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Simple Summary: The use of non-steroidal anti-inflammatory drugs (NSAIDs) has prolonged the
longevity and well-being of dogs with osteoarthritis and other painful conditions. However, this
treatment is also associated with diarrhea in dogs, but the pathogenetic mechanisms and possible
prevention strategies remain unknown. This study aimed to determine whether canine-obtained lactic
acid bacteria affect the frequency of diarrhea, fecal microbiota (dysbiosis index), and gastrointestinal
inflammation (assessed by calprotectin and S100A12/Calgranulin C) in dogs receiving NSAIDs.
Diarrhea occurred in 4/12 dogs (33%) receiving placebo and 1/10 dogs (10%) receiving canine-
obtained lactic acid bacteria (LAB), but this difference was not significant. The fecal dysbiosis index,
calprotectin, and S100A12 were not significantly different between dogs receiving NSAIDs and LAB
and dogs receiving NSAIDs and placebo. This study suggests that LAB is safe to use in NSAID-
treated dogs, but further studies are needed to determine its potential to ameliorate diarrhea and
gastrointestinal inflammation in dogs receiving NSAIDs.

Abstract: Non-steroidal anti-inflammatory drugs (NSAIDs) may cause enteropathy in dogs and
probiotics may be one option to prevent this. The objective of this study was to determine whether
the administration of canine-obtained lactic acid bacteria (LAB) has an effect on the frequency of
diarrhea, the composition of the fecal microbiota, and/or markers of gastrointestinal inflammation in
dogs receiving NSAIDs when compared to dogs given NSAIDs and a placebo. A total of 22 dogs
treated with NSAIDs for various clinical indications were enrolled in a seven-day randomized,
double-blinded placebo-controlled interventional study. Dogs were randomized to receive either
placebo or LAB, a product containing Limosilactobacillus fermentum, Lacticaseibacillus rhamnosus, and
Lactiplantibacillus plantarum. Fecal samples were collected on days one and seven. The fecal microbiota
was evaluated using the fecal dysbiosis index (DI) and individual bacterial taxa. Fecal calprotectin (CP)
and S100A12/Calgranulin C concentrations were used as markers of gastrointestinal inflammation.
There was a difference in frequency of diarrhea between groups, with it affecting 4/12 dogs (33%) in
the placebo group and 1/10 dogs (10%) in the LAB group, but this difference did not reach statistical
significance (p = 0.32). There was a correlation between S100A12 and CP (p < 0.001), and Clostridium
perfringens correlated with S100A12 (p < 0.015). Neither treatment significantly affected S100A12
(p = 0.37), CP (p = 0.12), or fecal DI (p = 0.65). This study suggests that LAB is a safe supplement to
use for short-term treatment in NSAID-treated dogs, but further studies are needed to determine its
potential to prevent NSAID-induced enteropathy in dogs.
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1. Introduction

Non-steroidal anti-inflammatory drugs (NSAIDs) are the most commonly prescribed
analgesics in veterinary medicine [1]. The introduction of NSAIDs has prolonged the
longevity and well-being of dogs with osteoarthritis and other painful conditions [2].
However, treatment with NSAIDs may have side effects, most commonly involving the
gastrointestinal (GI) tract [3,4]. NSAID-induced gastric ulcerations are related to the
decreased perfusion of the gastric mucosa due to a lack of prostaglandins, followed by
damage through the actions of gastric acid [4]. However, NSAID-induced lesions may also
occur in the lower part of the GI tract where other mechanisms are involved. Indeed, a
study using video capsule endoscopy documented that the majority (10/12, 83%) of dogs
receiving long-term NSAID treatment had GI lesions involving the distal part of the small
intestine [5]. The mechanisms behind these GI lesions include alterations in the adherence
and mucosal invasion of intestinal microbes and intestinal dysbiosis [6]. If dysbiosis plays a
role in NSAID-induced GI lesions, the modulation of the intestinal microbiota may reduce
such side effects [6,7].

Several studies suggest that the intestinal microbiota may have an impact on NSAID-
induced side effects in the GI tract [8–10]. For example, germ-free animals are resistant
to NSAID-induced enteropathy. Facultative anaerobic bacteria, such as Escherichia coli,
Klebsiella spp., and Proteus spp., identified in rats were reported to contribute to ulcer
formation, whereas Lactobacillus spp. and Bifidobacterium spp. were found to prevent their
development, possibly by repressing the establishment of ulcer-associated bacteria [11].
The degree of intestinal dysbiosis can be evaluated using the fecal dysbiosis index (DI),
which is a mathematical algorithm based on the results of quantitative PCR (qPCR) assays
including seven key bacterial taxa (Faecalibacterium spp., Turicibacter spp., Streptococcus spp.,
E. coli, Blautia spp., Fusobacterium spp., and Clostridium hiranonis) [12].

In dogs with chronic enteropathy, biomarkers suggestive of GI inflammation include
fecal calgranulin C (S100A12) and calprotectin (CP) [13]. In dogs with chronic inflam-
matory enteropathy, fecal S100A12 and CP have been shown to correlate with clinical
disease [14,15]. Probiotics are live microorganisms consumed orally to promote a healthy
gut state [16]. Studies in humans and laboratory rodents have shown that administration of
probiotics together with NSAIDs is seen as one option to reduce the risk of NSAID-induced
gastroenteropathy [17–19], although one study in rats did not find favorable effects of
combining NSAIDS with probiotics [20]. To the best of the authors’ knowledge, no previous
studies have evaluated the effects of lactic acid bacteria or probiotics in dogs treated with
NSAIDs.

In this study, we aimed to evaluate the frequency of diarrhea, markers of GI inflamma-
tion (fecal CP and S100A12) and DI in NSAID-treated dogs administered LAB compared to
those administered a placebo. We hypothesized that NSAID-treated dogs receiving LAB
would have less diarrhea, lower fecal CP and S100A12 concentrations, and a lower fecal DI.

2. Materials and Methods
2.1. Animals

The study protocol was reviewed and approved according to the ethics committee
guidelines at the Faculty of Veterinary Medicine, Norwegian University of Life Sciences
(NMBU) (approval number: 14/04723-63). Written informed consent was obtained from
all dog owners before participation, and they were informed that their participation in the
study was voluntary.

Client-owned dogs initiating NSAID treatment regardless of the indication for treat-
ment were included in the study. The type of NSAID used was at the veterinarian’s
discretion. However, dogs were not included if NSAIDs had been administered within
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the last three months prior to inclusion in the study. The dogs were fed their usual diets
consisting of various commercial dry foods and were not restricted to any specific diet
throughout the study trial. Any episodes of hyporexia/anorexia were reported. One dog in
the LAB group and one dog in the placebo group received antibiotics (amoxicillin) as part
of the treatment plan to manage their conditions. None of the dogs received proton pump
inhibitors (PPIs).

2.2. Lactic Acid Bacillus (LAB) and Placebo Products

The LAB was designed to contain lactic acid bacteria that had been cultured from
healthy dogs [21] and consisted of Limosilactobacillus fermentum, Lacticaseibacillus rhamnosus,
and Lactiplantibacillus plantarum fermented in milk. The placebo product was powdered
micro-crystallized cellulose. Dog owners were instructed to administer 1 teaspoon (∼5 g)
LAB/placebo (for dogs weighing > 3 kg) or 1

2 teaspoon (∼2.5 g) LAB/placebo (for dogs
weighing < 3 kg) once daily, which for LAB corresponded to 6.2 × 108 and 3.1 × 108
colony-forming units (CFU), respectively, of each of the bacteria. The powder was either
sprinkled over the food or diluted in water and given orally by syringe.

2.3. Study Design

The study was a seven-day randomized double-blinded placebo-controlled interven-
tional trial (Figure 1). Dog owners were instructed to record their dog’s appetite, fecal
consistency, and any episodes of emesis daily during the seven-day trial period. Fecal
consistency was recorded as either watery, loose, normal, or hard. The term “diarrhea” was
used if the fecal quality was watery. All dogs were randomized to receive either LAB or
placebo for seven days. The randomization process was performed by block randomization
using a block size of six (random.org). In dogs that developed GI side effects, NSAID
treatment was discontinued if deemed necessary by the attending veterinarian.
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Figure 1. Overview of the study design. Dogs were randomized to receive either LAB or placebo
during a seven-day interventional trial. Fecal samples were obtained on days one (D1) and seven
(D7) of NSAID plus LAB or NSAID plus placebo treatment. The second fecal sample was taken on
the last day of NSAID treatment in dogs that discontinued the study due to developing diarrhea.
Fecal consistency was recorded daily throughout the study.

Fecal samples were collected on the first day of the study (day, D1) and at the end
of the study (day, D7). When diarrhea required the discontinuation of NSAID treatment,
the second fecal sample was collected on the last day of treatment. Fecal samples were
collected immediately following natural defecation. The sample was further divided into
two aliquots deposited into sterile plastic containers and frozen immediately, either in the
owner’s home freezer (−20 ◦C) and then transported on dry ice for storage at −80 ◦C at
the central storage unit, or frozen immediately at −80 ◦C. Fecal samples were sent to the
Gastrointestinal Laboratory at Texas A&M University (TAMU) on dry ice to measure fecal
CP and S100A12 concentrations and determine the fecal DI.

2.4. Microbiota Analyses

The fecal microbiota was evaluated based on the fecal DI [12] using quantitative PCR,
as described previously [22]. DI > 2 indicates intestinal dysbiosis and values between
0 and 2 were considered equivocal. We also quantified fecal abundances of Clostridium
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perfringens [23] and Lactobacillus spp. [24] using qPCR. Briefly, fecal DNA was extracted
using the QIAmp PowerFecal Pro DNA KIT (Qiagen) and an automatic extraction system
(Thermo KingFisher Flex Magnetic Particle Purification 96 PCR Isolation system), following
the manufacturers’ instructions. The qPCR assays were performed using a Bio-Rad C1000
Touch Thermal Cycler (Bio-Rad Laboratories, California, USA) with the following protocol:
initial denaturation at 98 ◦C for 2 min; 35 cycles with denaturation at 98 ◦C for 3 s; and
annealing for 3 s. All samples were run in duplicates and the average of the two samples
was used for further analyses. The qPCR results were analyzed using the Bio-Rad CFX
Maestro 1.1 software (Bio-Rad Laboratories). The qPCR data for the individual bacterial taxa
(Faecalibacterium spp.; Turicibacter spp.; Streptococcus spp.; E.coli, Blautia spp.; Fusobacterium
spp., Clostridium hiranonis, Clostridium perfringens, and Lactobacillus spp.) were normalized
to the qPCR data for total bacteria [22].

2.5. Markers of Gastrointestinal Inflammation

Fecal CP concentrations were measured by a fully analytically validated species-specific
sandwich ELISA, as described previously [15,25], and reported as ng/g [26] with the current
reference interval (RI) used at the Gastrointestinal Laboratory at Texas A&M University, TX,
USA (0–961 ng/g). Fecal S100A12 concentrations were measured using a fully analytically
validated species-specific in-house sandwich ELISA with an RI of 2–484 ng/g [27,28].

2.6. Statistical Analyses

Statistical analyses were performed using Prism v8, GraphPad Software Inc, San
Diego, CA, USA, and R software v. 2021.9.1.372 (RStudio Team (2021). Rstudio: Integrated
Development for R. Rstudio, PBC, Boston, MA, USA URL http://www.rstudio.com/,
accessed on 26 March 2021). Due to unequal variances between the groups, a Welch’s
t-test was used to test for significant differences from D1 to D7 for S100A12, CP, individual
bacterial taxa, and DI between the LAB group and the placebo group. Pearson’s product-
moment correlation tested the correlation between inflammatory markers and bacterial
taxa. Fisher’s exact test was used to test for differences in the frequency of diarrhea between
the LAB and placebo groups during the study period. A principal component analysis
(PCA) was conducted on the differences between D1 and D7 for fecal DI, bacterial taxa,
fecal CP, and fecal S100A12, using the functions “prcomp” and “autoplot” in the ggfortify
package in R. Statistical significance for all tests was set at p < 0.05.

3. Results
3.1. Demographic and Clinical Factors

A total of 22 dogs were enrolled in the study, of which 10 dogs received LAB and
12 received placebo. The study population consisted of dogs of various breeds, both sexes,
and different ages. Dogs in the LAB group were between 4 months and 14 years of age
with a median of 6 years, while dogs in the placebo group were between 1 and 10 years of
age with a median of 5.9 years (Table 1). The dogs received various commercial diets and
one dog in each group received an antibiotic (amoxicillin). However, as detected by Cook’s
distance, this did not influence the final result.

Robenacoxib was used in 7 out of 10 dogs (70%) in the LAB group and 8 out of 12 dogs
(66%) in the placebo group, whereas meloxicam was given to 2 out of 10 (20%) in the LAB
group and 3 out of 12 (25%) in the placebo group. The type of NSAID being administered
was not recorded for one dog in the LAB group and one dog in the placebo group. The
reason for NSAID prescription was an orthopedic condition in 3/10 dogs (30%) in the LAB
group and 3/12 dogs (25%) in the placebo group. A surgical procedure under general
anesthesia had been performed in 8/10 dogs (80%) in the LAB group and 10/12 dogs (83%)
in the placebo group. Of these dogs, diarrhea occurred in 1/8 (12.5%) in the LAB group
and 3/10 (30%) in the placebo group.

http://www.rstudio.com/
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Table 1. Overview of demographic factors, treatments, and occurrence of diarrhea in dogs included
in the study.

Test Product Breed Age (Years) Sex Anesthesia Reason for
NSAID Treatment

Name of
NSAID

Treatment *

Occurrence
of Diarrhea

Discontinued
Treatment

Placebo Finnish
Lapphund 3 F yes Removal of benign

skin tumor Robenacoxib yes no

Placebo
German

Short-haired
Pointer

3 F yes Removal of benign
skin tumor Robenacoxib no no

Placebo Pug 6 M yes Dental procedure Robenacoxib no no

Placebo
Cavalier

King Charles
Spaniel

4 M no Benign prostate
hypertrophy Robenacoxib yes no

Placebo Mixed breed UN F yes Mastectomy Meloxicam yes yes (day 4)

Placebo Pointer dog 2 F yes Pyometra surgery Meloxicam no no

Placebo Miniature
Dachshund 10 F no Osteoarthritis Meloxicam no no

Placebo Dachshund 8 F yes Hemilaminectomy UN no no

Placebo Mixed breed 10 F yes Mastectomy Robenacoxib no no

Placebo Cocker
Spaniel 1 F yes Patella luxation

surgery Robenacoxib yes yes (day 3)

Placebo Jack Russel
Terrier 8 F yes Hemilaminectomy Robenacoxib no no

Placebo
Danish–
Swedish
Farmdog

10 F yes TPLO surgery Robenacoxib no no

LAB Alaskan
Malamute 2 M yes Dental procedure Robenacoxib no no

LAB Cocker
Spaniel 2 M yes Castration Robenacoxib no no

LAB Shih Tzu 4 F yes Pyometra surgery Meloxicam no no

LAB Finish
Lapphund 10 M yes Removal of benign

skin tumor UN no no

LAB Pomeranian 0.3 M yes Bone fracture
surgery Meloxicam no no

LAB English
Setter 10 F yes Removal of benign

skin tumor Robenacoxib no no

LAB English
Bulldog 7 F yes Pyometra surgery Robenacoxib yes yes (day 3)

LAB Alaskan
Husky 14 F no Osteoarthritis Robenacoxib no no

LAB Medium
Poodle 6 M yes Cystotomy due to

urolithiasis Robenacoxib no no

LAB Drentsche
Patrijshond 5 F no

Diffuse pain
related to the

skeleton
Robenacoxib no no

Abbreviations: UN, not recorded; LAB, lactic acid bacteria treatment; TPLO, tibial plateau leveling osteotomy.
* The doses were calculated based on the individual dog’s body weight and given enterally once daily. Dogs
undergoing surgery were treated with parenteral NSAIDs for the first 24–48 h.

Of the dogs receiving placebo, 4/12 dogs (33%) developed diarrhea, while this only
occurred in 1/10 dogs (10%) in the LAB group. However, this difference did not reach
statistical significance (Fisher’s exact test, odds ratio: 0.24, p = 0.32). The NSAID treatment
was discontinued because of the severity of diarrhea in one of the dogs receiving LAB
and two of the dogs receiving placebo. Two dogs receiving LAB vomited on D2 and D7,
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respectively, whereas one dog receiving placebo vomited on D7 after initiating NSAID
treatment. The dogs had normal appetite throughout the study.

3.2. PCA Analyses

The PCA analysis on the change from D1 to D7 revealed no clear distinction between
dogs receiving LAB vs. placebo, but indicated that changes in fecal CP and S100A12
concentrations between D1 and D7 in the individual dogs are strongly associated with the
abundances of C. perfringens. These span the principal component 2 (PC2), which explains
22.3% of the variation in our dataset. The bacterial taxa, except for E. coli, can be interpreted
as in contrast with the fecal DI, and span the PC1, explaining 29.3% of the variation in the
data (Figure 2). The correlation between fecal S100A12 and CP was significant (Pearson’s
correlation coefficient = 0.63, p < 0.001). The abundance of C. perfringens correlated signifi-
cantly with S100A12 (Pearson’s correlation coefficient = 0.510, p = 0.015), but not with CP
(Pearson’s correlation coefficient = 0.379, p = 0.084).
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Figure 2. PCA plot showing the changes in the different variables from D1 to D7 in individual dogs
given LAB vs. placebo. Fecal CP and S100A12 are strongly correlated and span out on the principal
component (PC) 2, which explains 22.3% of the variation in the data, whereas all the bacterial taxa,
except E. coli, span out on the PC1, explaining 29.3% of the variation in the data.

3.3. CP and S100A12 Concentrations, DI and Bacterial Taxa in Dogs Receiving LAB vs. Placebo

The CP concentration in the three dogs with the highest levels at D1 in the LAB group
reduced their levels to below 50 ng/g at D7. The same three dogs also had the highest
S100A12 concentration at D1, which dropped to a level below 20 ng/g at D7. In the placebo
group, five dogs had a CP concentration above the RI (0–961 ng/g) at D7 and the same five
dogs had the highest S100A12 concentrations at D7 (Figure 3). There were no significant
differences in the levels of S100A12 (p = 0.37) or CP (p = 0.12) between dogs receiving LAB
vs. placebo.

Neither LAB nor placebo had any significant effect on DI (p = 0.65) or any of the
bacterial taxa during the study period (all p > 0.05) (Figure 4).
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4. Discussion

As far as the authors are aware, no previous studies have investigated the potential
protective effects of orally administered canine-obtained lactic acid bacteria or probiotics
in dogs given NSAIDs. Among the dogs given the placebo, four dogs (33%) developed
diarrhea compared to only one dog (10%) in the LAB group. This difference was not
significant and indicates that LAB is safe to use in dogs. However, larger studies are needed
to determine whether LAB can prevent diarrhea in dogs given NSAIDs. We found that
S100A12 and CP were strongly correlated, as was also demonstrated in a previous study of
dogs with chronic inflammatory enteropathy [29]. Five dogs given placebo had increased
CP concentrations above the upper limit of the RI at D7, whereas all dogs given LAB had
negligible CP concentrations at D7. Fecal CP has been shown to be a sensitive screening
marker for NSAID-induced enteropathy in human patients [30], even with short-term
treatment (seven days) [31]. Moreover, a study showed that humans treated with NSAIDs
and probiotics had decreased fecal CP concentrations compared to those given NSAIDs
and placebo [32]. However, another study did not find a beneficial effect of probiotics in
humans given NSAIDs [33].

As for CP, S100A12 has also been shown to be increased in dogs with chronic in-
flammatory enteropathy [29], and has been used in humans to separate patients with
inflammatory bowel disease from those with irritable bowel disease [34]. S100A12 may
therefore potentially be useful as screening marker for NSAID-induced enteropathy. We
found that the changes in S100A12 concentrations and C. perfringens abundance between
D1 and D7 were significantly correlated, suggesting that this bacterial taxon may play a
role in NSAID-induced enteropathy. Its role in inflammation is not a new phenomenon,
as C. perfringens is associated with acute hemorrhagic diarrhea in dogs [35–37], where its
pathogenetic potential is linked to the production of netE and netF toxins [38].

Previous studies have found that the DI can change in response to diet [39,40], and it
can be useful for differentiating dogs with chronic enteropathy from healthy dogs [12]. A
previous study of dogs with diarrhea found that the LAB product used could resolve diar-
rhea and reduce fecal abundances of C. perfringens and Enterococcus faecium [41], indicating
that LAB may potentially cause changes in the bacterial populations and improve gut health.
Although we did not find any significant change in DI between the groups, there might
be changes in the microbiota composition that would be detected using high-throughput
sequencing methods and, ideally, DNA shotgun sequencing.

There was no significant change in the fecal abundance of C. hiranonis, a key bacterium
in bile acid metabolism, in dogs receiving LAB vs. placebo. Interestingly, studies in
rodents and cell culture systems have found that the enterohepatic circulation of NSAIDs
is associated with higher levels of secondary bile acids, which can damage intestinal
cells [42,43]. However, whether the dogs in this study also had changes in absolute fecal
primary and secondary bile acid concentrations was not determined.

Dogs receiving LAB in our study did not have a higher fecal abundances of Lacto-
bacillus than the dogs in the placebo group. Previous studies have demonstrated higher
numbers of these bacteria in fecal samples from dogs given LAB, and the modulated
intestinal microbiota was characterized by an increased number of other variants of lactic-
acid bacteria [44]. It is possible that NSAID-induced changes in the composition of the
microbiota take longer to develop, albeit short-term NSAID use was found to change
the intestinal microbiota in humans and rats [45]. Furthermore, in our study, dogs were
initiated on LAB and NSAID simultaneously. It is possible that the LAB product would
have had a more pronounced effect if given prior to initiating NSAID treatment. A recent
study demonstrated that mice given oral probiotics containing lactic acid bacteria five
days before NSAID treatment showed enrichment of colonic anaerobes and Lactobacilli,
whereas the total abundance of Enterobacter decreased and ameliorated GI inflammation
was detected compared to the controls [19].

We cannot exclude a confounding effect of general anesthesia, surgery, and/or other
medications contributing to the development of GI signs, as we could not include a control
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group of dogs not receiving NSAIDs due to ethical constraints. However, no differences
were detected between the groups of dogs with diarrhea that underwent a surgical pro-
cedure (1/3 dogs in the LAB group and 3/9 dogs in the placebo group). Thus, NSAID
treatment may exacerbate GI signs and potential GI lesions in these dogs, regardless of the
initiating factors. The dogs in our study were fed different diets; thus, we cannot rule out
the influence of diet on the dogs’ microbiota composition. However, all dogs were fed com-
mercial dry food diets, no dogs had a change of diet during the trial period, and no dogs
ate raw meat or home-cooked diets which may influence microbiota composition [46,47].

NSAID-induced enteropathy may not be associated with clinical signs, and diar-
rhea may not be a precise indicator for this condition [5]. In humans, clinical signs of
NSAID-induced enteropathy are nonspecific and, in addition to diarrhea, may include
signs of iron-deficiency anemia, GI protein loss, indigestion, constipation, and abdominal
pain [6], but affected patients can also be asymptomatic [48]. Therefore, further studies
are needed to determine how NSAID-induced enteropathy manifests in dogs. For this
purpose, capsule endoscopy can be used to identify gastrointestinal lesions in NSAID-
treated dogs. These findings should be correlated with clinical signs such as diarrhea,
vomiting, anorexia/hyporexia and weight loss, and inflammatory markers (calprotectin
and S100A12). It is also unknown which type of probiotic bacteria and at what dose would
be most beneficial to use [7].

Notably, as this work was based on a small number of dogs, a larger study is required
to document the effect of lactic acid bacteria on GI health in dogs.

5. Conclusions

This study did not find a significant difference in the frequency of diarrhea or change
in the DI or individual bacteria taxa in NSAID-treated dogs given LAB vs. placebo. Further
studies are needed to evaluate the potential of lactic-acid bacteria to ameliorate adverse GI
effects induced by NSAIDs.
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