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Simple Summary: Migratory birds have an enormous potential for dispersing pathogenic microor-
ganisms. Ducks can host coronaviruses (CoVs), which have a high pathogenic expression and
economic impacts, given their ability to migrate exceptional distances, facilitating the dispersal of
microorganisms. This study aimed to identify and characterize the diversity of CoVs in migratory
ducks from Portugal (Anas platyrhynchos, Anas acuta, and Anas crecca). Among the samples tested,
23 were characterized as gammacoronavirus and one as deltacoronavirus. The present study aimed to
assess the circulation of CoVs in wild ducks from Portugal, being the first description of CoVs for
these animals in Portugal.

Abstract: Coronaviruses (CoVs) are part of the Coronaviridae family, and the genera Gamma (γ) and
Delta (δ) are found mostly in birds. Migratory birds have an enormous potential for dispersing
pathogenic microorganisms. Ducks (order Anseriformes) can host CoVs from birds, with pathogenic
expression and high economic impact. This study aimed to identify and characterize the diversity of
CoVs in migratory ducks from Portugal. Duck stool samples were collected using cloacal swabs from
72 individuals (Anas platyrhynchos, Anas acuta, and Anas crecca). Among the 72 samples tested, 24
showed amplicons of the expected size. Twenty-three were characterized as Gammacoronavirus and
one as Deltacoronavirus (accession numbers ON368935-ON368954; ON721380-ON721383). The Gam-
macoronaviruses sequences showed greater similarities to those obtained in ducks (Anas platyrhynchos)
from Finland and Poland, Anas crecca duck from the USA, and mute swans from Poland. Birds can
occupy many habitats and therefore play diverse ecological roles in various ecosystems, especially
given their ability to migrate exceptional distances, facilitating the dispersal of microorganisms with
animal and/or human impact. There are a considerable number of studies that have detected CoVs
in ducks, but none in Portugal. The present study assessed the circulation of CoVs in wild ducks
from Portugal, being the first description of CoVs for these animals in Portugal.
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1. Introduction

Coronaviruses (CoVs) belong to the Coronaviridae family, subfamily Orthocoronavirinae,
having a positive-sense single-stranded RNA genome and an envelope equipped with
protruding structures on their surface called spikes [1]. Its genome is one of the largest
viral RNA genomes, with approximately 25–32 kb [2]. CoVs show a high genetic diversity
that can be the result of their large genomes, high rates of mutation, infidelity of the RNA-
dependent RNA polymerase, and high frequency of homologous RNA recombination [3].

The Orthocoronavirinae subfamily is divided into four genera based on genetic differ-
ences and serological cross-reactivity. Alpha and Betacoronaviruses might have a common
ancestor, a CoV originating from bats [4]. For this reason, the viruses belonging to these two
genera are found in bats [5] and other mammals, such as swine acute diarrhea syndrome
coronavirus (SADS-CoV), transmissible gastroenteritis virus (TGEV), feline coronavirus
(FCoV), bovine CoVs (BCoV), and rat coronavirus (RtCoV) [6,7]. On the other hand, Gamma
and Deltacoronavirus evolved from a CoV originating in birds, with the majority of them
causing diseases in birds, such as avian CoV infectious bronchitis virus (IBV), turkey
CoV (TCoV), goose CoV, and duck CoV [8,9]. Both Gamma and Deltacoronavirus have
been isolated and detected in wild and domestic birds in orders such as Anseriformes,
Pelecaniformes, Ciconiiformes, Galliformes, Columbiformes. and Charadriformes [10–12].
However, Gammacoronavirus tends to be detected in domestic birds, while Deltacoronavirus
infects both domestic and wild birds [13,14]. Two CoVs isolated from cetaceans have also
been placed in the genus Gammacoronavirus [15,16], and Deltacoronavirus has also been
found in pigs (porcine deltacoronavirus -PDCoV), causing acute diarrhea and dehydra-
tion [17]. Coronaviral infections have received significant attention from both the public
and researchers [18].

CoVs have been identified in almost 15 orders of Aves, especially Charadriiformes
(seagulls, plovers, sandpipers) and Anseriformes (ducks, geese, swans) [1]. Migratory
birds have a huge potential for the transport and dispersal of a large number of pathogenic
microorganisms [19]. Ducks, species from the Anseriformes order, can host a number
of RNA viruses, including avian CoVs, and avian paramyxovirus type 1, with emerging
evidence that suggests they may also be hosts of an array of avian astroviruses [20]. In-
fections by avian CoVs are characterized by acute, highly contagious, and economically
important diseases in domesticated poultry [21]. However, the genetic diversity, evolution,
distribution, and taxonomy of some CoVs dominant in birds still remain enigmatic [22].
Therefore, to add knowledge to this specific topic and to understand the role of circulation
and the potential transboundary introduction of exotic avian CoVs, this study aimed to
identify and characterize the diversity of CoVs in migratory ducks from Portugal.

2. Materials and Methods
2.1. Sample Collection

Samples of duck feces were collected on duck cloaca using cotton swabs and conserved
at −23 °C from ducks captured for marking within duck ecology and migration studies.
The species sampled were Mallard Anas platyrhynchos, Pintail Anas acuta, and Teal Anas
crecca. Captures were performed in São Jacinto Dunes Nature Reserve (Aveiro) and at
EVOA (in Tagus River Estuary Nature Reserve, Vila Franca de Xira) since these are areas of
high concentration of ducks where long-term duck ecology studies have been performed
(see Figure 1). Ducks were visually marked with nasal saddles and could be followed on
the field. A license to capture and mark ducks was obtained from Instituto da Conservação
da Natureza e das Florestas (ICNF), Portugal (permit number 40/2021).

Fecal swabs were thoroughly mixed by vortexing in 500 µL of phosphate-buffered
saline (PBS) pH 7.2. RNA was extracted from the fecal suspension using the QIAamp
viral mini kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions
using 140 µL of the clarified supernatants. Eluted RNA was then kept at −80 ◦C until
further processing.
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2.2. Screening for Coronaviruses

Extracted nucleic acids were tested for CoVs using a broad-spectrum pan-CoV nested
RT-PCR assay targeting the RNA-dependent RNA polymerase (RdRp)-conserved region
with a final product size of 440 bp [23]. The sensitivity of the nested pan-CoV primers
has been recently compared with different protocols by combining existing primers from
different studies showing high performance and combining the chances of detecting known
and unknown CoVs from all matrices [23].

We employed the one-step RT-PCR kit from GRiSP®, Porto, Portugal, for the initial
round of PCR. The following conditions were used in the Veriti 96-well thermal cycler
(Thermo Fisher) for amplification reactions with positive and negative controls: an initial
cycle of 3 min at 95 ◦C, followed by 40 cycles of 95 ◦C for 15 s, 50 ◦C for 15 s, and 72 ◦C for
2 s, with a final elongation at 72 C for 10 min. Then, 2 µL of the first round’s products was
utilized as a template for the second round using the Xpert Fast Hotstart Mastermix (2 x)
with dye (GRiSP®, Porto, Portugal). A final amount of 25 µL was used for the PCR. The
same thermal cycler was used to perform the amplification reactions with the positive and
negative controls. The following conditions were used: an initial cycle of 3 min at 95 ◦C,
40 cycles of 95 ◦C for 15 s, 52 ◦C for 15 s, and 72 ◦C for 2 s, followed by an elongation at
72 ◦C for 10 min.

In order to identify the target DNA fragments, PCR amplification products were
electrophoresed at 120 V for 30 min on a 1% agarose gel stained with Xpert Green Safe
DNA gel stain (Grisp, Porto, Portugal). Molecular weights were assessed using a DNA
weight comparison (100 bp DNA ladder; Grisp, Porto, Portugal).

2.3. Sanger Sequencing and Phylogenetic Analysis

Amplicons of the expected size were purified using the GRS PCR Purification Kit
(Grisp, Porto, Portugal). Bidirectional sequencing was then performed using the target
gene’s specific primers by the Sanger method. Sequence alignment was performed using the
Bi-oEdit Sequence Alignment Editor v7.1.9 software package, version 2.1 (Ibis Biosciences,
Carlsbad, CA, USA). The obtained sequences were trimmed, and consensus sequences were
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compared with the sequences found online in the nucleotide database NCBI (Gen-Bank,
Carlsbad, CA, USA).

The viral sequences obtained in this study were submitted to GenBank under the acces-
sion numbers ON368935-ON368954 and ON721380-ON721383. These sequences, together
with 36 reference strains from the 4 genera (Alpha-, Beta-, Gamma-, and Deltacoronavirus)
obtained from GenBank, were aligned using MEGA 11 software [24]. Models function on
MEGA 11 was used to opt for the model with the smallest Bayesian information criterion
(BIC) score [25] using the maximum likelihood method, based on the general time reversible
model using a discrete Gamma distribution and assuming evolutionarily invariable sites,
1000 bootstraps replicated, followed by editing with the Interactive Tree of Life (iTOL)
platform [26].

3. Results

Among the total 72 samples tested, 24 presented amplicons of the expected size (33.3%;
95% confidence interval [CI]: 22.7–45.4). Bidirectional sequencing of these 24 products,
followed by nucleotide BLAST analysis, showed that the majority (n = 23) were charac-
terized as Gammacoronavirus (31.4%; 95% CI: 21.4–44.0), and one was characterized as
Deltacoronavirus (1.4%; 95% CI: 0.03–7.5), as shown in Figure 2. Pintail showed a higher
prevalence, with 12 of 24 samples positive (48%). Mallard, a resident species in Portugal
(Rodrigues et al. 2000), also had positive samples.
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Figure 2. Phylogenetic tree constructed for the alpha, beta, gamma, and delta coronavirus, using
36 reference strains and 24 strains identified in this study. Phylogenetic analysis was based on a
406 nt partial region of the RdRp. The tree was constructed using MEGA 10 using the maximum
likelihood based on the GTR + G model, and 1000 bootstraps were replicated. Samples from this
study are indicated in red.
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Sequence analysis within the obtained CoV sequences showed identities ranging from
94% and 100%. Characterization by BLAST indicated that the sequences showed the highest
hits (97.76–99.44%) to those sequences obtained from ducks from Finland, Poland, and
the USA and mute swans from Poland. Phylogenetic analysis using the obtained 24 CoV
sequences and 36 reference strains confirmed the classification as Gammacoronaviruses and
Deltacoronavirus (Figure 2).

The obtained phylogenetic tree showed that the retrieved sequences in this study
clustered together with those obtained from a bottlenose dolphin (bottlenose dolphin
coronavirus), from a chicken (avian infectious bronchitis virus), and a turkey (turkey
coronavirus), with all of them clustering in Gammacoronavirus, except for one pintail sample,
which clustered with a Wigeon Anas penelope (Wigeon coronavirus HKU20) Deltacoronavirus.
Details of the samples from this study can be found in Table 1.

Table 1. Details of the samples from this study.

Collection Site Sample ID Host Species Accession
Number CoV Genera

Evoa

#0 Anas acuta ON368935 Gammacoronavirus

#7 Anas acuta ON368937 Gammacoronavirus

#9 Anas acuta ON368938 Gammacoronavirus

#13 Anas acuta ON368940 Gammacoronavirus

#14 Anas acuta ON368941 Gammacoronavirus

#16 Anas acuta ON368942 Gammacoronavirus

#17 Anas acuta ON368943 Gammacoronavirus

#18 Anas acuta ON368944 Gammacoronavirus

#19 Anas acuta ON368945 Gammacoronavirus

#22 Anas acuta ON368946 Gammacoronavirus

#23 Anas acuta ON368947 Gammacoronavirus

#26 Anas crecca ON368948 Gammacoronavirus

#30 Anas crecca ON368949 Gammacoronavirus

#32 Anas crecca ON368950 Gammacoronavirus

#38 Anas crecca ON368953 Gammacoronavirus

#EV2 Anas acuta ON721383 Deltacoronavirus

#EV4 Anas platyrhynchos ON721382 Gammacoronavirus

#EV5 Anas acuta ON721381 Gammacoronavirus

S São Jacinto
Dunes Nature

Reserve

##EV8 Anas platyrhynchos ON721380 Gammacoronavirus

#SJ12 Anas platyrhynchos ON368939 Gammacoronavirus

#SJ16 Anas platyrhynchos ON368936 Gammacoronavirus

#SJ35 Anas platyrhynchos ON368951 Gammacoronavirus

#SJ39 Anas platyrhynchos ON368952 Gammacoronavirus

#SJ41 Anas platyrhynchos ON368954 Gammacoronavirus

4. Discussion

The present study assessed the circulation of CoVs in wild ducks from Portugal,
being the first description of CoVs for these animals in Portugal. We have also shown
that the CoV strains found in the duck population under study are closely related to the
gammacoronavirus strains retrieved from duck species Anas platyrhynchos from Poland and
Finland [1,2,27], mute swans from Poland [1], the duck species Anas crecca from Hong
Kong [11] and the USA (accession number: KJ741882).
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As it is known, the Alphacoronavirus and Betacoronavirus infect mostly mammals, while
gammacoronavirus and deltacoronavirus mainly infect birds [8,9]. While there is a growing
number of studies focusing on the presence of coronavirus in bats, there is a variety of
CoVs known to circulate among wild and domestic birds as well [2], which, upon entering
poultry production premises, may cause severe morbidity and mortality to the birds [28],
causing substantial economic losses [29].

Several viruses, including zoonotic and economically significant pathogens, are known
to circulate among wild birds [2,30]. The main representative of avian coronavirus is the
infectious bronchitis virus (IBV) [31], which is a Gammacoronavirus, a highly contagious
viral disease that is considered responsible for significant economic losses in the poultry
industry worldwide (Moreno et al., 2017). IBV control has been hampered by the intricate
IBV evolution over the years, by the emergence of many different antigenic or genotypic
types, commonly referred to as variants, that are likely to be facilitated by the spillover
through migratory birds [32]; hence, continued monitoring of CoVs in migratory birds is
key to mitigating potential outbreaks.

Birds can occupy many habitats and therefore serve diverse ecological roles in various
ecosystems [33], especially because of their ability to migrate exceptional distances [34].
The most frequently proposed reason for birds’ migration is to benefit from a seasonal
availability of resources, to breed, and also to avoid harsh winters [35]. This ability of
dispersion can also, unfortunately, facilitate the dispersion of microorganisms with animal
and/or human impact [2]. Hence alerts should be made towards surveillance of potentially
pathogenic viruses in wild birds.

Gammacoronavirus and Deltacoronavirus were detected in a large variety of birds from
different countries, such as Sweden [36], Norway [37], England [38], South Korea [39], and
Australia [40] in either aquatic or nonaquatic variety, which highlights the potential for viral
spillover to domestic species. There is a considerable number of studies that detected CoVs
in ducks, but none in Portugal. Ducks are able to occupy diverse ecological niches and are
either migratory or resident [1]. The strains of CoV found in our study are closely related
to the strains from Finland, and Finnish mallards are strongly migratory [41]. Some species
have adapted to urbanized landscapes, increasing their chances of being in contact with
humans. The potential for transmissibility between bird species, even between wild and
captive members of the same species (e.g., Anas platyrhynchos), or between other species,
could trigger a captive poultry outbreak, especially in extensively farmed birds, leading to
large economic losses in a wide geographical area [42].

Wildlife has been under epidemiological surveillance to identify its possible roles as a
reservoir for emerging viruses that may pose a risk to humans and threaten wildlife [21].
Our investigation showed the presence of Gammacoronavirus and Deltacoronavirus in ducks,
indicating that they harbor CoVs and possibly spread it. It is important to continue
surveillance of wild ducks for the presence of avian coronavirus to understand better
population flyways and ducks’ migration, especially the ones with close contact with
humans, to understand better the evolution and ecology of coronaviruses, and to monitor
emerging new strains that can possibly cause more losses to the poultry industry and
transmit to humans [43]. The use of nasal saddles on sampled ducks can also allow the
study of possible impacts of CoVs on wild duck species’ survival.

5. Conclusions

This study identified Gammacoronavirus and Deltacoronaviruses in migratory ducks
from Portugal, and it is the first report of CoVs for these animals in the country. Migratory
birds can occupy many habitats, primarily because of their ability to migrate exceptional
distances. This ability of dispersion can also, unfortunately, facilitate the dispersion of
microorganisms with animal and/or human impact. Hence, efforts should be made towards
the surveillance of potentially pathogenic viruses in wild birds and for monitoring emerging
new strains that can possibly cause more losses to the poultry industry and transmit
to humans.
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