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Simple Summary: The relentless capacity of sequencing every bit of DNA at low cost has been fueling
major advances in several research areas. This also applies to the animal sciences, which witnessed
unprecedented progresses in fields such as animal nutrition, health, and breeding. Particular attention
has been paid to the gut microbiome, the community of microorganisms inhabiting the digestive
tract of livestock species, and unforeseen developments have arisen. Nonetheless, such efforts
have not been equal for the different livestock species, and the vast majority rely on widely-used
standard techniques through which taxonomically useful genetic data are generated rather than
more informative—yet computationally demanding—organismal genome-wide variation data. This
review offers a glimpse of the gut microbiome research on five emblematic livestock species touching
on the limitations regarding (i) the major methodological frameworks, (ii) species or breed, (iii) and
spatial reach of these studies, thus providing valuable indications to fill current knowledge gaps and
hopefully lay the basis for the planning of concerted research efforts. In this respect, we conclude that
future studies should extend shotgun sequencing and transcriptomic approaches primarily to largely
neglected ovicaprine and chicken breeds from rural areas of developing countries and microbial
groups other than bacteria.

Abstract: The variety and makeup of the gut microbiome are frequently regarded as the primary deter-
minants of health and production performances in domestic animals. High-throughput DNA/RNA
sequencing techniques (NGS) have recently gained popularity and permitted previously unheard-of
advancements in the study of gut microbiota, particularly for determining the taxonomic composition
of such complex communities. Here, we summarize the existing body of knowledge on livestock
gut microbiome, discuss the state-of-the-art in sequencing techniques, and offer predictions for
next research. We found that the enormous volumes of available data are biased toward a small
number of globally distributed and carefully chosen varieties, while local breeds (or populations) are
frequently overlooked despite their demonstrated resistance to harsh environmental circumstances.
Furthermore, the bulk of this research has mostly focused on bacteria, whereas other microbial
components such as protists, fungi, and viruses have received far less attention. The majority of these
data were gathered utilizing traditional metabarcoding techniques that taxonomically identify the
gut microbiota by analyzing small portions of their genome (less than 1000 base pairs). However,
to extend the coverage of microbial genomes for a more precise and thorough characterization of
microbial communities, a variety of increasingly practical and economical shotgun techniques are
currently available.
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1. Introduction

The massive decrease in sequencing costs associated with the generalization of high-
throughput or next-generation sequencing (NGS) techniques has enabled unprecedented
advances in microbiome studies spanning throughout the life sciences fields [1]. The
strong bond between public health and the economy has been propelling the interest in
microbiome research, which is deemed to hold a huge applicative potential under the One
Health strategy [2] and other similar initiatives. Most of such studies addressing health and
animal production have been mostly focused on gut microbiota, which is justified by the
crucial role of these microorganisms in nutrition, fitness, and performance traits [3–5]. It is
generally expected that advancing knowledge of the ruminant microbiome [6] bears a huge
potential in terms of boosting animal production and health while lessening environmental
pollution [7,8]. This promise seems of utmost importance when considering forecasts
predicting an almost two-fold increase in the current production and consumption of meat
in 30 years from now, with changes in dietary habits in developing countries—on top of
human population growth—which will boost the demand for dairy products [9].

Some terms will be used extensively in this review and, for the benefit of the readers,
their definition is provided as follows. The community of microorganisms inhabiting a
given environment is referred to as a microbiota, while the term microbiome is used to indi-
cate microbiota’s collective genomes [10]. On the other hand, the concept of metagenomics,
first defined as “the direct genetic analysis of genomes contained in an environmental sam-
ple” [11], has been elaborated further as the “study of the structure and function of entire
nucleotide sequences isolated and analyzed from all the organisms (typically microbes) in
a bulk sample” [12].

However, the fast-increasing body of research produced in the wake of the above-
mentioned compelling socioeconomic reasons has yet to cover much ground. Among
the main shortfalls of this kind of study is the almost exclusive focus on cosmopolitan
and highly selected breeds, which lacks representativeness both in terms of diversity and
functionality, as the most promising knowledge may come from locally adapted native
breeds. The role of microorganisms in the resilience and performance of livestock species is
of paramount interest for their potential commercial value, especially in a time of rampant
global change.

Another critical factor is the uneven attention being paid to bacteria, which include
taxa that cause significant economic losses in addition to being a serious hazard to public
health, e.g., [13]. On the other hand, the other microorganisms, such as fungi, archaea,
protozoa [14], and viruses, have received far less attention. Yet another weakness is that the
classical metabarcoding approach is still largely used, as opposed to increasingly feasible
and affordable shotgun approaches that are now available (although only for a low number
of samples) for a more precise and extensive characterization of microbial communities.

The goal of this review, which was prompted by the steadily increasing number of
articles devoted to the livestock gut microbiome, is to assess the primary body of research
in this subject, provide an overview of the state-of-the-art regarding sequencing approaches
and knowledge produced, and then offer suggestions for future studies.

2. Next-Generation Sequencing Techniques
2.1. Amplicon Metabarcoding

This technique, known as the large-scale taxonomic identification of biological samples
through the analysis of short DNA fragments of one or more genes (known as DNA
barcodes), has benefited significantly from the development of high-throughput sequencing,
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which made it possible to process complex environmental samples [https://metazoogene.
org/metabarcoding (accessed on 10 September 2022)].

According to the taxonomic group being targeted, different barcodes are preferred. For
example, the V2-V3 and V3-V4 16S rRNA hypervariable regions have being traditionally
used for bacteria [15,16], the V4 and V9 18S rRNA hypervariable regions for protists [17],
and the internal transcribed spacer (ITS) rRNA regions (ITS1 and ITS2) for fungi [18,19].
This PCR-based method relies on a dual indexing mechanism to simultaneously process
huge numbers of individual libraries (i.e., samples) covering many taxa at a low cost.

The operational taxonomic units (OTUs) characterized by means of these amplicon
libraries, however, are an underrepresentation of the true microbial diversity in the com-
munity of interest because DNA barcoding has lower sensitivity and limited resolution
when compared to metagenomic data (i.e., spanning entire genomes). Instead, PCR and
sequencing errors may result in its overrepresentation [20]. Nevertheless, since amplicon
metabarcoding has been widely used by the scientific community worldwide for almost
20 years, a large number of homologous sequences are available for free download from
GenBank as well as from other widely used public repositories, including Greengenes
v13_8 [21], SILVA 138 [22], and RDP18 (Ribosomal Database Project) [23].

However, it is important to note that these databases are not always regularly updated
(the most recent updates were made in 2013, 2019, and 2020, respectively), which can be
problematic for users. Another reason to rely on this locus over others is the accessibility of
user-friendly software such as the Quantitative Insights into Microbial Ecology pipeline
(QIIME) [24], which implements 16S-based tools for taxonomic assignment. This even in-
spired the development of software that predicts functional profiles of bacterial populations
based on their 16S sequences, such as Tax4Fun [25]. Overall, this locus has been used in
the majority of livestock microbiome investigations carried out until now, necessitating the
establishment of recommendations and best practices for the benefit of the animal science
community as a whole [26].

2.2. Shotgun Sequencing

This technique entails randomly shearing one or multiple genomes (for instance, in
the case of an environmental sample) into small DNA fragments that are then individually
sequenced, mapped to reference genomes and then reassembled in the proper order (for a
quick explanation, see [27]). Such a technique, which is not based on PCR, has the benefit of
avoiding the formation of amplification artifacts and, by being not reliant on taxon-specific
primers, may produce more thorough and reliable results in terms of the overall microbial
diversity associated with a given sample thanks to its high sensitivity and resolution power.

The provision of knowledge on the biological functions encoded by the genome(s)
being sequenced is another significant benefit [28]. However, because of its high sequencing
costs, this technique is not yet scalable for large-scale surveys based on high numbers
of samples, despite being simple and fast to execute [29]. The difficulties in recreating
the microbial composition in the case of complex and large communities and the high
computing expenses connected with data storage and processing are additional limitations
of this technique [28,29]. The rapidly expanding community of scientists using shotgun
sequencing is fortunate to have access to powerful bioinformatics tools that are being
made available, with some like BLAST+ [30] allowing the buildup of customized reference
databases based on the inclusion of freely available nucleotide and protein sequences from
public repositories.

2.3. Metatranscriptomics

Referred to as the study of genes that are transcribed in microbial communities at a
given moment and under certain environmental conditions as measured by the abundance
of collective RNA transcripts [31], this culture-independent approach has delivered major
insights into niche-specific transcript expression patterns and the ecological functions of
microbial taxa within their community [32]. Overall, a common drawback of this suite of
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techniques, especially RNASeq, is the high costs, which are nonetheless expected to drop in
the coming years in parallel with an increase in computational power and specific software
such as HISAT [33] or ABioTrans [34].

3. The Significance of Microbiome Studies in Livestock Species

Only five animal species—cows, chickens, goats, pigs, and sheep—produce the great
majority of the animal products that humans consume (meat, milk, eggs) [35–37]. Each of
these species has its own evolutionary history that can be very deep, as is the case of the
chicken—a bird—when compared with the other four, which are mammals. Even among
the latter, there are notable differences not only in their digestive tracts, but also in terms of
physiological aspects such as growth and lifespan as well as reproduction and behavior [38].
There are significant differences between ruminants, which possess a multi-chambered
stomach (consisting of reticulum, rumen, omasum and abomasum) used to digest plant
materials through fermentation, and monogastric animals, whose stomach is a simple
structure made of a single compartment. The advantages of the ruminants regarding
their capacity to obtain energy from poor-quality food and the limitations experienced in
maintaining a balanced and healthy ruminal flora do not apply to the monogastrics, which
are characterized by a faster development and a shorter lifespan.

Indeed, the digestive tract is the most structural factor in animal production as its
functionality and health determine most of the individual’s performance [39], and is
therefore the region that has been attracting the vast majority of microbiome research,
followed by the reproductive tract [40]. Yet, more recently, environmental and public health
concerns have also been the focus of a growing number of these studies, namely regarding
greenhouse gas emissions [41], the spread of food-borne pathogens [42], and the rise of
antibiotic resistance [43].

4. Microbiome Studies in Livestock Species
4.1. Ruminants
4.1.1. Cattle

The majority of gut microbiome studies in cattle have focused on the characterization
of microbial communities by 16S rRNA gene amplicon sequencing as a consequence of
different animal diet composition [44,45], gastrointestinal tract (GIT) location [46], feed
efficiency [47], breed-specificity [48], metabolic disturbs [49], changes over time [50] and
individual specificities [51,52], as well as across housing types and farms [53]. Interestingly,
special attention has been devoted to identifying individual-based differences irrespective
of age, sex, breed, or environment [54], with patterns of similarity and dissimilarities help-
ing to define the core microbiome in the bovine rumen [51] as well as other livestock [55].
At the same time, it was evidenced that differences in taxonomic composition and the
underlying community metabolic networks may still result in functional similarity [56], as
well as that the metabolic potential of the rumen microbiome may be diet-driven [57]. A
large-scale survey of dairy cows indicated that the core rumen microbiome composition
underlies not only animal productivity but also the nature of their emissions [58]. It was
only recently that shotgun metagenomics opened the door to a thorough exploration of
the rumen microbiome composition in cattle, enabling the assembly of entire bacterial
genomes (most of which belong to new taxa), and the identification of new enzymes [59].
This approach has also allowed for the elucidation of the interplay between the rumen
microbiome along with its metabolome and the host metabolome, shedding new light on
the finest mechanisms underlying production performances in dairy cows [60].

4.1.2. Cattle Microbiome Profiling

Compared to other ruminant livestock species, the cattle gut microbiome is probably
the one that has been explored more intensively, which provides an exhaustive picture of
the bacterial communities inhabiting different GIT locations. The most abundant phyla
are represented by Bacteroidetes and Firmicutes, which may account for more than 90% of
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the entire GIT bacterial community, with Actinobacteria, Proteobacteria, Spirochaetes, and
Tenericutes representing other major yet comparatively less abundant taxa [49,53,61–65]. Bac-
teroidetes and Firmicutes are dominated, respectively, by classes Bacterioidia and Clostridia
along with Bacilli. Concerning the major orders (Figure 1), the former class mostly consists of
Bacteroidales, while the latter one of Clostridiales [59]. The most abundant families include
Bacteroidaceae, Clostridiaceae, Lachnospiraceae, Peptostreptococcaceae, Rikenellaceae, and
Ruminococcaceae [53,55], while dominant genera—not only in cattle but in adult ruminants as
a whole [55]—are Butyrivibrio, Prevotella and Ruminococcus [51,60,63,64,66]. Genus Clostridium
is also abundant in cattle rumen [65] along with Acetitomaculum, Acinetobacter, Mogibacterium,
Succiniclasticum, and Treponema [46]. Based on recent studies, genera like Fibrobacter and
Ruminococcus are among the core heritable bacteria transferred vertically across generations in
the light of their primary role in cellulolysis [58]. A detailed list of the GIT-associated bacterial
taxa and the pertinent bibliographic references in cattle is reported in Table S1.
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livestock species (see Table S1 for further details). For the sake of clarity, the intestine designation
may refer to both small and large intestines.

4.1.3. Sheep

The last decade has witnessed a mounting interest in sheep microbiome research. A
recent study based on bacterial 16S has confirmed that, similar to what was found in cows,
the microbial hosts may be responsible for alterations in terms of feed efficiency [67], while
other works have suggested that feeding strategies may promote a more or less diverse
microbial community [68,69]. Additionally, compositional changes in the microbiome
have been observed along the GIT [70,71] and as an effect of parasite infections [72]. In
sheep, however, the compositional changes of the archaeal rather than the eubacterial
community play a main role in feed efficiency, with the latter exerting its main influence in
terms of the presence/absence pattern of only a few specific taxa [67]. Another recent 16S
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study compared the microbiome composition in sheep and goats, finding no substantial
differences between the two taxa; however, variation did occur depending on age, with
older individuals hosting a higher microbial diversity [73], similar to what has been found
in Tibetan sheep [71]. Interestingly, differences in gut bacterial compositions have been
observed among different Chinese sheep breeds from the Tibetan Plateau [74], contradicting
what was found in a similar study on Italian sheep where microbiome differences were
mostly due to different husbandry practices [75]. Like in cattle, however, feed efficiency
turned out to be related to a higher abundance and diversity of rumen microbiomes [76].
Other studies have been carried out on local breeds of high socioeconomic relevance, often
revealing a fairly diverse composition, as in the case of the Chinese Mongolian sheep [77], or,
similar to what was found in cattle and goats [78], a marked heterogeneity across different
GIT locations as in the case of the Qinghai semi-fine wool sheep [71]. Notably, some recent
studies addressing a likely association between host genetics and rumen microbiota in
local sheep breeds have unveiled the modulating effect of ovine candidate genes on its
composition [79] and the interplay between this and host gene expression in maintaining
homeostasis in extreme environments [80]. Nevertheless, all the previous studies are based
on 16S metabarcoding, while applications of shotgun metagenomics to characterize the
gut microbial composition in sheep are still scant. In this respect, however, it is worth
mentioning a study combining the two approaches with metaproteomics to explore the
link between microbial communities and biochemical pathways [81].

4.1.4. Sheep Microbiome Profiling

The characterization of the sheep GIT microbiome has revealed its substantial similar-
ity in composition with that of cattle and other ruminants, with Bacteroidetes and Firmicutes
making up more than 80 to 90 percent of the gut microbial community [67,69], followed
by the phyla Actinobacteria, Proteobacteria, Spirochaetes, and Verrucomicrobia [68,74,82].
Bacterioidia and Clostridia are the dominant classes [75]. Moreover, Bacteroidales and
Clostridiales figure among the most abundant orders (Figure 1), while, similar to what
is observed in cattle, Eubacteriales and Lactobacillales stand out among Firmicutes. As
far as the family-level is concerned, Ruminococcaceae and Lachnospiraceae emerge [74]
along with Prevotellaceae, Rikenellaceae, and Succinivibrionaceae [67,76,80]. Concerning
the most prevalent genera, Prevotella outstands [80], followed by Acinetobacter [79], Campy-
lobacter [75], Bacteroides, Desulfovibrio, Oscillospira, Ruminococcus, Treponema [77], Fibrobacter,
and Succinivibrio [76]. A detailed list of the GIT-associated bacterial taxa and the associated
bibliographic references in sheep is provided in Table S1.

4.1.5. Goat

Molecular studies aimed at characterizing gut microbiome composition in this live-
stock species are still scarce in comparison to sheep, despite the economic relevance of
goat meat and dairy products. Interesting exceptions, however, do occur, such as a work
exploring the effects of dietary nitrate addition on microbial composition and ruminal
fermentation based on a combined metabarcoding approach employing 16S and 18S am-
plicon libraries to characterize bacteria and protists along with fungi, respectively [83].
Other studies have evidenced the role played by fat acid supplementation [84] and a
grain-rich diet [85] in shaping the bacterial and fungal diversity of rumen microbiome
based on 16S and ITS metabarcoding, respectively. Interestingly, a recent study based
on amplicon libraries of the three loci mentioned before evidenced the role played by
specific fungal and bacterial consortia in enabling lignocellulose breakdown by means
of the production and interaction of a suite of specific metabolites [86]. Consistently, the
16S-based methanogenic archaea diversity has turned out to be associated with a diet rich
in condensed tannin-containing pine bark [87]. Current investigations have evidenced
that, in goats as well, the microbial community varies throughout different GIT sectors [88]
and tends to increase with age in young individuals [89,90], improving their productive
performances [88,91,92]. Concordantly, the inoculation of rumen fluids during early life
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stages was found to boost the development of the rumen microbiome and even accelerate
weaning [93], while the occurrence of apicomplexan parasites in goat kids was found to
be associated with a decrease in the abundance of butyrate-producing bacteria, leading to
an increase in mucosal inflammation and tissue repair [94]. Contrarily, it was discovered
that antibiotic-induced gut microbiota dysbiosis likely worsened disease by encouraging
inflammatory immune responses. [95].

Differences in the microbial composition have emerged when comparing adults be-
longing to different goat breeds [96], even if diet and environment seem to be the more
important drivers of microbial diversity than genotype [97]. The occurrence of given
bacterial hosts, in turn, was found to be associated with the digestibility of dietary phos-
phorus [98]. However, the exploration of gut microbiome components other than bacteria
is quite limited in goats, with one of the few exceptions being represented by a study
employing 16S and 18S amplicon libraries to explore the bacterial and ciliate protozoal
diversity, respectively, in relation to the effects of antibacterial peptides on rumen fermenta-
tion function [99]. Moreover, the application of shotgun approaches to the characterization
of the gut microbiome in goats is still limited to a single recent study [78].

4.1.6. Goat Microbiome Profiling

Compared to other ruminant livestock species, goats are probably those that have
so far received less attention concerning gut microbiome studies. Bacteroidetes and Fir-
micutes are the dominant bacterial phyla (i.e., accounting for more than 80% of the GIT
bacterial community), followed by Proteobacteria [89,90,98] and Verrumicrobia [84,88]
along with Fibrobacteres, Spirochaetes, and Tenericutes [73,85]. As far as the most abun-
dant orders are concerned, Bacteroidales and Clostridiales—similar to what is observed
in cows and sheep—prevail over others (Figure 1) [96]. The dominant families include
Prevotellaceae, Veillonellaceae, and, to a lesser extent, Lachnospiraceae, Rikenellaceae,
and Ruminococcaceae [84,98]. Among the dominant genera, Prevotella stands out along
with Bacteroides, Butyrivibrio, Clostridium, Oscillospira, Ruminococcus, Succiniclasticum, and
Succinivibrio [73,84,85,88,90,92,96,100]. A list of the GIT-associated bacterial taxa and the
related literature in goat is reported in Table S1.

4.2. Monogastric
4.2.1. Pig

Microbiome research in the pig industry has been propelled by the need to reduce
animal stress that may otherwise turn into economic losses for farmers [101]. In this context,
weaning is a critical life stage in which the piglet diet undergoes a sharp change. Studies
on the swine gut microbiome have largely benefited from the establishment of a reference
gene catalogue by means of deep metagenome sequencing of fecal samples [102] and have
confirmed that also in this livestock species the interplay between diet and gut physiology
across different growth stages is intimately associated with animal health and production
performance [103], including fat deposition [104]. Other than varying on the basis of the
food provided [105–108], GIT location [109–111], behavior [112], parasite infections [113],
breed affiliation, and sex [114], the microbial diversity was found to correlate positively
with piglet weight [115] and age [116]. Likewise, studies combining 16S rRNA metabar-
coding and shotgun metagenomic sequencing revealed that the composition of the pig gut
microbiome varies considerably and predictably across the lifespan [117]. This is particu-
larly evident postweaning [118], when a higher microbial diversity underlies an increase in
the genes associated with oxidative stress and heat shock compared to nursing piglets [119].
Interestingly, some studies evidenced that the combination of culturomics and shotgun
metagenomics—an approach seldom applied to other livestock species—may deliver a
more exhaustive picture of gut [120,121] and antimicrobial resistance [122]. Investigations
based on the combination of 16S rRNA metabarcoding and shotgun metagenomics have
delivered insights into antimicrobial resistance dynamics in pig farms [108], while 18S
rRNA metabarcoding of fecal samples allowed to draw up a detailed list of intestinal
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protist parasites [123]. The combination of 18S and ITS amplicon libraries has been recently
used to characterize the pig gut microbial eukaryote community, finding the association
of some of its members with host body weight [124], while that of 16S amplicon data and
metagenomics has delivered unprecedented insights into the functional and taxonomic
diversity of the pig gut microbiome [123].

4.2.2. Pig Microbiome Profiling

Notwithstanding the pronounced GIT structural differences between ruminants and
monogastric animals such as pigs, the gut microbiome of the latter is also dominated
by phyla Bacteroidetes and Firmicutes [115], followed by Proteobacteria [103,112], with
Bacteroidia and Clostridia being the most abundant classes along with Bacilli [112,124].
Similar to what was observed in other livestock species, the dominant orders are Bac-
teroidales and Clostridiales (Figure 2), while the most abundant families are Bacteroidaceae,
Enterobacteriaceae, Lachnospiraceae, Lactobacillaceae, Prevotellaceae, and Ruminococ-
caceae [106,108,116]. The genera most commonly found in the GIT of adult pigs are
Alloprevotella, Bacteroides, Escherichia, Lactobacillus, and Prevotella [110,120,125,126] along
with Clostridium, Desulfovibrio, Enterococcus, Fusobacterium, and Streptococcus [127–129]. A
list of the GIT-associated bacterial taxa and the pertinent bibliographic references in pig is
provided in Table S2.
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livestock species presented in this study (see Table S2 for further details).

4.2.3. Chicken

Microbiome research in chicken has made great strides since the advent of NGS
techniques, as testified by the studies based on comparative metagenomic pyrosequencing
to characterize the cecal microbiome in pathogen-free and infected individuals [130] and to
explore the effect of antimicrobials on its communities as well as in relation to the abundance
of antimicrobial resistance genes [131]. Nevertheless, most of these investigations are based
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on 16S rRNA metabarcoding [132], while shotgun metagenomics is just taking its first
steps in the poultry sector, with comparative studies applying the two approaches pointing
to the much higher resolution power of the latter [133]. Shotgun metagenomics has also
recently been employed to assess the role of dietary supplementation in improving the
health status—and hence the productive performances—in broiler chickens by fostering the
diversity of their cecum microbiome [134], also in the form of in ovo supplementation [92],
as well as to characterize new bacterial, archaeal, and bacteriophage taxa of the chicken
gut microbiome [135], thus shedding light on their biological function [136]. However, 16S
rRNA metabarcoding alone is still widely used to compare the microbiome composition of
healthy versus unhealthy individuals as a consequence of viral, e.g., [137], or bacterial [138]
infections, of individuals subjected to different dietary treatments [139], as well as across
different indigenous breeds [140], GIT locations [141], rearing systems [142] and individual
lifetimes [143], with a special focus on improving growth performance by transplanting
cecal [144] or fecal [92] material between individuals of different age groups. However,
compared to other livestock species, the non-bacterial component of the gut microbiome
has been given more attention and most of the studies focus on possible pathogens such as
Cryptosporidium [145].

4.2.4. Chicken Microbiome Profiling

Similar to what occurs in the GIT of other livestock species, the most abundant micro-
bial phyla in chicken are Bacteroidetes and Firmicutes [136,146], even though sometimes
Proteobacteria are more abundant than the former [135,138,145], while Bacilli, Clostridia,
and Gammaproteobacteria are the dominant classes [134]. At the order level, Bacillales,
Enterobacteriales, Lactobacillales, and Campylobacterales are the most common groups
(Figure 2), while the most prevalent families include Enterobacteriaceae and Lactobacil-
laceae [139]. As far as the dominant genera are concerned, Alistipes, Bacteroides, Clostrid-
ium, Helicobacter, Lactobacillus, and Ruminococcus [133,143,144,146–149] stand out as well as
Flavobacterium [139], Campylobacter, and Veillonella [150]. A detailed list of the GIT-associated
bacterial taxa and the related bibliographic references in pig is reported in Table S2.

5. Resistome

The term “resistome” was introduced approximately two decades ago to indicate “the
resistance determinants present in the soil” associated with bacterial populations living
therein and showing multidrug resistance higher than expected [151]. The expression “bac-
terial resistome” has since become increasingly popular, while its meaning has evolved into
the suite of all antibiotic resistance genes (ARGs) and their precursors in both pathogenic
and nonpathogenic bacteria as well as antibiotic producers [152]. With a fast-growing
body of research published on this topic, the concept of resistome has further evolved to
incorporate different types of resistance and is now a key element in the framework of the
One Health approach [153].

The identification of antimicrobial ARGs in bacteria inhabiting livestock GITs is crucial
in animal science. An investigation specifically focused on the fecal bacterial resistome
used a combination of the two approaches, traditional 16S metabarcoding and shotgun
metagenomics, evidencing the strong link between diet and antimicrobial resistance [154].
Moreover, the specificity of the microbial hosts in different GIT locations has emerged in a
study on wild and domestic ungulates including cattle and goats [78]. This result serves as a
model for future association research by highlighting the significance of local physiological
changes along the GIT for various hosts. The advent of innovative nanopore technology,
which enables large-scale research to highlight the most abundant resistance genes that
may have a significant influence on animal, human, and environmental health, has spurred
the rapidly expanding interest in the cow resistome [155]. On the other hand, studies on the
bacterial resistome associated with the sheep gut microbiome are still scant when compared
to those carried out in cattle or other livestock [156], and no specific investigation has been
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carried out on goats, but a recent study flagged as many as 30 ARGs in the sheep rumen,
most of which related to daptomycin and colistin [157].

As far as non-ruminant livestock species are concerned, the scenario is even more
complex. Pigs have received special attention in terms of characterization of the gut
bacterial resistome, with recent studies demonstrating differential expression in humans,
chickens, and specifically pigs [158]. Yet in chickens, the investigation into the ARGs
associated with the gut microbiome has shown that the predominant classes are largely
the same as those detected in pigs, including tetracycline, aminoglycoside and macrolide–
lincosamide–streptogramin [159]. Of particular interest and utmost topicality is the risk of
the potential transmission of ARGs from poultry meat to humans [160].

6. Metagenome and Functional Profile Prediction

Over the last years, a plethora of bioinformatics tools, including PICRUSt (Phylo-
genetic Investigation of Communities by Reconstruction of Unobserved States [161]),
PICRUSt2 [162] along with FaproTax [163], the already mentioned Tax4Fun [25] and
Tax4fun2 [164], have been made available to the scientific community for the purpose
of predicting the functional profiles of the microbiota investigated in different studies.
Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis is often
used in combination with these software to predict their metagenomic contributions. Since
the vast majority of microbiome investigations have so far relied on 16S rRNA, the algo-
rithms of this type of program map the copies of this gene that were obtained in a given
study to its homologs in the phylogenetically closest taxa with fully sequenced genomes.
In other words, this approach allows predicting the functional metagenomic content with-
out sequencing the entire genomes of the taxa which are actually present in the sample
analyzed. Noteworthy, these software can work not only with amplicon metabarcoding
but also shotgun sequencing data, even though their accuracy largely relies on available
reference genomes and, as of now, it is still severely biased toward human datasets [165]. In
addition, it is worth mentioning that a recent soil microbiome study comparing amplicon
and shotgun sequencing functional profiling suggested that PICRUSt performs better than
Tax4Fun to detect omnipresent functions, whereas Tax4Fun predicted greater abundances
of functions from more specialized pathways [166]. Since the predictive tool used can lead
to making different inferences, the authors suggested to reap the benefits of combining
them rather than relying on either one or another [166].

The paucity of available reference genomes has been specifically invoked by some
authors as the reason preventing them from performing functional prediction, e.g., [53],
but others who nonetheless opted to perform it still detected significant differences in
the predicted metagenomic profiles among GIT locations in dairy cows [46], sheep [77],
goats [82], and pigs [126], thus pinpointing the most important metabolic pathways across
different gastrointestinal microbial ecosystems. Additionally, functional prediction and
KEGG analysis have been applied to unveil the differences in terms of metabolic pathways
in the rumen of sheep cohorts with different feed efficiency [76] as well as in the same
sheep sampled in different periods of the year [80], goats of different age [90], piglets with
different body conditions [115], adult pigs of different breed and sex [71], and chickens of
different age [167], breeds [140] or with a different health status [137]. It is conceivable that
with the fast-growing increase in reference genomes available, metagenome and functional
profile prediction tools will become more and more accurate in the next future, and their
employment should be envisaged in any gut microbiome study.

7. Gut Microbiome, Health, and Welfare in Livestock

The positive or negative roles played by gut microbial taxa on health, welfare, behav-
ior and performances in livestock exposed to different production conditions have been
extensively discussed in several studies, e.g., [168–174]. It is worth touching on here why
the studies addressing this topic are in such high demand nowadays and how crucial they
are in animal farming as well as to broader society. In this respect, it is pertinent to mention



Animals 2022, 12, 3375 11 of 19

their contribution to the development of non-antibiotic microbial therapies based on probi-
otics [175] as well as in pinpointing biomarkers of feed efficiency to deploy strategies that
can notably improve livestock production performances [67,68,76,84,85,98,126,134,148,176]
and growth [69,93,115]. Additionally, gut microbial profiling is paramount to monitor
livestock health status and set up treatments to boost it, e.g., [113,125,139,144,165,177] as
well as to prevent the establishment or aggravation of pathologic states [64,137,138,150]
and evidence peculiar adaptations of local breeds to harsh environments [80].

8. Conclusions

The major advances in high-throughput sequencing technology have opened a new
era in the study of the livestock gut microbiome, the composition and function of which
are tightly associated with animal health and productive performance. The information
produced has a profound social and economic impact. Previous attempts to take stock of
available gut microbiome studies in livestock were mostly focused on cattle and chickens,
or on the microbial groups rather than their hosts. In cattle, microbiome composition
has been widely investigated in terms of feeding-related changes and their impacts on
production strategies or environmental issues associated with ruminal methane emissions.
We have expanded this review to other livestock animals, trying to make the point about
what has been mostly performed so far and what is still lacking. A first consideration
deals with the subjects of the microbiome studies carried out so far, in which priority
was given to some species (such as cattle and pigs) rather than others (such as goats).
Additionally, there is a clear bias in terms of the breeds investigated: expectedly, most
studies are focused on a few cosmopolitan and highly selected breeds, while local breeds
from rural areas are largely neglected, even though livestock research is a fundamental
component to boost development strategies and the socioeconomic level of associated
human communities. Characterizing the microbiome composition and its interaction
with the host in non-intensive husbandry systems might, for instance, provide useful
information on how to optimize livestock productivity through nutrient supplementation.
Furthermore, it should be noted that a considerable number of microbiome studies, also on
local breeds, have been carried out in China or Europe, while much less attention has been
devoted to Africa and the tropical and subtropical regions as a whole.

Overall, the body of literature examined in this review allows us to conclude that
livestock microbiome composition is affected by age, food, sex, and taxonomy, even if core
bacteria occur across the GITs of different species. Admittedly, however, knowledge of other
microbial groups is scant. As far as the methodological approach is concerned, shotgun
metagenomics is still insipid when compared to amplicon metabarcoding sequencing, even
though the few comparative studies employing both approaches on the same datasets
evidenced the tremendously higher detection power of the former one, which is much
more efficient in identifying underrepresented taxa whose detectability may be biased
by the failure of universal primers to hybridize all templates as well as by its reliance
on the number of hypervariable regions targeted, e.g., [133,178]. Conventional wisdom
suggests that comparisons between studies based on either amplicon metabarcoding or
shotgun sequencing on different datasets and with different experimental settings should
not be made, but in general it can be stated that the latter is more reliable when estimating
the absolute abundance of different microbial taxa. In addition, it is worth mentioning
that in an increasing number of studies the two approaches are combined to first obtain
a general picture of microbial diversity in the entire sample via amplicon metabarcoding
and then, on this basis, select samples for shotgun sequencing to carry out functional
analysis with higher accuracy, e.g., [108,127]. It is conceivable that with the fast-decreasing
sequencing cost and the increasing suite of powerful bioinformatic tools available, the
much more insightful shotgun sequencing will replace amplicon metabarcoding in most gut
microbiome studies. This will presumably translate into expanding not only the taxonomic
breadth and resolution but also the focus of the research. Indeed, bacteria is the most-
studied microbial group compared to the others, which are most often given some attention
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only when represented by parasites of commercial relevance, but having a large amount of
information encompassing other microbial groups as well may trigger interest in promoting
research on them.

Indeed, focus on commensal protozoa, which nonetheless may still play a major role
in regulating bacterial populations they feed on, is still limited, as is research on the fungal
component of the gut microbiome. To achieve a comprehensive knowledge of the function
of the microbiome and its underlying dynamics, the characterization of microbial groups
other than bacteria is of key importance and should be addressed in future studies. As far
as the NGS approach is concerned, it is important to note that the choice is often based
on, other than budgetary issues, the availability and accessibility of comparative data as
well as on the bioinformatics hurdles associated with the newest and most comprehensive
techniques, which may prevent some research groups from applying them due to their
limited computational resources and/or expertise. Enhancing the integration of meta-
transcriptomic studies—which are particularly scant for non-bacterial components—into
microbiome research would allow a better understanding of the functional role of different
microbial groups in the gastrointestinal tract. Having such valuable tools should not deter
researchers from embracing more exhaustive approaches such as those based on shotgun
genomics or metatranscriptomics, which, on the one hand, are less affordable and more
computationally intensive, yet, on the other hand, may deliver much larger and more
accurate amounts of information. These efforts are fully justifiable if we consider that a
major application of genomic data in relation to livestock studies is on animal and human
health, where epidemiological investigations are fueled by the prospect of threats to human
activity and public health with great impact on state wealth. Moreover, the integration of
metagenomics and metatranscriptomics with metabolomics and proteomics (multi-omics
sequencing) could provide more valuable information about the interaction of the complex
“host-microbiota-environment”, which could be useful for deploying future applications
and interventions. In this context, there is a pressing need to better our understanding of
the reciprocal influence of coexisting humans and livestock on each other’s gut microbiome
and resistome.
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