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Simple Summary: Varroa destructor is a mite causing colony collapse in Apis mellifera. Common
solutions for beekeepers to control Varroa mites are drone brood removal and queen caging and/or
chemical treatments with formic or oxalic acid. Treatments performed against Varroa mites may
affect honey bee welfare; they have the potential to cause negative effects on the immune system,
as well as oxidative stress. In this study, effects of the combination of queen caging and oxalic acid
treatment on both the immune system and antioxidant enzymes of first post-treatment generation
workers and drones are investigated. The combination of the above anti-varroa treatments did not
produce significant effects on the antioxidant system of the first post-treatment generation. However,
within the immune system, such treatments determined a decrease in glucose oxidase activity in
drones, and an age-dependent variation in vitellogenin content in worker bees. Such effects may
result in cuticular sclerotization issue, dehydration, and pathogens transmission in drones, and in a
general weakness of the immune system of both drones and workers with a subsequent higher risk of
illnesses. Further investigations to assess the physiologic effects of such enzymatic activity variation
on the welfare of honey bees subject to queen caging and oxalic acid treatment are desirable.

Abstract: Varroa destructor is a mite causing serious damage to western honey bees. Managed colonies
require artificial varroa control, which may be best obtained by combining mechanical and chemical
methods. This study explored the possible effects of the combination of queen caging and oxalic acid
treatment on the immune system (glucose oxidase, phenoloxidase, and vitellogenin) and antioxidant
enzymes (superoxide dismutase, catalase, and glutathione S transferase) of first post-treatment
generation drones and workers (newly emerged, nurses, and foragers). The combination of queen
caging and oxalic acid treatment caused a decrease in glucose oxidase activity only in drones. This
could cause issues of cuticular sclerotization, making a drone prone to bite injuries, dehydration, and
pathogens. No differences in phenoloxidase activity were recorded in both post-treatment drones
and workers generation. Among worker bees, the treatment determined a lower vitellogenin content
in newly emerged bees while the result was higher in nurse bees. However, the treatment did not
significantly affect the antioxidant enzymes activity in either drones or workers. The results obtained
in this investigation suggest that the combined anti-varroa treatments had no negative effects on
oxidative stress in the first post-treatment generation bees, while effects did occur on the immune
system. Further investigations on the potential effects of glucose oxidase decrease in drones and
vitellogenin content variation in workers are desirable.

Keywords: vitellogenin; glucose oxidase; phenoloxidase; antioxidant enzymes; Varroa destructor; Apis
mellifera; oxalic acid; queen caging
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1. Introduction

Varroa destructor is a mite causing serious damage to western honey bees, Apis mellif-
era [1]. It contributes to colony collapse, being a vector of viruses (e.g., Kashmir bee virus,
Sacbrood virus, Acute bee paralysis virus, Israeli acute paralysis virus, and deformed wing
virus), and feeding on bee body fat [1,2]. The parasite’s life cycle is closely intersected
with that of the host. Female mites have two distinct stages: a so-called ‘phoretic’ phase,
in which they live on the adult bees, and a reproductive phase, which occurs within the
sealed brood cells [3].

Varroa mites can be controlled with a combination of beekeeping practices and chemi-
cal treatments. Drone brood removal and queen caging are common beekeeping practices
for varroa control [4]. Many chemical compounds have also been tested over the years and
formic acid, thymol, and oxalic acid are the most successful chemical treatments used at
present [5]. Oxalic acid is often applied by trickling or by sublimation and its efficacy is
reported to depend on both environmental conditions and colony development [6,7]. A
solution of oxalic acid and sucrose applied by trickling appears to be highly effective in
summertime against phoretic mites [8,9]. Oxalic acid kills Varroa through contact; however,
it does not penetrate the brood seals, making it unable to reach the mites during their repro-
ductive phase [3]. Thus, frequent periodic applications of oxalic acid during brood-rearing
periods are unable to bring V. destructor populations below treatment thresholds [6,10].
For this reason, to maximize the oxalic acid efficacy against Varroa mites, the treatment
needs to be carried out on broodless colonies or, at least, when only unsealed brood cells
are present [7,8]. Queen caging in combination with acaricide applications can increase
the efficacy of varroa control to more than 96% [11–13]. Gregorc and colleagues [4] found
that the application of oxalic acid, which is non-toxic to the adult bees, in combination
with queen caging or brood removal, can ensure adequate varroa control prior to the main
spring honey production flow.

Both Varroa mites and varroa treatment may affect honey bee welfare, specifically
via the immune system and oxidative stress. Innate honey bee immunity includes both
social and individual immunity systems [14]. Glucose oxidase is an enzyme belonging to
the social immune system and is responsible for the conversion of glucose into gluconic
acid and hydrogen peroxide, the latter providing high antimicrobial activity [15]. Glucose
oxidase is produced by hypopharyngeal glands, but its activity was observed also in
salivary glands [16–18]. The enzyme phenoloxidase is part of the individual immune
system and, through melanin production, is responsible for pathogen encapsulation and
nodule formation [19]. Vitellogenin plays a pivotal role in individual immunity, as it
binds to pathogen-associated pattern molecules (e.g., lipopolysaccharides, peptidoglycan,
and yeast zymosan), providing the hemocytes with the zinc needed for their immune
function [20,21]. Vitellogenin also regulates honey bee aging by its oxidation potential,
and its gene expression is upregulated in injured bees [21]. The antioxidant system of
honey bees serves to buffer the effects of oxidative stress and mainly consists of three
enzymes: superoxide dismutase (SOD), catalase, and glutathione S transferase [22,23].
These three enzymes can eliminate the free radicals produced in physiological, pathological,
and stressful conditions [24–26].

The aim of this study was to evaluate the effects of a combination of queen caging
and oxalic acid treatment on both the immune system (glucose oxidase and phenoloxidase
activity, vitellogenin content) and the antioxidant enzymes (SOD, catalase, and glutathione
S transferase activity) of the first post-treatment generation workers and drones.

2. Materials and Methods
2.1. Bee Collection and Haemolymph Sampling

This investigation was performed in May 2018 and included 20 colonies from the
same apiary. Ten colonies with caged queens functioned as the experimental group. The
remaining 10 colonies, with uncaged queens, were left untreated and unmanipulated and
functioned as the control group.
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The queens of the Experimental Group were confined for 22 days in a commercial
Varcontrol cage (API-MO.BRU, Campodoro, Padua, Italy) measuring 5 × 7.8 × 3 cm. The
cage was inserted in the upper part of one of the central combs of each colony. Queen-
tending was made possible by the presence of queen excluders on both cage walls. On the
22nd day, the queens were released to allow egg-laying and the experimental colonies were
treated with Api-Bioxal (Chemicals Laif S.p.A., Padua, Italy) (i.e.: oxalic acid dihydrate) by
trickling following the label instructions (Figure 1).
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Figure 1. Experimental design for sample collection. Figure created with Biorender.com, accessed on
17 March 2022.

From both groups (control and experimental group), honey bees were collected for
enzymatic analysis and stored at −20 ◦C. Honey bees collected were: i. 20 newly emerged
workers, approximately 21−28 days after queen release; ii. 20 drones (newly emerged)
approximately 24−31 days after queen release; iii. 20 nurse bees, approximately 30 days
after queen release; iv. 20 foragers, approximately 40 days after queen release. None of the
experimental group individuals sampled had any direct contact with oxalic acid and the
queen was present during their embryogenesis.

Twenty pools of haemolymph for each sex/age/treatment were also collected from
the same colonies for a total of 160 pools. Each pool included 10 honey bees and was
considered as a replicate. Each bee was narcotized with CO2 and 3 µL of haemolymph
was withdrawn from the thorax by insertion of a 1 µL glass microcapillary through the
neck membrane. Haemolymphs collected from each bee of each pool were directly put in a
1.5 mL tube, centrifuged at 3000 rpm for 20 min and then stored in PBS (80 µL of PBS × 10
µL of haemolymph) at −20 ◦C until analysis [27].

Spectrophotometric and colorimetric analyses were performed by an EnSpire 2300
Multilabel Reader (PerkinElmer, Milan, Italy), a Multiskan FC reader (Thermo Scientific,
Waltham, MA, USA), and a Lambda 25 UV/VIS spectrometer (PerkinElmer, Milan, Italy).
All chemicals were from Sigma (St. Louis, MO, USA).

2.2. Immune System Enzymes

The bee head was used for glucose oxidase analyses. For each sex/age/treatment, 20
heads were separately analysed. Each head was weighed before protein extraction. Then
300 µL of 100 mM phosphate buffer pH 7.2 with 1% (v/v) Triton X-100 were added. Sample
was homogenized with a Teflon pestle and allowed to decant. The resulting supernatant
was collected, whereas 200 µL of 100 mM phosphate buffer pH 7.2 were added to pellets
and allowed to decant. The supernatant was mixed with those previously collected and the
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total protein concentration was measured by Qubit 2.0 fluorimeter (Invitrogen, Waltham,
MA, USA).

Glucose oxidase was then measured according to Sagona and colleagues [28]. Before
analysis, a solution containing 100 mM Hepes buffer pH 7.0, 0.1 mM EDTA and 5 mM
D-glucose was added to the sample. Absorbance data were obtained at the λ = 352 nm, at
times 0 and 120 min, after the addition of diaminobenzidine (DAB) (0.18 mg/mL) and HRP
(horseradish peroxidase) (0.02 mg/mL). Values were expressed as U/mg of proteins.

Phenoloxidase activity was investigated on 80 pooled haemolymph samples (10 pools
for each sex/age/treatment). Fifty µL of each sample were loaded in cuvettes with 475 µL
of phosphate saline buffer pH 7.4 and 675 µL milliQ water, following Mazzei and col-
leagues [29] protocol. Cuvettes were incubated at 37 ◦C for 5 min and 300 µL L-3,4-
dihydroxyphenylalanine (L-dopa) (2 mg/mL) was then added. Absorbance data were
obtained at λ = 490 nm, at time 0 and 10 min. Values were expressed as U/mg of proteins.

2.3. Vitellogenin Assay Kit

Vitellogenin content was measured in all the 160 pooled haemolymph samples (20 pools
for each sex/age/treatment) using honey bee vitellogenin (VG) ELISA Kit (MyBiosource,
San Diego, CA, USA), according to the manufacturer’s instructions. Fifty µL of each sample
diluted 1:20, two blanks with a sample dilution solution, and 6 standards with a known
concentration of vitellogenin were loaded into a 96-well plate. Optical density was recorded
at the λ = 450nm. The average of the two blanks was detracted from the data obtained
and the result was fitted to the calibration curve (obtained with the standards) using the
MyCurveFit.com (accessed on 20 July 2018) program, obtaining the corresponding ng/ml
vitellogenin for each sample.

2.4. Antioxidant Enzymes

Antioxidant enzymes were investigated in 80 pooled haemolymph samples (10 pools
for each sex/age/treatment) in accordance with Sagona and colleagues [23].

SOD activity was determined using 10 µL of each sample by Superoxide Dismutase
Assay kit (Cayman Chemical Company, Ann Arbor, Michigan, USA; No.706002). This
kit uses a tetrazolium salt for the detection of superoxide radicals generated by xanthine
oxidase and hypoxanthine and measures the three types of SOD (Cu/ZnSOD, MnSOD,
and FeSOD). One unit of SOD is defined as the amount of enzyme needed to exhibit 50%
dismutation of the superoxide radical. The kit was used according to the manufacturer’s
instructions and the plates were read at the λ = 450 nm.

Catalase activity was determined using 20 µL of each sample by Catalase Assay kit
(Cayman Chemical Company, Ann Arbor, MI, USA; No.707002). This method is based
on the reaction of the enzyme with methanol in the presence of an optimal concentration
of hydrogen peroxide. The formaldehyde produced is measured colorimetrically with 4-
amino-3-hydrazino-5-mercapto-1,2,4-triazole (Purpald) as the chromogen. The kit was used
according to the manufacturer’s instructions and the plates were read at the λ = 540 nm.

Glutathione S-transferase was determined using 20 µL of each sample by Glutathione
S-transferase Assay kit (Cayman Chemical Company, Ann Arbor, MI, USA; No.703302).
This kit measures the total GST activity (cytosolic and microsomal) by measuring the
conjugation of 1-chloro-2,4-dinitrobenzene (CDNB) with reduced glutathione in terms
of increased absorbance at 340 nm. The kit was used according to the manufacturer’s
instructions and the plates were read at the λ = 340 nm for 5 min.

2.5. Statistical Analysis

Data were statistically processed using JMP software (SAS Institute, Cary, NC, USA,
2008). The vitellogenin content and all enzymatic activities (except for glutathione S trans-
ferase activity) were processed as follows. After assessing that the data distribution was
significantly (p < 0.05) different from normal using a Shapiro–Wilk test, a non-parametric
Wilcoxon test was adopted, with the group as the independent predicting variable. As glu-
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tathione S transferase activity was normally distributed, data were processed by ANOVA
test followed by a Student’s t-test. Data were analysed within each age/sex and be-
tween workers of different ages. Differences associated with p < 0.05 were considered
statistically significant.

3. Results
3.1. Immune System Enzymes Activity and Vitellogenin Content

Glucose oxidase activity was lower among drones in the treated colonies compared
to the control (202 ± 31 vs. 374 ± 38 U/mg of proteins, respectively, p = 0.0011), while no
significant differences were found in the three worker bees age investigated (Figure 2).
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No significant differences were detected in phenoloxidase activity in both workers
and drones (Table 1). Vitellogenin content in the heamolymph of newly emerged bees was
significantly higher in control colonies than in the experimental group (2047 ± 454 vs. 894
± 214, p = 0.0412). In nurse bees, vitellogenin content resulted significantly lower in the
control than in the experimental group (288 ± 68 vs. 650 ± 109, p = 0.0303). Conversely, no
significant variation in vitellogenin content was recorded in foragers and drones (Figure 3).

Table 1. Phenoloxidase activity in honey bees belonging to control and experimental colonies (queen
caging + acid oxalic). Values are reported as mean±SE (median).

Control Colonies Experimental
Colonies p Value Test Value

Phenoloxidase activity
U/mg of proteins

Newly emerged bees 124 ± 43(129) 236 ± 66(138) 0.3607 χ2 = 0.8354, df = 1
Nurse bees 350 ± 111(264) 205 ± 51(234) 0.5939 χ2 = 0.2843, df = 1

Foragers 248 ± 82(205) 144 ± 43(116) 0.3250 χ2 = 0.9686, df = 1
Drones 310 ± 108(260) 172 ± 48(136) 0.3073 χ2 = 1.0422, df = 1
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3.2. Antioxidant Enzymes Activity

No significant differences in antioxidant activity of SOD, catalase, and glutathione
S transferase were observed in both worker bees and drones belonging to control and
experimental colonies (Table 2).

Table 2. Antioxidant enzymes of honey bees belonging to control and experimental colonies (queen
caging + oxalic acid): SOD activity (U/mg of proteins, n = 10); catalase activity (nmol/min/mg of
proteins n = 10); glutathione S transferase activity (nmol/min/mg of proteins). Values are reported
as mean ± SE (median).

Control Colonies Experimental
Colonies p Value Test Value

SOD activity
U/mg of proteins

Newly emerged bees 3.96 ± 0.36 (3.78) 4.23 ± 0.42 (4.52) 0.7624 χ2 = 0.0914, df = 1
Nurse bees 4.03 ± 0.31 (4.13) 4.49 ± 0.21 (4.46) 0.4905 χ2 = 0.4754, df = 1

Foragers 5.08 ± 0.33 (5.53) 5.37 ± 0.30 (5.58) 0.4057 χ2 = 0.6914, df = 1
Drones 4.29 ± 0.43 (4.39) 3.52 ± 0.35 (3.48) 0.5453 χ2 = 0.3657, df = 1

Catalase activity
nmol/min/mg of proteins

Newly emerged bees 16.66 ± 3.85 (13.79) 12.08 ± 3.88 (9.76) 0.2263 χ2 = 1.4640, df = 1
Nurse bees 56.89 ± 4.32 (55.40) 52.07 ± 7.31 (47.37) 0.4497 χ2 = 0.5714, df = 1

Foragers 15.82 ± 3.39 (13.24) 19.75 ± 3.03 (22.34) 0.2568 χ2 = 1.2857, df = 1
Drones 10.20 ± 3.97 (5.04) 7.37 ± 1.27 (7.51) 0.8206 χ2 = 0.0514, df = 1

Glutathione S transferase activity
nmol/min/mg of proteins

Newly emerged bees 161 ± 26 (142) 128 ± 24 (136) 0.5576 F = 0.3563, df = 1
Nurse bees 145 ± 17 (138) 197 ± 21 (180) 0.0569 F = 4.0394, df = 1

Foragers 156 ± 19 (159) 166 ± 16 (171) 0.6793 F = 0.1760, df = 1
Drones 106 ± 16 (116) 148 ± 19 (131) 0.1091 F = 2.8123, df = 1
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4. Discussion

Glucose oxidase activity shows no significant variation in treated worker bees from
each age group compared to control bees. Glucose oxidase activity was also detected in both
treated and control drones. This result clashes with the common assumption that drones
do not produce glucose oxidase since they do not have hypopharyngeal glands [30,31],
but it agrees with Kairo et al., [32] who measured glucose oxidase in the head of drones.
This enzyme was also detected in drone proteome during embryogenesis [33]. Despite
the lack of hypopharyngeal glands, the drones have post-cerebral glands (delicate masses
of tiny follicles), rudimentary mandibular glands, and salivary glands, the latter being
similar to those of the females [30]. Therefore, the detection of glucose oxidase activity in
the head of drones, recorded in this study, suggests that this enzyme might be produced by
post-cerebral glands. In addition, the drones have a group of fat cells provided with ducts
that open in the front end of the esophagus [34]. The function of these cells is currently
unknown however their involvement in the production of glucose oxidase cannot be
excluded. Results obtained in this study also show a lower glucose oxidase activity in the
drones from treated colonies compared to the control ones. An increase in glucose oxidase
activity associated with a decrease in survival rate has been recorded in foragers under
stress conditions [28]. Therefore, the lower glucose oxidase activity detected in treated
drones in this study could indicate a low impact of treatment on their general welfare. Since
the reason why drones produce glucose oxidase is still unknown, further investigations
are desirable.

Glucose oxidase was also identified in the cuticle and haemolymph of locusts [35]. It
has been hypothesized that in locusts, this enzyme acts as an adjuvant of cuticle sclerotiza-
tion, whereas its presence in the haemolymph has not yet been clarified [35]. A possible
role of glucose oxidase in cuticular sclerotization also in drones might be speculated and
needs to be deeply investigated, since cuticular sclerotization issues could make a drone
prone to bite injuries, dehydration and pathogens.

In both workers and drones, phenoloxidase activity was not significantly affected by
the experimental treatment. As phenoloxidase belongs to the individual innate immune
system of honey bees, it is not surprising that individuals from healthy colonies did not
show altered patterns in the activity of this enzyme [19,29,36].

Vitellogenin in drones has already been investigated [37]. The low vitellogenin content
found in drones in this investigation agrees with Bitondi and Simoes [38], who hypothesized
a relationship between the synthesis of new vitellogenin and pollen consumption, as drones
eat less pollen than workers [39].

Data obtained in this investigation indicate an age-dependent effect of vitellogenin
content in workers. Specifically, the treatment determined a significantly lower vitel-
logenin content in newly emerged bees and a higher vitellogenin content in nurse bees
compared to control. Cabbri and colleagues [40] also recorded an increase in vitellogenin
content in worker bees from colonies treated with oxalic acid and with caged queens.
Vitellogenin is suggested to be involved in brood food production which is produced by
nurse bees [41]. Therefore, nurse bees produce and consume vitellogenin, while in old
bees vitellogenin is partially accumulated in the organism [41]. The larval instars were
tended by nurse bees [42]. In this study, experimental colonies nurse bees tending larvae
of the post-treatment generation were exposed to oxalic acid. Therefore, differences in
vitellogenin content recorded in workers may be related to the care received during their
larval development. The exposure of tending nurses to oxalic acid may have caused the
decrease in vitellogenin content in the newly emerged post-treatment generation; thus, the
increase in vitellogenin content recorded in the nurse bees post-treatment generation may
be driven by a need to compensate for the initial low content towards royal jelly production.
Considering all the potential immunological and antioxidant effects of vitellogenin, it can
be hypothesized that a decrease in vitellogenin content below a physiological threshold may
negatively impact honey bee welfare. All three antioxidant enzymes investigated (SOD,
catalase, and glutathione S transferase) were not significantly affected by the anti-varroa
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combined treatment. This suggests that the generation following the treatment did not
suffer drastic effects in terms of oxidative stress.

5. Conclusions

In conclusion, the results obtained in this study provide an overview on the effects
of the anti-varroa treatment (i.e., queen caging and oxalic acid treatment) on the first post-
treatment generation of workers and drones. The results obtained in this investigation
suggest that the combined treatment had no negative effect on oxidative stress, while an
effect on the immune response of the post-treatment bee generation occurred. Combined
anti-varroa treatment caused a decrease in glucose oxidase in drones and an age-dependent
variation in vitellogenin content in worker bees, with potential impact on bee welfare
resulting from a general weakness of the bee immune system and subsequent higher risk
of illness. Further investigations of the potential consequence of the decrease in glucose
oxidase in drones and of the variation in vitellogenin concentration in different worker
ages are desirable. In addition, further investigations to assess the physiologic effects of
enzymatic activity variation impacting the welfare of honey bees subject to queen caging
and oxalic acid treatment are also desirable.
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