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Simple Summary: The particular architecture and biology of spermatozoa make them highly suscep-
tible to oxidative stress, which can lead to DNA decondensation and fragmentation. It might also
induce the formation of 8-OHdG, which is an early marker of DNA damage caused by oxidative
stress. Because ruminant sperm DNA is highly compacted, it is rare to detect damage in ram DNA by
conventional techniques. In this study, our aim was to evaluate the efficacy of detecting oxidative
DNA damage in ram sperm samples using SCSA® vs. an 8-OHdG immunodetection assay. Our
results showed that SCSA® and an oxidative-stress-specific 8-OHdG immunodetection assay can
detect DNA damage caused by oxidative stress in ram sperm cells under high oxidative conditions;
therefore, it is not necessary to use an oxidative-stress-specific technique to detect DNA damage in
ovine spermatozoa.

Abstract: Conventional DNA analysis techniques can hardly detect DNA damage in ruminant
spermatozoa due to high DNA compaction in these cells. Furthermore, these techniques cannot
discriminate whether the damage is due to oxidative stress. The main purpose of this study was
to evaluate the efficacy of two techniques for determining DNA damage in ovine sperm when
the source of that damage is oxidative stress. Semen samples from twenty Manchega rams (Ovis
aries) were collected and cryopreserved. After thawing, the samples were subjected to different
levels of oxidative stress, and DNA oxidation was quantified using an 8-hydroxy-2′-deoxyguanosine
(8-OHdG) immunodetection assay and Sperm Chromatin Structure Assay (SCSA®). For this purpose,
we evaluated five different concentrations of an oxidation solution (H2O2/FeSO4•7H2O) on ram
sperm DNA. Our study with the 8-OHdG immunodetection assay shows that there are higher values
for DNA oxidation in samples that were subjected to the highest oxidative stress (8 M H2O2/800 µM
FeSO4•7H2O) and those that were not exposed to high oxidative stress, but these differences were
not significant (p ≥ 0.05). The two SCSA® parameters considered, DNA fragmentation index (DFI
%) and high DNA stainability (HDS %), showed significant differences between samples that were
subjected to high concentrations of the oxidation agent and those that were not (p < 0.05). We can
conclude that the 8-OHdG immunodetection assay and SCSA® detect DNA damage caused by
oxidative stress in ovine sperm under high oxidative conditions; SCSA® is a more straightforward
method with more accurate results. For these reasons, an oxidative-stress-specific assay such as
8-OHdG immunodetection is not needed to measure DNA damage caused by oxidative stress in ram
sperm samples.

Keywords: 8-OHdG; SCSA®; ram sperm; DNA; oxidative stress; flow cytometry

1. Introduction

Spermatozoa are exposed to a higher risk of oxidative DNA damage than any other
kind of cell because of their particular architecture and biology, and oxidative alterations
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could lead to DNA fragmentation and nuclear decondensation [1,2]. Nuclear DNA is
protected from oxidative damage because, during spermiogenesis, histones are removed
and replaced by protamines. These molecules allow a high level of compaction of sperm
DNA [3]. Despite the compaction of nuclear DNA, there are areas of the mammalian
nuclear genome that are vulnerable to oxidative attacks that correspond to the less dense
genomic regions still organized into nucleosomes. These regions are most vulnerable to
oxidative DNA damage [4].

Because ruminant sperm DNA is highly compacted, damage to ovine sperm DNA is
seldom detectable by conventional methods. The most widely used techniques of measur-
ing DNA fragmentation index (DFI) are Sperm Chromatin Structure Assay (SCSA®) [5], the
terminal deoxynucleotidyl transferase dUTP nick labelling (TUNEL) assay [6], the sperm
chromatin dispersion (SCD) test [7], and the comet assay [8,9].

The comet assay and SCD test were introduced as microscope tests and so do not
require flow cytometry [10]. Analytical techniques such as computer-assisted sperm analy-
sis and fluorescence microscopy allow us to evaluate a few hundred spermatozoa, which
is not considered representative of the ejaculate [11]. Consequently, a larger number of
cells (in the order of thousands of spermatozoa) should be considered for sperm analysis.
Therefore, flow cytometry is increasingly used, replacing time-consuming and error-prone
analysis techniques, allowing the evaluation of thousands of spermatozoa in a few seconds,
resulting in a more representative evaluation of the sample [11–13]. The TUNEL assay and
SCSA® are two of the most widely used techniques to assess chromatin status, but they
have some differences [14]. Whereas the TUNEL assay does not require pre-treatment to
measure the single- and double-strand breaks in DNA, SCSA® requires prior denatura-
tion [14,15]. However, the TUNEL assay is more complicated to perform, as it involves
washes, DTT treatment, paraformaldehyde fixation, permeabilization with Triton X, and
the use of enzymes, which translates into more steps to provide only one parameter [10,14].

Therefore, the most commonly used technique to assess sperm chromatin status by
flow cytometry is SCSA® based on the susceptibility of sperm DNA to acid-induced de-
naturation in situ and on the subsequent staining with the metachromatic fluorescent
dye acridine orange (AO), which intercalates easily into the DNA. This assay is a tool for
measuring the important properties of sperm nuclear chromatin integrity [16]. AO fluo-
rescence shifts from green, when AO is associated with double-stranded DNA (dsDNA),
to red, when associated with single-stranded DNA (ssDNA). ssDNA breakage formation
is induced by the denaturation step; thus, each sperm head yields a mixture of green and
red fluorescence when interrogated with a 488 nm laser, depending on the susceptibility of
chromatin to denaturation and DNA fragmentation (number of nicks). For each spermato-
zoon, data are processed to obtain two parameters with this technique: DNA fragmentation
index (DFI), which is the ratio of red fluorescence vs. the total intensity of the fluorescence
(red/[red + green] × 100), representing the shift from green to red fluorescence, and high
DNA stainability (HDS), representing sperm with increased green fluorescence. High
values of DFI indicate chromatin abnormalities, and high HDS values are characteristic of
immature sperm and/or sperm with altered protein composition [5].

SCSA® is a simple test to assess sperm DNA damage, but it does not differentiate
whether the DNA damage is caused by oxidative stress or other factors such as changes in
the environment, which include environmental heat; the presence of S=S bonds between
nuclear spermatic protamines, exposure to growth hormones, and aromatic hydrocarbons;
and diseases such as cancer [10,17–19]. In order to detect DNA damage explicitly caused
by oxidative stress, Vorilhon et al. (2018) conducted a study to detect the presence of
a DNA oxidation marker (8-hydroxy-2′-deoxyguanosine) through different immunode-
tection protocols to establish a discriminating threshold for oxidative DNA damage in
human sperm [20]. The 8-OHdG immunodetection assay is based on the detection of
an early marker of DNA oxidation, 8-hydroxy-2′-deoxyguanosine (8-OHdG) [21]. Of the
four DNA bases, guanine, due to its low oxidation potential [22], is the most susceptible
to oxidation, and the interaction with hydroxyl radical (OH•) leads to the formation of
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C8-hydroxyguanosine (8-OHGua), or its nucleoside, from deoxyguanosine (8-hydroxy-
2′-deoxyguanosine). Initially, the reaction of OH• addiction leads to the generation of
radical adducts, and then the 8-OHdG is formed by one electron abstraction [18]. Mam-
malian cells contain a coordinated base excision repair pathway (BER) for the removal
of oxidized residues, such as 8-OHdG, via 8-Oxoguanine DNA glycosylase 1 (OGG1),
which is a bifunctional N-glycosylase/DNA lyase enzyme. OGG1 activity leads to the
formation of an apurinic site (AP site), as well as a nick in the phosphodiester backbone,
yielding a 3′α,β-unsaturated aldehyde and a 5′deoxyribosephosphate [17,20]. Apurinic
endonuclease 1 (APE1) then cleaves the AP site to form the 3′-OH group adjacent to the
5′deoxyribophosphate in preparation for inserting a new guanine nucleotide by polymerase
β. The base excision repair pathway is completed by the phosphodiesterase activity of
ligase III, which seals the nick in the backbone. The non-presence of APE1 in sperm cells
makes it impossible to complete the BER pathway [17]. The non-resolution of sperm DNA
8-OHdG adducts could persist in the zygote and create the opportunity for mutations to
occur prior to the initiation of embryonic development [23,24].

Recently, we have shown that the 8-OHdG immunodetection assay only detected
oxidative stress damage in ram sperm samples if the spermatozoa were subjected to a very
high oxidative treatment [25].

In the present study, we aim to evaluate the efficacy in detecting oxidative stress
damage in ram sperm samples using SCSA® vs. the 8-OHdG immunodetection technique.
Our objective is to check whether a specific technique for detecting DNA damage due to
oxidative stress is necessary for ruminant samples, which have highly compacted DNA, or
whether the SCSA® technique offers similar results.

2. Materials and Methods
2.1. Reagents and Media

All the chemicals were acquired from Merck (Madrid, Spain) except for monoclonal
anti-8-OHdG antibody (mouse anti-8-OHdG monoclonal antibody DNA/RNA damage
antibody-15A, NB110-96878, Novus Biologicals®, Lille, France), Alexa Fluor™ 488 goat
anti-mouse antibody (Fisher Scientific, Madrid, Spain), Hoechst 33342 (ThermoFisher
Scientific, Madrid, Spain) and acridine orange (Polysciences, Inc., Warrington, PA, USA).
Flow cytometry consumables, equipment, and software were purchased from Beckman
Coulter (Fulerton, CA, USA). The freezer extender, Biladyl®, was purchased from Minitube
(Tiefenbach, Germany).

2.2. Animal Ethics and Sperm Collections

Semen samples were collected using an artificial vagina from twenty healthy males of
Manchega sheep breed (>3 years of age) housed at the Experimental Farm of the University
of Castilla-La Mancha and the Regional Centre for Animal Selection and Reproduction in
Valdepeñas (CERSYRA), which are part of the Manchega sheep breed selection scheme.
Animal handling was performed in accordance with Spanish Animal Protection Regulation,
RD 53/2013, which conforms to European Union Regulation 2010/63. Volume, concentra-
tion, wave motion (0 no movement to 5 strong wave motion), and sperm motility were
assessed shortly after collection. Only ejaculates with wave motion values of 4 or 5 and
sperm motility higher than 80% were frozen.

Samples were cryopreserved in Biladyl®, a commercial freezing extender, with 7%
glycerol and 20% egg yolk. Initially, semen was extended to 400× 106 sperm/mL in fraction
A of Biladyl®, and slowly cooled from 30 to 5 ◦C over 2 h in a programmable temperature
controller (PolyScience®). Then, semen samples were extended to 200 × 106 sperm/mL in
fraction B of Biladyl®, with 7% of glycerol. After 2 h of equilibration at 5 ◦C, semen was
automatically packed into 0.25 mL straws and frozen in a programmable biofreezer (Planer
Kyro 10 Series III; Planer PLC, London, UK) following a freezing curve (−20 ◦C/min from
5 ◦C to −100 ◦C and −10 ◦C/min from −100 ◦C to −140 ◦C). Cryopreserved semen was
immersed into liquid nitrogen and stored in a liquid nitrogen container [26]. The samples
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are part of the germplasm bank of the Manchega sheep breed, and all of them were frozen
for at least 1 year.

2.3. Experimental Design

Two techniques for measuring DNA damage were compared, 8-OHdG immunodetec-
tion assay and SCSA®. Therefore, five different concentrations of oxidation solution were
used: 1 mM H2O2/0.1 µM FeSO4•7H2O (OS1); 10 mM H2O2/1 µM FeSO4•7H2O (OS2);
100 mM H2O2/10 µM FeSO4•7H2O (OS3); 1 M H2O2/100 µM FeSO4•7H2O (OS4); and
8 M H2O2/800 µM FeSO4•7H2O (OS5).

Sperm samples were thawed for 30 s at 37 ◦C and washed in PBS. Each PBS-washed
sample was divided into six aliquots and each aliquot was subjected to a different concen-
tration of oxidant solutions (room temperature, 1 h). Then, the 8-OHdG immunodetection
assay and SCSA® were carried out.

2.3.1. 8-OHdG Immunodetection Assay

PBS-washed samples were incubated for 30 min in the dark in a lysis buffer comprising
PBS, 2 mM dihidrothreitol (DTT), and 0.5% Triton X-100. Then, samples were washed
with PBS, and the membranes were blocked in 3% BSA-PBS at 37 ◦C and incubated in the
dark for 1 h. Afterward, samples were divided into different tubes and incubated with
1:1000 monoclonal anti-8-OHdG antibody for 30 min (4 ◦C, in darkness). Samples were
washed and incubated with Alexa Fluor™ 488 goat anti-mouse antibody (30 min, room
temperature, and in darkness). Sperm samples were washed twice and diluted in PBS with
3 µM Hoechst 33342 to 1 × 106 spermatozoa/mL. Each sample was incubated for 1 h with
the oxidant solution (Figure 1). This protocol for the immunodetection of 8-OHdG was
proposed by de Iuliss et al. (2009) and Vorilhon et al. (2018) for human sperm and modified
by Soria-Meneses et al. (2019) for ovine sperm [20,21,25].
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2.3.2. Sperm Chromatin Structure Assay (SCSA®)

Chromatin stability was assessed following SCSA® [5]. PBS-washed samples were
diluted in TNE buffer (0.01 M Tris-HCl, 0.15 M NaCl, 1 mM EDTA, and pH 7.4) to a final
sperm concentration of 2 × 106 cells/mL, frozen immediately in liquid nitrogen, and stored
in a freezer at −80 ◦C until analysis. For evaluation, the samples were thawed in crushed
ice. Acid-induced denaturation of DNA in situ was achieved by adding 0.4 mL of an acid
detergent solution (0.15 M NaCl, 0.08 N HCl, 0.17% Triton X-100, and pH 1.4) to 200 µL
of the sample. After 30 s, the cells were stained by adding 1.2 mL of an AO solution
(0.2 M Na2HPO4, 0.15 M NaCl, 0.1 M citric acid, 1 mM EDTA, 6 µg/mL AO, and pH 6.0).
The stained samples were analysed by flow cytometry exactly 3 min after adding the AO
solution. A tube with 0.4 mL of acid detergent solution and 1.2 mL of AO solution was run
through the system before any samples were assessed and between sample assessment. At
the beginning of each session, a standard semen sample was run through the cytometer, and
settings were adjusted so that mean fluorescence values (0–1023 linear scale) for FL-1 (green
fluorescence) and FL-3 (red fluorescence) were 475 and 125, respectively. Results of the
DNA denaturation test were processed to obtain the DFI, i.e., the ratio of red fluorescence
vs. total intensity of the fluorescence (red/[red + green] × 100) for each spermatozoon,
representing the shift from green to red fluorescence. High values of DFI indicate chromatin
abnormalities. Flow cytometry data were processed to obtain % DFI (% of spermatozoa
with DFI > 25) and % HDS, which is the percentage of spermatozoa with green fluorescence
higher than channel 600 of 1024 channels [5,27] (Figure 1).

2.4. Flow Cytometry Analysis

The 8-OHdG immunodetection assay was carried out on a CytoFlex S (Beckman
Coulter, Inc.) equipped with violet (405 nm) and blue (488 nm) lasers for the excitation of
Hoechst 33342 and Alexa Fluor 488, respectively. Alexa Fluor 488 has a maximum emission
at 520 nm and a FITC photodetector (525/40 band-pass filter) was used, while Hoechst
33342 has a maximum emission at 461 nm and a PB450 photodetector (450/45 band-pass
filter) was used. The flow cytometry data were analysed using the software CytoExpert
version 2.3.0.84 (Beckman Coulter, Inc.). SCSA® was carried out on a Cytomics FC-500
(Beckman Coulter, Inc.) equipped with a 488 nm argon ion laser for the excitation of
AO. AO green fluorescence was detected with a 530/28 band-pass filter (FL-1), while AO
red fluorescence was detected with a 620/40 band-pass filter (FL-3). The analysis of the
data was carried out using the software WEASEL version 2.4. Non-sperm events, such as
bacteria or extender particles, were discarded by gating in an FSC (forward scatter of the
laser light)/SSC (side scatter of the laser light) dot plot based on differences in complexity
and size among debris and sperm cells [28].

2.5. Statistical Analysis

The R statistical package was used to perform the statistical analysis of this study [29].
We used linear mixed-effects models to analyse the effects of different oxidant agent
concentrations (fixed factors) on ram sperm DNA, and a random effect on the male was
also included in the model. The ‘lme4’ package was used to fit all mixed-effects models [30].
The results are presented as mean ± standard error of the mean (SEM), and statistical
significance was considered for p < 0.05. The bars in the plots show the approximate
95% confidence intervals computed using mean ± t0.975, n-1*SEM. This is a conservative
confidence interval, as it is difficult to estimate the number of degrees of freedom for these
mixed-effects models [31]. Furthermore, the R package ‘multcom’ and Tukey’s correction
were used to adjust the p-values and account for multiple testing when comparing the
effects of the different variables [32].

3. Results

In the present work, we assessed oxidative stress damage in sperm DNA using two
different techniques: the 8-OHdG immunodetection assay and SCSA® carried out by flow
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cytometry. To conduct this study, five different concentrations of an oxidant solution
were tested on sperm samples: 1 mM H2O2/0.1 µM FeSO4•7H2O (OS1); 10 mM H2O2/1
µM FeSO4•7H2O (OS2); 100 mM H2O2/10 µM FeSO4•7H2O (OS3); 1 M H2O2/100 µM
FeSO4•7H2O (OS4); and 8 M H2O2/800 µM FeSO4•7H2O (OS5).

3.1. 8-OHdG Immunodetection Assay

In the first part of this study, we compared the results of the mean intensity of fluo-
rescence (MIF) of Alexa Fluor 488 obtained from the sample’s incubation with different
concentrations of the oxidation solution H2O2/FeSO4•7H2O using the 8-OHdG immun-
odetection assay. Our results show that the OS5 treatment had the highest value of MIF
(22,798.94 ± 2246.99) compared to the rest of the treatments (OS1 = 9947.89 ± 403.09;
OS2 = 10,233.45 ± 393.18; OS3 = 10,776.14 ± 379.40; and OS4 = 9661.457 ± 513.53) and
the control (6032.22 ± 452.99). However, these differences were not significant (p ≥ 0.05)
(Figure 2).
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Figure 2. DNA oxidation quantification using an 8-OHdG immunodetection assay. Mean of
Alexa Fluor 488 intensity of fluorescence ± standard error of the mean (MIF ± SEM) differences
from 8-OHdG immunodetection assay. OS1 = 1 mM H2O2/0.1 µM FeSO4•7H2O; OS2 = 10 mM
H2O2/1 µM FeSO4•7H2O; OS3 = 100 mM H2O2/10 µM FeSO4•7H2O; OS4 = 1 M H2O2/100 µM
FeSO4•7H2O; and OS5 = 8 M H2O2/800 µM FeSO4•7H2O.

Figure 3 shows the DNA oxidation quantification using the 8-OHdG immunodetection
assay and flow cytometry. Each histogram corresponds to the MIF of Alexa Fluor 488
obtained by incubating the sperm samples with different concentrations of the oxidising
agent. It is evident that the fluorescence intensity increases with increasing concentration
of the oxidising solution, being more evident when the sample was incubated with the
highest oxidation concentration (8 M H2O2/800 µM FeSO4•7H2O), but these differences
were not significant (p ≥ 0.05).

3.2. Sperm Chromatin Structure Assay (SCSA®)

In the analysis of SCSA®, we took into account two parameters: DFI % and HDS %.
Our results showed that the percentage of DFI significantly increased (p < 0.05) between OS5
(79.66 ± 0.51%) and the rest of the treatments: control = 2.27 ± 0.03%; OS1 = 2.13 ± 0.03%;
OS2 = 3.48 ± 0.09%; OS3 = 4.22 ± 0.13%; and OS4 = 7.92 ± 0.22%. Moreover, there were
also differences (p < 0.05) between the OS4, control, and OS1 treatments (Figure 4).
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Basal fluorescence of evaluated subjects (control) and samples submitted to 1 mM H2O2/0.1 µM
FeSO4•7H2O (OS1); samples submitted to 10 mM H2O2/1 µM FeSO4•7H2O (OS2); samples sub-
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Animals 2022, 12, x   8 of 14 
 

 
Figure 4. Effects of oxidant treatments on Sperm Chromatin Structure Assay (SCSA®) results. Mean 
of DNA fragmentation index (DFI %) ± standard error of the mean (mean ± SEM). a, b and c indicate 
significant differences (p < 0.05). OS1 = 1 mM H2O2/0.1 µM FeSO4•7H2O; OS2 = 10 mM H2O2/1 µM 
FeSO4•7H2O; OS3 = 100 mM H2O2/10 µM FeSO4•7H2O; OS4 = 1 M H2O2/100 µM FeSO4•7H2O; and 
OS5 = 8 M H2O2/800 µM FeSO4•7H2O. 

The percentage of HDS followed the same pattern, and OS5 showed the highest val-
ues (p < 0.05; 46.09 ± 0.49) compared to the rest of the treatments (OS1 = 15.41 ± 0.09%; OS2 
= 17.51 ± 0.10%; OS3 = 18.80 ± 0.12%; and OS4 = 22.50 ± 0.14%) and the control (15.51 ± 
0.10%). There were also significant differences (p < 0.05) between the OS4, control, and 
OS1 treatments (Figure 5). 

 
Figure 5. Effects of oxidant treatments on Sperm Chromatin Structure Assay (SCSA®) results. Mean 
of high DNA stainability (HDS %) ± standard error of the mean (mean ± SEM). a, b and c indicate 
significant differences (p < 0.05). OS1 = 1 mM H2O2/0.1 µM FeSO4•7H2O; OS2 = 10 mM H2O2/1 µM 
FeSO4•7H2O; OS3 = 100 mM H2O2/10 µM FeSO4•7H2O; OS4 = 1 M H2O2/100 µM FeSO4•7H2O; and 
OS5 = 8 M H2O2/800 µM FeSO4•7H2O. 

Figure 6 shows the assessment of sperm chromatin status through SCSA®. The green 
dots correspond to samples that were not treated with oxidant solution (control), and the 
red dots correspond to samples submitted to high exogenous oxidative stress (8 M 
H2O2/800 µM FeSO4•7H2O). The dots plotted to the right of the diagonal line have in-
creased DFI, and the dots plotted above the horizontal line have increased HDS. 

Figure 4. Effects of oxidant treatments on Sperm Chromatin Structure Assay (SCSA®) results. Mean
of DNA fragmentation index (DFI %) ± standard error of the mean (mean ± SEM). a, b and c indicate
significant differences (p < 0.05). OS1 = 1 mM H2O2/0.1 µM FeSO4•7H2O; OS2 = 10 mM H2O2/1 µM
FeSO4•7H2O; OS3 = 100 mM H2O2/10 µM FeSO4•7H2O; OS4 = 1 M H2O2/100 µM FeSO4•7H2O;
and OS5 = 8 M H2O2/800 µM FeSO4•7H2O.
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The percentage of HDS followed the same pattern, and OS5 showed the highest
values (p < 0.05; 46.09 ± 0.49) compared to the rest of the treatments (OS1 = 15.41 ± 0.09%;
OS2 = 17.51 ± 0.10%; OS3 = 18.80 ± 0.12%; and OS4 = 22.50 ± 0.14%) and the control
(15.51 ± 0.10%). There were also significant differences (p < 0.05) between the OS4, control,
and OS1 treatments (Figure 5).
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Figure 6 shows the assessment of sperm chromatin status through SCSA®. The
green dots correspond to samples that were not treated with oxidant solution (control),
and the red dots correspond to samples submitted to high exogenous oxidative stress
(8 M H2O2/800 µM FeSO4•7H2O). The dots plotted to the right of the diagonal line have
increased DFI, and the dots plotted above the horizontal line have increased HDS. Con-
sequently, the dots to the right of the diagonal line and the dots above the horizontal
line correspond to the sample incubated with the highest oxidation concentration (OS5),
demonstrating that the incubation of ram sperm with 8 M H2O2/800 µM FeSO4•7H2O
increased the percentage of DFI and HDS in these samples.
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of the diagonal line have increased DNA fragmentation index (DFI), and dots plotted above to the
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4. Discussion

Oxidative stress is considered one of the most important factors regulating the vitality
and functionality of mammalian spermatozoa [33]. These cells are highly vulnerable to
oxidative stress due to their small cytoplasmic space, which leads to poor antioxidant
protection and a great number of substrates that are vulnerable to a free radical attack,
such as DNA and unsaturated fatty acids. Therefore, in this cell type, increased oxidative
stress can lead to decreased motility, a loss of the ability to undergo the acrosome reaction,
a decreased ability to fuse with the vitelline membrane of the oocyte, and also DNA
damage [34].

The study of DNA damage in spermatozoa is particularly relevant as this dam-
age is highly correlated with decreased fertilisation rates, a possible impairment of pre-
implantation embryo development, an increased probability of early pregnancy loss, and a
low fertility rate after conception [4,35,36].

In order to determine DNA damage in spermatozoa explicitly caused by oxidative
stress, detection techniques were developed for 8-hydroxy-2′-deoxyguanosine (8-OHdG),
which is an early marker of DNA oxidation [21]. To carry out the detection of 8-OHdG
residues, different analytical methods using binding proteins [21] or antibodies [37] were
developed. Vorilhon et al. (2018) evaluated human sperm samples with three different
immunofluorescence methods to standardise a protocol for the specific immunodetection
of 8-OHdG, using light microscopy, fluorescence microscopy, and flow cytometry and com-
pared its efficacy with the commercial OxyDNA Test® kit based on binding proteins [20].
In this study, the immunoassay-based protocols showed consistent reliability. Nevertheless,
the microscopy-based protocols were much more time-consuming, and there was potential
for variability in labelling sperm with 8-OHdG, in contrast to the flow cytometry-based
protocol, which allowed a high number of cells to be analysed in a short time and was
impartial. However, the protocol using the OxyDNA Test® showed poor sensitivity and
specificity when high levels of exogenous 8-OHdG were present [20]. Similar results were
previously reported by Cambi et al. (2013), raising the question of the relevance of the
OxyDNA assay’s conjugate for DNA 8-OHdG [38].

The SCSA® technique is commonly used to assess ram sperm DNA damage. Because
of Vorilhon et al.’s (2018) work, we wondered if we were underestimating DNA damage
and not detecting possible oxidative stress-induced damage that the SCSA technique was
not detecting [20]. For the reasons above, we proposed our study to evaluate DNA damage
in ovine spermatozoa against increasing concentrations of oxidation using two techniques:
SCSA® and the detection of 8-OHdG content, following a specific immunoassay and flow
cytometry protocol for ram sperm developed by Soria-Meneses et al. (2019) [25]. As an
oxidising agent, we used H2O2 because, in combination with FeSO4•7H2O, it acts as a
reducing agent and generates hydroxyl radicals (OH•) [39], inducing the production of
DNA damage [40].

On the one hand, the 8-OHdG immunodetection results did not show significant
differences between the MIF resulting from the incubation with different concentrations
of the oxidising agent. Although these differences were not significant, probably due
to the high value of the standard error of the mean, there is evidence that the highest
concentration of the oxidant solution (8 M H2O2/800 µM FeSO4•7H2O) could affect DNA
oxidation. These results contrast with data obtained in other studies on detecting 8-OHdG
adducts in sperm DNA, in which lower concentrations of the oxidising agent were used as
positive controls [4,20,21,38,41–43]. De Iuliis et al. (2009) exposed human spermatozoa to
increasing concentrations of H2O2 and Fe2+, resulting in a linear response to the formation
of 8-OHdG [21]. A linear response in the 8-OHdG formation was also found in human
sperm after incubation with 25 µM H2O2 [38], 4 M H2O2 [41], and 8 M H2O2 [20]. In
addition, Serafini et al. (2018) incubated stallion sperm with different DNA damage-
enhancing media, including an oxidising agent (10 µM FeSO4/20 µM H2O2), and obtained
a higher percentage of sperm with 8-OHdG than control samples [42]. Zhu et al. (2017)
showed a lower 8-OHdG content in rabbit sperm under the oxidising conditions of 2 mM
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H2O2/1 mM FeCl2•4H2O in response to the antioxidant cysteine [43]. However, our results
show that, in ram sperm samples, only the highest concentration of oxidising agents (8 M
H2O2/800 µM FeSO4•7H2O) achieve higher MIF values in the detection of DNA damage
by the 8-OHdG immunodetection assay.

On the other hand, the SCSA® results showed that both the DFI % and HDS % were
significantly different between the samples that were incubated with high concentrations of
the oxidant solution (1 M H2O2/100 µM FeSO4•7H2O and 8 M H2O2/800 µM FeSO4•7H2O)
and the rest of concentrations. Furthermore, lower concentrations of the oxidising agent
do not seem to affect DNA integrity in ram sperm samples [44]. Due to the high degree
of DNA compaction in ram sperm, physiological concentrations of free radicals do not
affect its integrity, as shown in a recent work by Peris et al. (2019), where incubating
spermatozoa in capacitating conditions did not affect DNA integrity [45]. No significant
differences in DNA integrity have been found in other ruminant species such as goat [46]
and red deer [47–50]. These results are in the contrast with human spermatozoa, where a
change in environment, exposure to polycyclic aromatic hydrocarbons (PAHs), and certain
pathologies could increase DFI % and HDS % [10,17,19,51].

The results in the present study revealed that, under high oxidative stress conditions,
the integrity in ovine sperm DNA is impaired, and both the 8-OHdG immunodetection
assay and SCSA® can detect this damage. Unless a pathological process is involved,
DNA damage is rarely found in small ruminant sperm [52]. This might be because ram
sperm only have P1-protamine, whereas horse, mouse, and human have both P1- and
P2-protamines [53]. In addition, sperm chromatin from species expressing both protamines
is more susceptible to decondensation; this property could also make ram sperm DNA
more resistant to damage associated with oxidative stress [54].

It is assumed that, along with lipids in associated acrosomal membranes and the
cytoplasmatic droplet, lipids in the plasma membrane are the main targets for attack by ROS.
Mammalian spermatozoa are especially susceptible to ROS damage because of their high
polyunsaturated fatty acid content. In ram spermatozoa, arachidonic, docosapentaenoic,
and docosahexaenoic acids account for approximately 65% of the total phospholipid-bound
fatty acids [55]. This may result in an increased production of 4-HNE, one of the products
generated by lipid peroxidation, which has mitochondria as its main target, stimulating
mitochondrial superoxide production. The activation of mitochondrial electron leakage by
4-HNE is involved in the disruption of succinate dehydrogenase activity, the subsequent
activation of intrinsic apoptotic cascades, the loss of mitochondrial membrane potential
and, eventually, the formation of oxidative DNA adducts, DNA strand breakage, and cell
death [56].

In this study, we compared two techniques for detecting sperm DNA damage: an
8-OHdG immunodetection assay and SCSA®. These two techniques differ in their protocol
and the parameters evaluated. While the 8-OHdG immunodetection assay allows us to
determine the presence of 8-OHdG adducts in DNA, SCSA® evaluates the DFI % and
HDS %. SCSA® is a low-complexity technique, in which samples are denatured before
staining with the metachromatic fluorochrome AO and evaluated by flow cytometry. In
contrast, the immunodetection of 8-OHdG requires several steps such as washing, treatment
with lysis and blocking PBS, and incubation with antibodies, a procedure that could
take several hours but can be detected with flow cytometry and fluorescence microscopy.
Another difference is that 8-OHdG detection has a variable protocol, whereas SCSA® has a
protocol that does not vary depending on the species to be analysed [5,20].

Our study offers similar results using both assays; we observed an increase in the
detection of 8-OHdG adducts and an increase in DFI % and HDS % only when the sperm
samples were subjected to high concentrations of an oxidant solution or oxidative stress
conditions that are not physiological. These results show that, for oxidative-stress-related
sperm DNA damage in ovine sperm, both techniques are valid, probably due to the high
DNA compaction in these samples. Regardless, this technique must be validated for each
species and for each type of sperm sample.
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5. Conclusions

An increase in oxidative stress conditions can lead to the oxidation of bases in DNA,
thereby leading to the formation of 8-OHdG [57] but could also lead to DNA destabilisation
and an increased susceptibility of DNA to hydrolysis, resulting in the formation of single-
stranded DNA, which SCSA® can assess. For these reasons, an oxidative-stress-specific
assay such as 8-OHdG immunodetection is not needed to measure DNA damage caused
by oxidative stress in ram sperm samples because a more straightforward technique such
as SCSA® also detects this damage and allows for the evaluation of a larger number of cells
in a short period of time.
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