distance matrix was used to
perform cluster analysis among samples, and the clustering results were integrated with
the relative abundance of species at the phylum level in each sample for display. The results
are shown in Figure 11.

Figure 11. Clustering tree based on the Bray–Curtis distance. The left side is the Bray–Curtis distance
clustering tree structure; the right side is the species relative abundance distribution map of each
sample at the phylum level.

3.7. Linear Discriminant Analysis Effect Size (LEfSe) Analysis of Different Species between Groups

To screen the species biomarkers with significant differences between groups, first, the
rank sum test method was used to detect the different species between different groups,
and linear discriminant analysis (LDA) was used to achieve dimensionality reduction and
evaluate the influence of the different species; that is, the LDA score was obtained. The
LEfSe analysis results of species with differences between them included three parts, namely,
the LDA value distribution histogram, the evolutionary branch diagram (phylogenetic
distribution), and the abundance comparison diagram of biomarkers with significant
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differences between groups. The LDA value distribution map and evolutionary branch
map of different species are shown in Figure 12.

Figure 12. Distribution of LDA values and evolutionary clades of different species. (a) is the LDA
value distribution of different species. The LDA value distribution histogram shows the species
whose LDA score is greater than the set value (the default setting is 4), that is, the biomarker with a
significant difference between groups, and the length of the histogram represents the impact size of
different species (i.e., LDA score). (b) shows the evolutionary clades of different species. The circles
radiating from the inside to the outside represent the taxonomic level from phylum to genus (or
species). Each small circle at a different taxonomic level represents a taxonomy at that level, and the
diameter of the small circle is proportional to the relative abundance. Colouring principle: Species
with no significant difference are uniformly coloured yellow, and the biomarkers of different species
are coloured according to the group. The red nodes represent the microbial groups that play an
important role in the red group, and the green nodes represent the microbial groups that play an
important role in the green group. The microorganism species names represented by the English
letters in the figure are shown in the legend on the right.
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3.8. Annotation of Resistance Genes

Resistance genes are ubiquitous in both human intestinal microorganisms and other
environmental microorganisms. The abuse of antimicrobials leads to irreversible changes
in the microbial community in the human body and the environment, which poses risks
to human health and the ecological environment. Therefore, research on resistance genes
has received extensive attention from researchers. CARD is a resistance gene database
that has emerged in recent years. It has the advantages of comprehensive information,
user-friendliness, timely updates and maintenance. The core component of this database
is antibiotic resistance ontology (ARO), which integrates information such as sequence,
antibiotic resistance, mechanism of action and association between AROs and provides
online interfaces between ARO and databases such as Protein Data Bank (PDB) and the
National Center for Biotechnology Information (NCBI).

3.8.1. Basic Steps of Resistance Gene Annotation

Unigenes were compared with the CARD database using the resistance gene identifier
(RGI) software provided by the CARD database (v2.0.1) (RGI has built-in BLASTp, and the
results were scored by bitscore value comparison).

According to the comparison results of RGI and the abundance information of uni-
genes, the relative abundances of AROs were calculated.

Based on the abundance of ARO, the following were generated: the column diagram of
abundance, the heatmap of abundance clustering, the circle diagram of abundance distribu-
tion, the analysis of ARO differences between groups, and the species attribution analysis
of resistance genes (unigenes annotated to ARO) (for some AROs with longer names, we
will display them in the form of the first three words and underlined abbreviations).

3.8.2. Overview of Resistance Gene Abundance

Based on the relative abundance table of resistance genes, we calculated the content
and percentage of ARO in each sample and screened the top 20 AROs with the largest
abundance. The results are shown in Figure 13.

Figure 13. Histogram of the abundance of different AROs in each sample. (a) The relative abundance
of all genes of ARO in each sample, in ppm, which is the result of enlarging the original relative
abundance data by 106 times. (b) Indicates the relative abundance of the top 20 AROs among all
AROs, and the others are the sums of the relative abundances of the top 20 non-AROs.

To more intuitively observe the abundance ratio of ARO in each sample as a whole,
and more intuitively display the overall distribution of ARO abundance, the ARO with
the largest abundance of TOP10 was selected to be drawn as an overview circle, as
shown in Figure 14.
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Figure 14. Overview circle of resistance genes. The circle diagram is divided into two parts, with
sample information on the right and ARO information on the left; Different colours in the inner circle
represent different samples and AROs. The scale is the relative abundance, in ppm. The left side is
the sum of the relative abundances of each ARO in a sample, and the right side is the sum of the
relative abundances of each ARO in a sample. The left side of the outer ring is the relative percentage
of each sample in an ARO, and the right side of the outer ring is the relative percentage of each ARO
in a sample.

The resistance mechanism of resistance genes in the CARD database was classified,
and the following resistance mechanism distribution map was drawn according to the
relationship between the action mechanism of these resistance genes and species. The
results are shown in Figure 15.

The sequencing results clearly showed that the abundance and relative percentage of
drug resistance genes in the eight typical samples showed a trend from high to low.

The relative abundance and relative percentage of drug-resistant genes showed the fol-
lowing trend of descending order: tetW, tetW/N/W, lnuA, mdtB, lnuC, ANT6-la, ErmB, mdtC,
ErmQ, tetBP, vatE, evgS, acrB, cpxA, mefA, Escherichia coli-ampc, tetL, yojl, AcrF and mdtA.

All groups administered enrofloxacin and oregano oil did not develop a drug-resistant
phenotype during the 5-day treatment period, as grouped in this trial.



Animals 2022, 12, 3404 19 of 22

Figure 15. Overview circle of resistance mechanism and species. The circle diagram is divided into
two parts: the right side is phylum-level species information, and the left side is resistance-mechanism
information. Different colours in the inner circle indicate the resistance mechanisms of different
species and resistances, and the scale is the number of genes. The left side is the sum of the number
of resistance genes containing such resistance mechanisms in the species, and the right side is the
sum of the number of resistance genes contained in the species in different resistance mechanisms.
The left side of the outer circle is the relative proportion of resistance genes in each species to the
resistance genes of their resistance mechanisms, and the right side of the outer circle is the relative
proportion of resistance genes in each resistance mechanism to the resistance genes of their species.

4. Discussion

One of the most important functions of the gut microbiota is to prevent bacterial
overgrowth and infection by pathogenic microorganisms, mainly through the production
of antibacterial substances, site-occupying protection, and competition for nutrients with
pathogenic bacteria.

Bacteriocins are antimicrobial peptides or complex proteins synthesised by the ri-
bosomes of various Gram-positive and Gram-negative bacteria, and have bacteriostatic
and bactericidal effects. For example, the bacteriocin-like substances secreted by lactic
acid bacteria have broad-spectrum antibacterial effects and can inhibit the growth and
reproduction of Gram-negative bacteria such as Escherichia coli. In addition, metabolites
such as short-chain fatty acids (SCFAs) produced during bacterial metabolism can reduce
intestinal pH, thereby inhibiting the growth and reproduction of exogenous bacteria. At
the same time, the acidification of the intestinal environment promotes the acceleration of
intestinal peristalsis, resulting in exogenous bacteria not interacting with the mucosa, and
exogenous bacteria are excreted. The space-occupying protective effect of intestinal flora
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is to form a biofilm by closely combining with intestinal mucosal epithelial cells, thereby
effectively preventing pathogenic bacteria from contacting the intestinal mucosa. Under
the limited nutrient intake of the host, intestinal flora, especially symbiotic bacteria, have a
natural competitive advantage for these nutrients, inhibiting the growth and reproduction
of pathogenic bacteria.

The diversity and distribution of drug resistance groups in pig and chicken faeces un-
der different feeding modes (free range and factory feeding) were systematically analysed.

Based on the basic situation of the intestinal flora of animals (pig and chicken) in
central China, the drug-resistant phenotype presents dual traces of history and current
practice. Tetracycline resistance remains the most abundant type of resistance, and this
result is consistent with the findings of other Chinese scholars in other provinces [29,30].

Some factory-farmed pigs and chickens have higher levels of intestinal bacterial
resistance than free-range pigs and chickens.

In this study, an integrated gene set of gut microbes was constructed using the metage-
nomic sequencing data of eight groups of swine and chicken gut microbes from different
feeding patterns, combined with the gene sets of existing metagenomic sequencing data,
which included 237,785 complete genes, of which 5% were unknown, expanding the com-
prehensiveness and completeness of the swine and chicken gut microbial gene sets. The
genus-level dominant species represented by the 35 metagenomic assembled genomes were
analysed by software. Using analytical software, we further revealed the diversity of swine
and chicken gut microbiota composition and drug resistance phenotypes and identified
differences in drug resistance phenotypes.

Comparative studies in animal samples provide important links to understanding
the global distribution of ARGs and the spread of multidrug-resistant bacteria, resistance
exchange networks, and how different habitats and phylogenetic relationships influence
the evolutionary dynamics of global antimicrobial resistance.

Drug resistance in pathogenic bacteria is a growing threat to global health, and the
development and spread of drug resistance in microorganisms is largely attributable to the
misuse of antimicrobials.

AMR in animals is country-, or even, region-specific. A map of the global distribution
of resistance shows resistance hotspots in northeastern China, northeastern India and
northern Pakistan, while resistance is just beginning to emerge in central India and central
and southern China, Kenya, Uruguay and southern Brazil [31–34]. In 2022, after the
announcement of the Ministry of Agriculture and Rural Affairs No. 194, this trend declined,
but it did not fundamentally change, presumably due to the impact of environmental
pollution caused by the long-term use of antimicrobials.

There are differences in the intestinal microbiota under different feeding styles [35].
Animals receive different nutrients from free-range and factory-raised feed, which also
has an impact on their gut flora. After group administration, the abundance of intestinal
flora of animals in the two feeding modes showed same trend, and the abundance of AMR
genes had their own characteristics, which may be related to the long-term drug history,
the AMR in the environment, and the feed of adult animals.

5. Conclusions

Metagenomic sequencing was conducted to study the relative changes of intestinal
microflora and drug resistance genes in pigs and chickens in central China, after treatment
amounts of enrofloxacin and oregano oil were added into the feed in factory and free range
mode, respectively. The consistency of the trend of intestinal microflora changes and the
existence of drug resistance genes were found after treatment, providing reference for
rational drug use in the veterinary clinic. The results showed that tetW was the highest
relative abundance resistance gene, followed by tetW/N/W, then lnuA; and others from high
to low were mdtB, lnuC, ANT6-la, ErmB, mdtC, ErmQ, tetBP, vatE, evgS, acrB, cpxA, mefA,
Escherichia coli-ampC, tetL, yojl, AcrF and mdtA.
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