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Simple Summary: Discoglossus pictus is a North African amphibian that was introduced in southern
France early in the 20th century and has spread south and north along the Mediterranean coastal
plains up to 170 km. Many studies have demonstrated that D. pictus competes against native species
with similar breeding strategies, pointing out abiotic conditions as the main driver tipping the
balance in favor of one or another species. This study aims to assess the impact of the spread of
D. pictus on native Iberian Discoglossus and other native species, analyzing the potential roles of long-
distance dispersal and long-term climate warming in the Iberian Peninsula. The study area covers the
western Mediterranean region, including all Discoglossus species in northwestern Africa, Sicily, the
Iberian Peninsula, and southern France. Our results show a strong climatic niche overlap between
D. pictus and targeted species in the Iberian Peninsula, including endemic Discoglossus species. Future
projections of climatic change suggest that climatic suitability will increase for all species, both inside
and outside the Natura 2000 network, with the only exception being a moderate and widespread
decrease for Pelodytes punctatus. However, these positive trends are reversed within Natura 2000 sites
where most species are explicitly targeted, jeopardizing the effectiveness of protected areas in a
long-distance dispersal scenario.

Abstract: Discoglossus pictus is a North African amphibian that was introduced in southern France
early the 20th century and has spread south and north along the Mediterranean coastal plains up to
170 km. In order to disentangle the conservation implications of the spread of D. pictus for sensitive
native species, we examined the impact of long-term climate warming on the basis of niche overlap
analysis, taking into account abiotic factors. The study area covered the distribution ranges of all
genus Discoglossus species in northwestern Africa (659,784 km?), Sicily (27,711 km?), the Iberian
Peninsula, and southern France (699,546 km?). Niche overlap was measured from species environ-
mental spaces extracted via PCA, including climate and relief environmental variables. Current
and future climatic suitability for each species was assessed in an ensemble-forecasting framework
of species distribution models, built using contemporary species data and climate predictors and
projected to 2070’s climatic conditions. Our results show a strong climatic niche overlap between
D. pictus and native and endemic species in the Iberian Peninsula. In this context, all species will
experience an increase in climatic suitability over the next decades, with the only exception being
Pelodytes punctatus, which could be negatively affected by synergies between global warming and
cohabitation with D. pictus.
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1. Introduction

The introduction of invasive species is, after habitat destruction, the second most
important cause of biodiversity loss on Earth [1-3]. The main problems related to the
introduction of invasive species are competition with local fauna, introduction of pathogens,
and genetic pollution of autochthonous populations [2,4-6]. Guijarro et al. estimated that
in the last 300 years, 39% of all known extinctions have been driven by invasive species [7].

Discoglossus pictus is a North African species that was introduced from Algeria to Europe
in Banyuls Sur Mer (southern France) in the early 20th century [8]. Currently, the invaded area
of D. pictus extends over a continuous range from southern France to the northeastern Iberian
Peninsula, occupying more than 7000 km? [9,10] (Figure 1). Evidence of the spread of D. pictus in
southern Europe shows a similar rate of expansion as other invasive amphibians [10]. Montori
et al. and Llorente et al. demonstrated that populations of D. pictus have moved 60 km west
and 140 km south within the Iberian Peninsula, with good prospects for progression through
climatically favorable regions [11-15]. Furthermore, unforeseen establishment of D. pictus in
the metropolitan area of the city of Barcelona (Spain) [13] has highlighted the proneness of the
species for human-mediated long-distance “stowaway” dispersal [16], thus boosting the risk of
accelerating range expansion. Ongoing climatic changes at the global scale can presumably play
a critical role in this acceleration [17], especially since future climate conditions for amphibians in
the Iberian Peninsula are predicted to approach current conditions found in North Africa [18].
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Figure 1. Distribution of Discoglossus pictus and congeneric and parapatric species within the study

area (shaded) in the western Mediterranean region.

Species interactions between invasive D. pictus and native species have been con-
sistently assessed [15,19-25]. Specifically, D. pictus shows a strong biotic niche overlap
with Pelodytes punctatus and Epidalea calamita; three species with similar phenology and
breeding strategies. Moreover, D. pictus has been identified as an asymptomatic carrier
of Batrachochytrium dendrobatidis, increasing the exposure of other sympatric amphibians
to chytrid zoospores [26]. Competition between native and non-native species can drive
recipient communities to become less structured [20,24], and abiotic conditions have been
identified as the main driver exacerbating this process [19]. Beyond the invaded area, poten-
tial interaction with the Iberian-endemic Discoglossus galganoi highlights the importance of
predicting the limits of the potential expansion of D. pictus, particularly in a long-distance
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dispersal scenario based on its ability for long-distance “stowaway” dispersal. The progres-
sion of D. pictus in the Iberian Peninsula can have potential impacts on the populations of
the D. galganoi eastern subspecies D. galganoi jeanneae, which is listed as “vulnerable” in the
Spanish Red List [27].

In order to assess the impact of the spread of D. pictus on native Iberian Discoglossus
species and other sensitive species, in this paper we examined the potential roles of long-
distance dispersal and long-term climate warming in the Iberian Peninsula. Our aims
were: (1) to assess niche overlap between D. pictus and a group of target species from the
Iberian Peninsula with similar biotic requirements, including Iberian congeneric species
D. galganoi galganoi and D. galganoi jeanneae, as well as Iberian native species E. calamita,
P. punctatus, Pelodytes ibericus (Iberian endemism with the same niche requirements as
P. punctatus [27] and, thus, potentially sensitive to a long-distance dispersal of D. pictus),
and Discoglossus scovazzi (included to assess niche overlap with a parapatric species with
large shared boundaries in eastern Morocco); (2) to predict changes in climatic suitability
due to global warming for Iberian native species and D. pictus in the Iberian Peninsula;
(3) to assess potential impacts of a long-distance dispersal scenario on Iberian native species
under different protection regimes throughout the full distribution ranges of native Iberian
species. Protection regimes were based on Natura 2000, which is the official network
of protected areas of the European Union and covers the most valuable and threatened
species and habitats. Insights from these investigations are needed to formulate long-term
conservation strategies.

2. Materials and Methods
2.1. Study Area

The study area covered the western Mediterranean region, including distribution
ranges of D. pictus and D. scovazzi in northwestern Africa (659,784 km?), D. pictus in Sicily
(27,711 km?), and the Iberian Peninsula and southern France (699,546 km?). Corsica and
Sardinia were excluded from the analysis because they are both occupied by endemic
Discoglossus species (D. montanelli and D. sardus, respectively) with no contact zones with
the D. pictus range.

Protection regimes within the Iberian Peninsula and southern France were defined on
the basis of the Natura 2000 GIS database [28]. In this area, Natura 2000 includes 781 sites
covering nearly 20% of the territory. Among these sites, 189 are explicitly targeted to
protect Habitats Directive Annex II species D. galganoi galganoi (167 sites) and D. galganoi
jeanneae (22 sites). Supplementary conservation targets are also defined in Natura 2000 sites
with 69 sites extending protection to E. calamita (Habitats Directive Annex IV and Bern
Convention), 66 sites to P. punctatus (Bern Convention), and 3 sites to P. ibericus (Iberian
endemic species).

2.2. Species Data

Native-range data for D. pictus included 76 occurrences from Algeria and Tunisia
(presence-only data: [29] and unpublished data from P. geniez) and 115 occurrences from
Sicily (among 373 10 x 10 km atlas cells: [30]). Northern African data also provided
113 occurrences for D. scovazzi from Morocco (presence-only data: [31] and unpublished
data from P. geniez) (Figure 1).

European invaded-range data for D. pictus included 59 occurrences from southern
France (presence-only data: [9,32] and 59 occurrences from Spain (among 7720 10 x 10 km
atlas cells: [33]) (Figure 1). Spanish data also provided occurrences for D. galganoi jeanneae
(500), D. galganoi galganoi (860), E. calamita (2463), P. punctatus (790), and P. ibericus (261).
Finally, Portuguese data completed the Iberian distribution for D. galganoi galganoi (414),
E. calamita (583), and Pelodytes spp. (242) (among 1166 10 x 10 km atlas cells: [33]). In
the herpetological atlas of Portugal, Pelodytes spp. included different Pelodytes species
(P. punctatus, P. ibericus, and P. atlanticus), all of which had overlapping distribution ranges
with no clear boundaries [34]. Due to the lack of objective criteria to split the data among the
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different Pelodytes species, Portuguese occurrences were assigned to the more widespread
species, P. punctatus, based on the assumption of a strong abiotic niche overlap between all
Pelodytes species in the Iberian Peninsula [34,35].

2.3. Environmental Data

Following Sillero, five explanatory variables connected to the abiotic ecological re-
quirements of amphibians were selected for subsequent analyses [36]. Temperature ex-
tremes, annual precipitation, and relief are relevant features for amphibian distribution
in the Mediterranean region. These factors were summarized in 2 relief predictors, alti-
tude and slope, and in 3 climate predictors: maximum temperature of warmest month
(BIO5), minimum temperature of coldest month (BIO6), and annual precipitation (BIO12).
Climate and altitude layers were downloaded from the WorldClim 1.4 repository ([37],
www.worldclim.org accessed on 15 August 2022) at 5 min spatial resolution (~9 x 9 km),
and slope was derived from WorldClim DEM at 30 s spatial resolution.

For long-term climatic suitability analyses, we also downloaded climate layers for the
late 21st century (averaged climate projections for the 2061-2080 time period) based on the
Fifth Assessment IPCC report [38] for both the most optimistic (RCP 2.6) and pessimistic
(RCP 8.5) greenhouse gas scenarios. Following recent studies dealing with the impacts of
climate change on biodiversity [39,40], we averaged six different Global Climate Models
(CNRM-CMS5, IPSL-CM5A-LR, HadGEM2-ES, MPI-ESM-LR, GISS-E2-R, and CCSM4) to
reduce uncertainties, producing one single layer for each climate predictor and greenhouse
gas scenario.

2.4. Niche Overlap Analysis

To search for similarities/dissimilarities in environmental conditions between ranges
of D. pictus and target species from the Iberian Peninsula, we conducted a PCA analysis [38].
The first two principal components of the PCA were used to visualize the variation patterns
of native species and invaded species ranges in a bivariate plot. Environmental spaces
were delimited using maximum convex polygons, including all species occurrences, and
the intersection of spaces between species was used as a measure of niche overlap. The
analyses were conducted in R, using the packages ade4 and gpclib [41,42].

2.5. Climatic Suitability Changes

Climatic suitability was modeled for all species by running five widely used niche-
based modeling algorithms implemented in the biomod2 platform [43]. These models
included: (1) generalized linear model (GLM), (2) generalized additive model (GAM),
(3) multivariate adaptive regression splines (MARS), (4) generalized boosting model (GBM),
and (5) flexible discriminant analysis (FDA). All models were trained on the basis of species
presence-absence samples and current climatic conditions, and then the models were pro-
jected to future climatic scenarios. The predictive performance of each model was assessed
by means of the relative operating characteristic (ROC) curve and area under the curve
(AUC) [44], on the basis of a subsampling approach that randomly split a 70% subset of
the sample for model building and the remaining 30% for testing predictions. Models
were also replicated 10 times using environmental stratified presence-absence subsam-
ples built from available species occurrences to determine a more robust estimate of the
predictive performance from the averaged AUC of the replicated cross-validations [45].
For presence-only data from northern Africa and southern France, this meant using the
known surveyed areas in each region [46] as the environmental background to stratify
subsampling, thus obtaining pseudo-absence samples of equal size as the presence-only
samples [47]. On the other hand, original presence-absence data from Italy, Spain, and
Portugal were subsampled to balance environmental gradients within the training sam-
ples [47]. Environmental stratification was based in the WWF Terrestrial Ecoregions of
the World [48]. AUC measurement is independent of the threshold at which the model’s
prediction is considered and values range from 0 to 1; AUC scores close to 1 mean perfect
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model predictions, while AUC scores close to 0.5 indicate predictions no better or worse
than random. The potential problems raised by Lobo et al. on the use of AUC as a measure
of model performance were considered to be minor because AUC was used to rank models
obtained from the same dataset and within the same geographical area according to their
predictive performance [49]. We applied an ensemble-forecasting framework by computing
a consensus of single-model projections (from models with AUC > 0.7 using AUC values
as model weights) using a weighted average approach [50].

To determine the potential range of affectation of D. pictus in the Iberian Peninsula,
native-range predictions were built using North African and Sicilian data and projected to
new geographical areas in southern Europe. These models were built using only occurrence
data from the native range where the species was in equilibrium with the environment.
Here, agreement between observed and predicted distribution within the invaded range
was assessed using AUC scores, which were computed using invaded-range occurrence
samples [51].

Differences between current and future climatic suitability scores were used to measure
changes in climatic suitability, yielding positive changes when future scores were larger
than current scores, and negative changes in the opposite case. To allow comparisons
between species, scale values from current and future climatic suitability predictions
were homogenized using standard scores (i.e., difference between raw climatic suitability
score and mean climatic suitability score, divided by the climatic suitability standard
deviation). This normalization implied adjusting raw scale values (0-1) to a common scale
that quantified the number of standard deviations above (or below) the mean. Hence,
species-specific misalignments between current and future climatic suitability raw scales
were corrected to achieve accurate measurements of climatic suitability changes based on
standard scores. Since future forecasts of climatic suitability were based on current climatic
suitability models, these misalignments were consistently corrected by using the mean
and standard deviation from current climatic suitability predictions to compute future
climatic suitability standard scores. Calculations of climatic suitability changes for sensitive
species were circumscribed to species occurrence actual data. On the other hand, D. pictus
computations were not only restricted to occurrence data in the actual invaded range, but
assumed a conjectural successful long-distance dispersal scenario based on demonstrated
D. pictus proclivity for human-mediated long-distance dispersal [16], which will drive
widespread distribution of the species throughout the Iberian Peninsula by the end of
21st century, with overlapping ranges with all Iberian targeted species. This means that
we defined the future potential range of D. pictus as all occurrence localities where any
of the Iberian native species were recorded. Invaded and potential ranges of D. pictus
allowed us to examine differences in climatic suitability across targeted species and under
different protection regimes by distinguishing areas outside and inside Natura 2000, as
well as Natura 2000 sites where targeted species were explicitly protected.

3. Results
3.1. Niche Overlap Analysis

The main two axes of the PCA accounted for 81% of the total variance: PC1 (45% of
variance) was negatively correlated with minimum temperature and precipitation (r = —0.58
and r = —0.53, respectively) and positively correlated with altitude (r = 0.52); PC2 (36%)
was positively correlated with maximum temperature (r = 0. 51) and negatively correlated
with precipitation and slope (r = —0.47 and r = —0.43, respectively). Comparisons of the
environmental ranges of Discoglossus congeneric species indicated that the environmental
conditions in their native ranges were quite similar (Figure 2), suggesting that congeneric
species could easily occupy broader extensions without the existence of biotic interactions.
A similar situation was found when comparing the native and invaded ranges of D. pictus,
with an invaded range that seemed to be a smaller subset of the conditions occupied in
the native range. After plotting the occurrences of D. pictus in a bivariate plot of the first
two factors, only four occurrences (3.3% of occurrences) from the invaded range were
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outside the native environmental space, showing little niche shifting to new environmental
conditions from the invaded area (Figure 2). Non-congeneric native species also showed a
strong niche overlap with D. pictus, with more than 80% of each species’ environmental
space intersecting with the D. pictus environmental space within the invaded range.

Epidalea calamita

Discoglossus galganoi jeanneae Pelodytes punctatus
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Figure 2. Environmental space of Discoglossus native and invaded (only D. pictus) species ranges in
a bivariate plot of two principal components. The convex hulls show the global climatic space in
North Africa (solid grey), Iberian Peninsula, southern France (solid black), and Sicily (dashed black,
only for D. pictus). The correlation circle indicates the importance of each bioclimatic variable to the
two principal axes of the Principal Components Analysis (PCA), which jointly explain 81% of the
variance in the data.

3.2. Long-Term Climatic Suitability Changes

Climate ensemble native-range predictions efficiently captured the climate envelope of
D. pictus (mean AUC = 0.92, st. dev. AUC = 0.01), even when they were compared to the in-
vaded range in southern Europe (mean AUC = 0.83) (Figure 3). Climate ensemble outcomes
from other species also exhibited excellent predictive performance, with AUC > 0.9 for all
species except the most widespread E. calamita (mean AUC = 0.79, st. dev. AUC = 0.01) and
D. galganoi galganoi (mean AUC = 0.80, st. dev. AUC = 0.02).

We found contrasting amphibian responses to climate change according to the exam-
ined greenhouse gas scenarios. Climatic suitability changes from the pessimistic scenario
showed potential negative responses for all species, stressing that against extreme climate
warming, D. pictus invasion might be the less important problem facing native species
(Figure 4). In contrast, the optimistic scenario yielded positive widespread responses to cli-
mate warming for all species. Only P. punctatus showed a general loss of climatic suitability,
including areas inside and outside the Natura 2000 network within the current invaded
range of D. pictus, but also in the potential range based on the long-distance dispersal sce-
nario (Figure 4). No major differences were reported for species among D. pictus dispersal
scenarios and protection regimes based on paired t-tests, except for Natura 2000 sites where
D. galganoi galganoi (p < 0.05) and E. calamita (p < 0.05) were explicitly located within the
potential range of D. pictus (Figure 4).
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Figure 3. Current (A) and future (B) climatic suitability predictions for Discoglossus pictus in northern
Africa and southern Europe. Future climatic predictions are based on the optimistic greenhouse gas
scenario (RCP 2.6).
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Figure 4. Species climatic suitability change (%) under optimistic (upper) and pessimistic (bottom)

climate warming scenarios, different D. pictus ranges (invaded or potential), and protection regimes,
splitting areas inside and outside Natura 2000 (N2000) from those Natura 2000 sites where species are
explicitly targeted (Targets N2000). Dpi, Discoglossus pictus; Dgj, Discoglossus galganoi jeanneae; Dgg,
Discoglossus galganoi galganoi; Bca, Epidalea calamita; Ppu, Pelodytes punctatus; Pib, Pelodytes ibericus.
Points show outliers; lower and upper whiskers indicate the 5% and 95% percentiles, respectively;
lower and upper hinges indicate the 25% and 75% quartiles, respectively; and the central black line
indicates the median value.

4. Discussion

The native-range predictions showed that D. pictus spread in southern Europe is
following the best environmental paths. Large areas of the southern Iberian Peninsula
are highly suitable for the establishment of D. pictus, and our results suggest that this
will be exacerbated in the long term (Figure 3). Several studies have tested the value
of niche modeling for assessing the risk of amphibians from another region invading
a given area [52,53], highlighting the benefits of using native-range data to assess the
geographical potential of invasive species in the face of climate change [54-56]. The
potential species distribution is projected based on the assumption that current niches from
native distributions reflect species” environmental preferences, which are retained in the
invaded new areas [57,58]. However, it is important to note that the native-range models
were calibrated using a limited set of occurrence data and probably underestimate the
potential distribution of D. pictus in the Iberian Peninsula, thereby representing conservative
predictions of the real potential distribution of the species.
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All indications suggest that D. pictus is not at equilibrium with environmental condi-
tions in Europe, with an invasion front expanding at equal rates and similar strategies as
other invasive amphibians. In fact, long-distance “stowaway” dispersal has been reported
for other amphibians, such as Rhinella marina in Australia, emphasizing that the magnitude
of dispersal through anthropogenic transport should not be underestimated [16]. Impor-
tantly, the proneness to human-mediated dispersion means that the species is likely to
reach most parts of potential invaded ranges at frequencies high enough to set up new
populations if conditions are suitable. The establishment, persistence, and expansion of
D. pictus in Barcelona province [12,13] provides strong evidence supporting this hypothesis.
Current climatic suitability predictions show that such areas may exist in the southern
Iberian Peninsula, albeit separated from the main part of the current D. pictus invaded range
by 200 km of land with low climatically suitability, but with high densities of transportation
networks. Hence, high rates of anthropogenically assisted transport may overcome limited
dispersal abilities of ectotherms [59], suggesting that D. pictus may be ultimately able to
colonize any part of the Iberian Peninsula that provides conditions suitable for population
persistence [53].

To determine the pattern of spread of D. pictus in the Iberian Peninsula in the late
21st century, we predicted climatic suitability under optimistic and pessimistic climate
warming scenarios. At best, our results indicate that the whole Mediterranean basin in
the Iberian Peninsula may experience an increase in D. pictus climatic suitability under
optimistic future climatic conditions (Figure 4). On the other hand, the pessimistic scenario
showed very poor conditions for the spread of D. pictus, but also for the persistence
of all native species included in the analysis and, hence, the results were unhelpful for
invasive D. pictus risk assessment (Figure 4). It is widely thought that climate change
will exacerbate problems with invasive species [60], but the many ways in which changes
could affect the ranges of species and the complex interactions that could potentially
facilitate or hinder shifts make accurate predictions very difficult [61]. Additionally, the
ways in which climatic variables will interact in the future may be quite different from
the current situation. Such changes are certain to influence environmental suitability
and invasiveness in ways other than simply through altered climatic tolerance. Thus,
projections of potential future distributions need to be interpreted with caution. Our
approach is based on the assumption that climate is the major driving factor of species
distribution [62], and that analysis of the climatic preferences of species can therefore be
used to predict areas where species could occur at regional scales. Although climate sets
the broad limit of ectothermic species range, other factors such as hydrology, disturbance
regime, competition, and other biotic interactions determine the presence or absence of a
species in a particular area and at finer local scales [15,19-25,63]. The question is whether
such simplifications enable useful projections under climate change. A number of studies
have empirically demonstrated that carefully implemented bioclimatic models can recover
the broad-scale direction of species range changes under climate change [64-66]. Range
changes measured from niche models have important intrinsic uncertainty, as changes
are contingent on several unmeasured factors. However, evidence shows that models
can recover the tendency towards range increases or decreases with reasonable accuracy.
Thus, one possible approach to limit uncertainty is to conservatively interpret model
projections. By quantifying relative climatic suitability changes for each species, we avoid
making quantitative inferences about population parameters, such as changes in range,
abundance, or extinction risk, that are not explicitly modeled [67]. Other limitations of
this study include uncertainties inherent in climate-change scenarios and coarse resolution
of anomalies in GCM [68]. The coarse resolution of the data used to build the models
(10 x 10 km) may also mask some fine-scale variations in species’ ecological requirements
that were not detectable at the spatial scale of our analysis. Because the influence of each
environmental variable in determining the species’ niche is scale dependent, different
degrees of ecological niche variation can arise among populations depending on the spatial
resolution of the analyses [69].
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Based on our results, the combined effects of global warming and the spread of
D. pictus should not pose a risk for most species in the recipient amphibian communities
in the next decades, even if, hypothetically, endemic congeneric species face new long-
distance dispersal events by invasive D. pictus. Specifically, we show that in an optimistic
scenario, climate conditions at the end 21st century are likely to become more suitable for
D. pictus and native species inside and outside the protected areas. Only non-endangered
P. punctatus will likely be negatively affected by synergies between global warming and
cohabitating with D. pictus. However, these general trends are reversed for native species
within targeted Natura 2000 sites. Hence, explicitly designated protected areas would
preserve species worse than unprotected areas, jeopardizing the effectiveness of protected
areas in a long-distance dispersal scenario. If true, D. pictus long-distance dispersal events
stress the importance of implementing early detection and monitoring plans within Natura
2000 sites having high-suitability for the species. The approach we present here can provide
insights into the basic mechanisms underlying range expansion and inform efforts to focus
preventive monitoring in the areas that are more at risk [70], but also evaluate and adapt
Natura 2000 site-specific targets [71] in order to effectively preserve endangered species.

The ecological impacts of invasive amphibians primarily involve direct changes to
single native communities, populations, or species [15,20,22-25], but community-level
impacts also logically result from the loss of, or dramatic declines in, native populations [5].
The strong niche overlap between D. pictus and native species suggests that climatic
suitability changes might involve decreases in the abundance of native species [72], driving
a worst case scenario for local extinctions and geographical range contractions [73,74].
However, most feasible impacts encompass the simplification and homogenization of
amphibian communities due to D. pictus establishment [15,20,22-25]. Regarding impacts
on congeneric species, competitive exclusion between D. pictus and D. scovazzi in northern
Africa and between D. galganoi galganoi and D. galganoi jeanneae in the Iberian Peninsula
reveals that niche overlap goes beyond abiotic factors and drawing clear borders allows
parapatric coexistence between congeneric neighbors [75-78]. Our results do not provide
any evidence against this finding.

Amphibians are among the species of highest conservation concern due to their
widespread decline worldwide [79,80], but their poor representation in conservation strate-
gies may only be understood by the resilience of many species in human-dominated
landscapes [81-84]. Nevertheless, many studies have demonstrated that the impacts of
global changes are able to boost the fragility of the group due to the combined effects of
global warming, invasive species, and emerging diseases [85-87]. In our case, D. pictus
is an asymptomatic carrier of B. dendrobatidis and sympatric E. calamita has been shown
to shed increased amounts of B. dendrobatidis zoospores [26]. These impacts should not
be neglected, and appropriate monitoring and conservation planning based on strong na-
tional and international (e.g., EU) nature conservation policies may help to ensure species
conservation and the integrity of native communities.
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