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Simple Summary: In this review we seek to outline the role of new technologies in biomarker
discovery, particularly within the veterinary field and with an emphasis on ‘omics’, as well as to
examine why many biomarkers-despite much excitement-have not yet made it to clinical practice.
Further we emphasise the critical need for close collaboration between clinicians, researchers and
funding bodies and the need to set clear goals for biomarker requirements and realistic application
in the clinical setting, ensuring that biomarker type, method of detection and clinical utility are
compatible, and adequate funding, time and sample size are available for all phases of development.

Abstract: New biomarkers promise to transform veterinary practice through rapid diagnosis of
diseases, effective monitoring of animal health and improved welfare and production efficiency.
However, the road from biomarker discovery to translation is not always straightforward. This
review focuses on molecular biomarkers under development in the veterinary field, introduces
the emerging technological approaches transforming this space and the role of ‘omics platforms in
novel biomarker discovery. The vast majority of veterinary biomarkers are at preliminary stages
of development and not yet ready to be deployed into clinical translation. Hence, we examine the
major challenges encountered in the process of biomarker development from discovery, through
validation and translation to clinical practice, including the hurdles specific to veterinary practice and
to each of the ‘omics platforms–transcriptomics, proteomics, lipidomics and metabolomics. Finally,
recommendations are made for the planning and execution of biomarker studies with a view to
assisting the success of novel biomarkers in reaching their full potential.
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1. Introduction

Veterinary medicine is a fast-growing field and arguably has effectively embraced
cutting edge developments arising in other health fields, such as biomedicine. Veterinary
professionals hold considerable responsibility for the quick diagnosis, treatment, disease
prevention, and nutrition of animals, working towards both enhanced animal welfare and
human public health outcomes [1,2]. Only a few decades ago, veterinary disease diagnosis
mainly relied on clinical signs, with confirmation via a limited repertoire of laboratory tests
and microbiological cultures, with imaging via radiography and ultrasound incorporated
more recently. Such confirmatory diagnoses often take several days and may require
outsourcing or referral and specialist expertise. This not only delays treatment but in the
case of infectious diseases, time to diagnosis is critical as spread of a disease can result
in mass culls and huge economic losses, with widespread implications for industry and
public health [3]. To address those welfare and economic issues, routine, robust and early
diagnostic tests are increasingly being developed and incorporated into practice. Thus,
biotechnology is now playing a major role in the veterinary field, with potential applications
extending to animal reproduction and the diagnosis and treatment of animal diseases [4].
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While the utility of new biotechnologies for veterinary diagnostics is now recognised and
there are several examples of successful incorporation into routine practice, there persist
numerous challenges in biomarker identification and translation to clinical use.

The origins of the biotechnology field stem from the discovery of microbiology and
cellular biology in the twentieth century, including the development of vaccines, sera and
antibiotics, as well as selective breeding and cross-breeding of plants and animals. At this
time, the detection of pathogens also became possible, mainly based on microbial culture
methods, biochemical tests, and microscopy. These methods can be time consuming and
require specific equipment and expertise, driving a need for rapid, accurate and sensitive
diagnostic tests to detect disease pathogens [1,4]. More recently, with the development of
molecular biology, the realm of biotechnology has expanded greatly to include DNA manip-
ulation, gene engineering [5] and a host of research, agricultural and medical applications.
A major milestone was the sequencing of the human genome. Along with ongoing charac-
terisation of genomes of other species, this has facilitated an era of biotechnology where
mass spectrometry (MS)-driven “omics” platforms—proteomics, lipidomics, metabolomics,
transcriptomics, epigenomics and genomics—allow the generation of extensive datasets in
almost any tissue, cell or species [6]. These new technologies are continuously improving
in capability and becoming more accessible, revealing vast amounts of information about
the molecular properties of biological systems [4,6].

The use of biomarkers has been identified as an increasing trend in the animal health
industry and has been applied to the evaluation of a variety of health parameters. In
particular, it is useful in clinical applications such as diagnosing illness, predicting and/or
tracking the response to treatment, and determining the toxicity or failure of an organ.
The term biological marker first appeared in the literature in the late 1960s [7]; the term
“biomarker” is a shortened version that became more commonly used by the 1990s, albeit
in various and often inconsistent ways [8]. Though there are several definitions for the term
“biomarker” in human medicine [7,9–11], the most relevant and applicable to veterinary
medicine is the BEST glossary broadened definition of biomarkers and related terms by the
animal health industry [8]. The definition is “A defining characteristic that is measured as
an indicator of normal biological processes, pathogenic processes, or biological responses to
an exposure or intervention, including therapeutic interventions”. This definition classifies
biomarkers into types as “molecular, histologic, radiographic, or physiologic characteris-
tics”. Further, seven categories of biomarkers are proposed: susceptibility/risk biomarker,
diagnostic biomarker, monitoring biomarker, prognostic biomarker, predictive biomarker,
pharmacodynamic/response biomarker, and safety biomarker [12]. In this review, we focus
on molecular biomarkers, and in particular, the role of emerging technological platforms in
biomarker discovery and translation.

Opportunities to develop new biomarkers can arise in different ways; for example, a
planned search for a biomarker for a specific disease, a chance finding of a marker (protein,
lipid, metabolite, etc.) that could be used as the target for a new biomarker test, or a
comparison to existing biomarkers in human medicine [13,14]. Many of the biomarkers
typically included in standard haematology and biochemistry profiles have been known for
many years and were adapted from human medicine [15–17]; the same applies for many of
the more recent additions to molecular diagnostics, as discussed later in this review. With
the advent of new technologies, it is now possible to conduct large-scale studies directed
specifically at identifying novel biomarkers capable of predicting or diagnosing a given
condition. Currently, biomarker discovery in the veterinary field is increasing, in tune with
a new era of precision and high-quality practice in veterinary care. While older biomarkers
tend to focus mostly on diagnosing disease processes and organ dysfunction, more recently
there is an increasing trend in identifying markers for survival and response to treatment [8].
This is critical in cases where a disease or outcome is relatively uncommon but poses a
significant medical challenge because there is currently no method for early detection
of those diseases, and they are typically not diagnosed until patients have progressed
to the symptomatic stage, which reduces the chances of survival and reduces treatment
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efficacy [18]. Beyond pathological conditions, this also applies to other biological processes
of importance in animal management, reproduction, and husbandry, all of which contribute
to good animal welfare and public health. Therefore, we consider it is important to examine
the process of biomarker invention.

According to the review of Myers et al. [8], the most successful biomarker research
process involves first clearly identifying the clinical utility and target population, then
working backward and again forward in sequential steps to select and validate the putative
biomarker(s) along with the related analytical procedure(s). The flowchart given in Figure 1,
illustrates the steps involved in this process. Specifically in the veterinary field, new
diagnostic biomarkers are being developed for the early detection of disease, when it
may be reversible or more easily managed, and susceptibility/risk biomarkers are being
developed to identify animals with increased resistance or susceptibility to disease [8].
To develop these tests, blood, and body fluids such as urine, saliva, endometrial fluids
are utilised most often. As technological capabilities expand, molecular markers within
individual cells are also becoming feasible. When challenged with a particular biological
change or disease, somatic cells secrete specific substances to the extracellular tissue or
body fluids. As such, changes in the concentration of the substance of interest can be
measured from those samples. Blood plasma tends to contain transudates from almost
all kinds of tissue as it circulates the entire organism and can be easily collected from the
patient. For these reasons, easily and routinely obtained samples from the patients such as
blood plasma and serum are most commonly used for diagnostic purposes [19–21].

A range of techniques are currently being used to identify novel biomarkers and
validate their predictive value, ranging from the more established science of enzymatic
tests to the emerging technology of nanoscience and “omics” approaches that encompass
multivariate large-scale analysis at the level of DNA, miRNA, RNA, proteins, lipids, and
other metabolites. These techniques take a snapshot of the current state of cells, tissues,
or bodily fluids and find the best representative marker for the condition [22]. The omics
platforms are a relatively recent addition to the biomarker discovery toolset, and whilst
they have facilitated remarkable discovery power in identifying potential biomarkers, the
majority of these have yet to become routinely used, widely available clinical tools. In this
review, we examine the roles of the omics platforms in veterinary biomarker identification,
and the challenges that lay on the path from discovery to clinical application.
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Figure 1. Visual summary of proposed workflow for effective biomarker discovery and validation as
discussed in this review [10,23–33].

2. The Omics Platforms and Their Role in Biomarker Discovery
2.1. Genomics

Although many factors influence one’s health and sickness, it is apparent that genetic
heritage is a significant contributor. Examining this genetic background is crucial for
discovering particular mutations and/or variations that underpin pathways that differenti-
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ate between health and sickness [6,34]. Further, both illness risk and treatment response
are influenced by genetic variation. Genome-wide association studies have enabled the
identification of genetic variants that contribute to the pathophysiology of complex ge-
netic diseases [35], as well as the detection of several pharmacogenetic markers [36,37]. A
genome-wide association study (GWA study, or GWAS), also known as whole genome
association study (WGA study, or WGAS), is an observational study of a genome-wide set
of genetic variants in different individuals to detect if any variant is associated with a trait
of interest.

DNA biomarker tests, for example, can be used to decide if treatment can be safely
postponed for a time of watchful waiting in the case of prostate cancer. If the tumour is
found to be devoid of genes that cause an aggressive form of cancer, it may remain stable
for decades, obviating the need for major surgical removal followed by radiotherapy or
chemotherapy. Genetic profiles, on the other hand, may also be utilised to determine pre-
ventive treatments [38]. Individual genetic testing is used to decide on specific, sometimes
extremely radical interventions such as prophylactic surgery in some cases of hereditary
cancer [38]. Biomarker based on DNA Single Nucleotide Polymorphism (SNPs), Short
Tandem Repeats (STRs), deletions, insertions, and other DNA sequence variations are
examples of germline biomarkers. Compared to expression-based indicators, DNA methy-
lation biomarkers have numerous important advantages. For example, even if changes
are present in a small number of cells, they are easily amplifiable and detectable using
polymerase chain reaction (PCR)-based techniques [39]. DNA methylation is a highly
stable marker that may be identified in a wide range of minimally invasive materials,
including saliva, plasma, serum, urine, sperm, and faeces [40]. Many DNA biomarkers for
cancer in human medicine are now commonly used in commercial test kits, highlighting
their successful application after initial identification as biomarkers [41,42]; e.g., VIM gene
(vimentin) is used for diagnosis of colorectal cancer in a commercially available kit known
as “Cologuard” and marketed by Exact Sciences [43].

According to a review of the literature by Myers, Smith and Turfle [8], the most recent
significant advances in disease susceptibility/risk, diagnostic, and prognostic biomarkers
for veterinary clinical medicine have occurred in the areas of genomic markers of disease
resistance or susceptibility, as well as diagnostic, prognostic, and monitoring biomarkers
for kidney disease, cardiovascular disease, stem cell biology [44], and cancer. The genome
sequencing of domestic animals, such as the horse, cow, dog, and cat has aided rapid
progress in the identification of the genetic basis for disease susceptibility and resistance [8].
Disease genetic markers are fast being identified, and genetic testing for determining disease
risk in both companion and livestock species is becoming available. The discovery of genetic
markers linked to the development of mast cell malignancies in golden retrievers [45],
dilated cardiomyopathy in Doberman pinschers [46], lavender foal syndrome in Arabian
foals [47], and cholesterol insufficiency in Holstein cattle serve as a few recent examples [48].

The availability of tests to discover genetic biomarkers of disease has the potential to
improve the health of companion and livestock animals and influence breeding decisions,
as well as contribute to a better knowledge of diseases that affect humans [49]. For livestock
species, genetic indicators of immune system function and infectious disease susceptibility
are being created, which should improve animal health and potentially reduce dependency
on some therapeutic medications, such as antimicrobials [50]. In the United States, progress
has been made in identifying genetic biomarkers of vulnerability to bovine respiratory
illness, one of the most frequent (and possibly fatal) infectious diseases in cattle [51].

DNA sequencing technologies are well-established meaning that genetic biomark-
ers benefit from a straight-forward validation process and relatively low costs of assay
development once a suitable biomarker has been identified. Requirements for sample
drawing, handling, and storage are minimal, and equipment for testing tends to be widely
available. On the other hand, genetic biomarkers are mostly limited to screening tests and
general predictions about disease susceptibility rather than more specific clinical endpoints
and cannot be used in more dynamic situations since they are limited to examining the
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animal’s static genetic code. Thus, biomarkers emanating from the newer ‘omics platforms
have greater scope for generating an accurate and specific profile of health or disease.
Nevertheless, continued evolution in the sensitivity and depth of sequencing technologies
and ongoing investment into GWAS will undoubtedly continue to generate efficient genetic
tests to improve animal welfare, particularly at the population level.

2.2. Transcriptomics

The transcriptome lies immediately downstream of the genetic code and captures
a more responsive state than does DNA sequencing, by providing a profile of genes
being actively transcribed and regulated at a given timepoint. The transcriptome consists
of all the total complements of ribonucleic acid (RNA) transcripts in a cell, tissue or
body fluid [6], comprising both coding and non-coding RNAs. Of total RNAs, coding
transcripts (messenger RNA; mRNA) comprise 1–4% while non-coding transcripts make up
the remaining >95% and include ribosomal RNA, transfer RNA, small nuclear RNA, small
interfering RNA, microRNA and long-non-coding RNA [14,33,34]. RNA reflects cellular
states by delivering genetic information and regulatory information by transcriptional and
post-transcriptional regulation [52,53]. Rapid advances in RNA biomarker research have
led to creation of a significant variety of high-performance RNA-detection technologies in
recent years [54]. Molecular biology techniques such as quantitative reverse transcription
polymerase chain reaction (RT-qPCR) [55,56], microarrays [57], and RNA sequencing [58]
are the methods used in these technologies. Next-generation sequencing technology has
recently made it possible to quantify RNA expression levels at the full genome level.
Increasing the depth of RNA sequencing now facilitates the detection of novel transcripts,
such as lowly expressed noncoding RNAs, and their modest expression fluctuations, with
high accuracy [59,60]. RNA biosensors, micro- and nanofabrication technologies, and
diverse readout techniques, such as electrochemical and optical transducers, have all
received a lot of interest in recent years [54].

The first well-studied type of RNA as biomarker is mRNA [61]. The study of mRNAs
provides direct insight into the gene expression characteristics of individual cells and tissues.
It allows the measurement of the presence/absence and quantification of a transcript,
assessment or prediction of protein isoforms and quantitative assessment of genotype
influence on gene expression using expression quantitative trait loci analyses (eQTL) or
allele-specific expression [6]. Accumulating data based on high-throughput sequencing
technology shows that diverse RNA molecules can serve as biomarkers for the diagnosis
and prognosis of various diseases, such as cancer [54]. Many cancer studies have explored
multi-gene expression patterns as a biomarker for clinical outcome [62]. PAM50, for
example, is a 50-gene panel that has been successfully used to classify breast cancer [63].
Another expression panel of 31 mRNAs linked to cell cycle progression was employed as a
prognostic marker to predict prostate cancer metastasis, recurrence, and risk [64].

In addition to mRNA, certain miRNAs play critical roles in cell proliferation, differ-
entiation, and death, and hence act as tumour suppressors or oncogenes [65]. It has been
observed that miRNA expression profiles can successfully distinguish poorly differenti-
ated tumour types [66]. Furthermore, reduced miR-21 expression was linked to a lower
hazard risk in individuals with pancreatic ductal adenocarcinoma after adjuvant therapy.
Moreover, miR-21 has been identified as a possible therapeutic target. Extracellular RNAs
(exRNAs) are emerging as non-invasive biomarkers for earlier cancer diagnosis, tumour
progression monitoring, and therapeutic response prediction, as they are detectable in
diverse bio-fluids such as serum, saliva, and urine [67].

RNA biomarkers are also valuable in distinguishing various diseases in veterinary
medicine. Dirksen, et al. [68] showed the ability to distinguish between parenchymal,
biliary, and neoplastic hepatobiliary diseases using a panel of microRNA consisting of
miR-21, miR-122, miR-126, miR-200c, and miR-222. Lecchi, et al. [69] have identified miRNAs
can serve as potential biomarkers for Brucella infection in water buffaloes (Bubalus bubalis).
The identified miRNAs were involved in regulating the transcription of genes related to
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the molecular pathogenesis of brucellosis. Further, they have identified miR-let-7f, miR-
151, miR-30e, miR-191, miR-150 and miR-339b extracted from vaginal fluids, which are
potentially useful biomarkers of Brucella infection. miRNAs also appear to be a very useful
tool in identifying different disease conditions such as osteochondrosis, rhabdomyolysis,
insulin resistance and osteoarthritis [70–72] according to the functional role of the identified
miRNAs in corresponding healthy tissues in horses [73,74].

In contrast to genome sequencing technology, accurate determination of RNA levels
often requires some form of amplification, a time-consuming sample pre-treatment proce-
dure, and the associated expense of appropriate equipment. Working with RNA is more
demanding due to its chemical instability, with the geometry of the molecule as a single
stranded polynucleotide being very susceptible to degradation reactions. Therefore, RNA
can easily be affected by oxidation and spontaneous changes of phosphodiester linkage
through transesterification. Special precautions must be taken when working with RNA
to address the high risk of contamination such as the ubiquitous presence of RNases [75].
Furthermore, because oligo(dT) primers are used for amplification, they frequently cannot
amplify RNA sequences without a poly(A) tail [76]. Moreover, to prevent sample het-
erogeneity caused by physiological and systemic changes in clinical samples, very high
sample volumes are required for sensing RNA biomarkers in body fluids [77]. The storage
of the samples is generally done at −20 ◦C, −80 ◦C or under liquid nitrogen, thus requiring
more sophisticated facilities for storage, transport and processing of samples [75]. Sev-
eral nanotechnology-based RNA sensing systems linked with optical and electrochemical
readouts have been developed as a result of extensive study to uncover relatively robust,
accurate, and effective methodologies. These methods provide simple sampling processes,
quick and cost-effective analysis, portability, label-free and amplification-free choices, and
portability [78–80]. Electrochemical approaches, for example, have demonstrated ultra-
high sensitivity and selectivity, as well as a high potential for multiplexed analysis in a
point-of-care platform [81,82]. However, the functioning of electrochemical RNA sensors is
still limited to proof-of-concept research, and various obstacles must be overcome before
these technologies may be used in typical clinical settings [54,76].

Although serum circulating RNAs are considered some of the most promising clinical
diagnostic or therapeutic biomarkers in both humans and animals, their diagnostic potential
in veterinary medicine remains to be fully explored [69]. Many of these studies provided
new and important insights into disease pathogenesis and further experiments involving
more animals are required to validate the potential use of RNAs in clinical diagnostics.

2.3. Proteomics

Proteins are the ultimate endpoint of transcription and translation of the genetic code
and are the workhorses of cells and tissues as they are responsible for carrying out the
biochemical and metabolic functions required for survival and homeostasis. This includes
the response to disease and various physiological states. A remarkably useful feature of
this biological cascade is that each protein is directly encoded by a corresponding gene and
can thus be unambiguously traced to a unique identifier based on its amino acid sequence.
Proteomic technologies, i.e., mass spectrometry (MS) and its adjuncts, take advantage of this
feature to generate profiles of hundreds to thousands of proteins reflective of specific cells,
tissues, fluids or biological states, known as proteomes. Many animal researchers [83–86]
are now exploiting the advances in proteomics [87,88] and directing its use to biomarker
discovery in the future. Being the phenotypic endpoint of any given biological process,
proteomes not only reveal mechanistic information about how biological responses operate
but also reveal high resolution, detectable differences that can be used as specific biomarkers
or treatment targets [89].

In proteomics, quadrupole mass spectrometry is most commonly used in conjunction
with time-of-flight (TOF) or Orbitrap analysers. Proteome identification and quantification,
protein–protein interactions (interactomics), organellar proteomics, post-translational mod-
ification detection, and many more applications have now become possible with advances
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in MS. Accordingly, this field is now well positioned to contribute significantly to trans-
lational medicine, notably in the identification and routine use of biomarkers. Although
MS-based proteomics is more sophisticated than antibody-based techniques, it exhibits
exceptional specificity of detection, and allows large scale screening and hypothesis-free
exploration to identify novel biomarkers. Meanwhile, antibody techniques remain most
accessible when seeking to detect a specific protein already identified as a biomarker or
protein of interest. The sensitivity of MS processes has improved dramatically, allowing
single-cell proteomics to become a reality. Proteomics has the extra benefit of allowing
researchers to study single cells while keeping the full spatial information of the cellular
environment. Furthermore, when compared to their equivalent mRNAs, there are far
more protein copies, making single-cell proteomics intrinsically more robust. Intercellular
dynamics such as receptor–ligand interactions between cells and their surroundings will be
immediately revealed by MS-based single-cell proteomics [89]. These techniques of single
cell proteomics will lead to identify pathways that are activated in therapy-resistant cells
and can provide biomarkers for cancer diagnosis and for determining patient prognosis.

Liquid chromatography and MS- based proteomics approaches are driving the devel-
opment of novel veterinary biomarkers [90]. Biomarkers linked with canine babesiosis,
such as apolipoproteins and vitamin D metabolism-related proteins, have been detected
in dogs [91]. These same biomarkers alongside several new possible proteins for treat-
ment monitoring of canine leishmaniosis have been reported in another investigation [92].
These biomarkers would be advantageous in a clinical setting because they are expected
to be quicker than the conventional diagnostic methods such as identifying organisms in
blood smears; it may also be possible that testing could be conducted in general practice
without the need for an expert to identify the organism in the blood smear. Treatment
monitoring biomarkers will help the owners to manage animals at home and inform the
vet rather than having the animal stay in hospital for monitoring, reducing stress and
costs of aftercare. Proteomic studies on feline biomarkers have also been conducted in
research on congestive heart failure due to primary cardiomyopathy [93]. The application
of proteomics in farm animal health has sparked considerable interest in biomarker re-
search, notably for subclinical but economically important diseases such as bovine mastitis,
where an on-farm biomarker test could be quite useful [94]. Tandem Mass Tag (TMT)
technology was applied for the first time for protein quantification using saliva to uncover
new biomarkers for stress in sheep, revealing six proteins as potential markers, including
those associated with hyperglycaemia—an immediate physiological response to stress [95].
In another application of proteomics, the cause of mortality in manatees following two sep-
arate mortality episodes was explored using a combination of 2D-DIGE (two-dimensional
difference gel electrophoresis) and shot gun proteomics in which isobaric tags for relative
and absolute quantification (iTRAQ) LC–MS/MS were used; with both techniques yielding
similar results including an increased quantity of complement C4 protein, which was
subsequently validated by immunoblotting [96]. To find biomarkers for early and late-stage
oral melanoma, benign oral tumours, oral squamous cell carcinoma and periodontitis in
dog using saliva, Ploypetch, et al. [97] used MALDI-TOF MS and LC-MS/MS and validated
the markers using immunoblot analysis. One of the identified proteins was sentrin-specific
protease 7 (SENP7), the expression of which significantly increased in oral squamous cell
carcinoma. Expression of TLR4, was also increased in late oral melanoma and oral squa-
mous cell carcinoma, compared with the control group. These studies represent but a
few examples of active proteomic research directed toward development of biomarkers
with significant welfare and economic impacts in the veterinary field. While the identified
protein markers show potential for rapid diagnosis of the respective conditions, they are
yet to be developed into clinically useful and commercially available diagnostic assays.

While proteomic platforms such as MS provide unparalleled capacity for discovery and
screening, validation still largely relies on antigen detection (immunoassay) techniques. The
latter also tend to be most practical in clinical scenarios. As such, numerous immunoassay
driven biomarkers have been developed or adapted from human medicine, including for
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renal disease, cardiovascular disease, and cancer. In veterinary cardiology, for example, for
the detection of primary heart disease or myocardial damage secondary to other diseases,
N-terminal pro-b-type (or brain) natriuretic peptides, and cardiac troponins have shown
diagnostic and prognostic clinical utility across a broad range of animal species [98–102].
Acute phase proteins (APPs) are also becoming more popular as indicators in canine
medicine, with Soler, et al. [103] demonstrating this principle with the development and
validation of two enzyme linked immunosorbent assay (ELISA) techniques for assessing
ITIH4 and haptoglobin (Hp) in dogs.

The most simple and common antigen detection technique is the ELISA [104,105]. One
prominent example is the recently developed bovine Pregnancy Associated Glycoproteins
(PAG) ELISA to detect pregnancy in cattle. Since the ELISA is more efficient than previously
existing Radioimmunoassay (RIA), the practicability of the PAG test was greatly enhanced.
Friedrich and Holtz [106] have discovered a competitive double antibody ELISA using a
polyclonal anti-PAG-IgG and an anti-rabbit-IgG raised in sheep for coating and application
of newly established ELISA to test its suitability for pregnancy detection by measuring
PAG in serum or milk. In their study, the ELISA proved to be an adequate and efficient
way of measuring PAG in maternal serum or milk and was a useful means of pregnancy
detection in cows.

Proteomics is currently at the forefront of biomarker development in both medical
and veterinary fields, and benefits from many well-established protein detection methods
that can be used downstream of discovery in clinical settings. While many proteins already
serve as useful clinical biomarkers, the path from discovery to application is not always
straightforward and some of the relevant challenges are discussed in subsequent sections
of this review.

2.4. Metabolomics

The term metabolomics became popular at the end of the 1990s to describe approaches
that aim to measure all the low molecular weight metabolites present within a cell, tissue or
organism during a genetic modification or physiological stimulus [107,108]. Proton nuclear
magnetic resonance (1H NMR) spectroscopy, gas chromatography–mass spectrometry
(GC–MS), and liquid chromatography–mass spectrometry (LC–MS) have all been employed
in conjunction with pattern recognition algorithms in this process [109]. In less than
two decades, proteomics and metabolomics have emerged as the functional continuation
of transcriptomics and have progressed swiftly thanks to advances in technology and
bioinformatics tools. While the proteome describes the set of enzymes, receptors and other
machinery responsible for carrying out biochemical processes, the metabolome depicts
the endpoint of those biochemical processes. Importantly, the metabolome may be a more
accurate molecular depiction of phenotype and current state of health or function than any
genome, transcriptome, or proteome-based biomarker because of its close relationship with
phenotype and its real time reflection of the state of health of a patient [110]. Metabolites
change faster and more dramatically than do genes or proteins, and those changes may be
quantified in absolute terms, but genes and proteins show activity changes in a different
way than concentration changes. Further, as metabolites can be assigned to metabolic
pathways, their changes can usually be explained physiologically, enhancing their value.

In dairy cattles, biomarkers are being sought for dysfunction in key metabolic phases,
for example the ‘transition period’ [111]. This is the period three weeks prior to calving
and the three weeks following calving and is associated with major metabolic changes
that transition from pregnancy to lactation. A compromised transition period can have
significant detrimental impact on both welfare and productivity, while the molecular
basis of effective versus compromised adaptation to the metabolic strain of early lactation
remains unknown. Several dairy cow investigations have used targeted metabolomics
to evaluate the respective changes in blood throughout the transition phase [112,113] in
order to understand the pathophysiology and to identify promising biomarkers. Carnitines
have been identified as possible biomarkers for metabolic illnesses associated with the
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transition period [112,114]. Hailemariam, Mandal, Saleem, Dunn, Wishart and Ametaj [112]
suggest that the biomarker profiles they found (carnitine (C0), propionyl carnitine (C3), and
lysophosphatidylcholine acyl C14:0 (lysoPC a C14:0)), such as any other set of candidate
biomarkers, need to be further verified using a much larger cohort of animals to confirm
their reliability.

Using non-targeted metabolomics Wu, et al. [115], found leukotriene C4 (LTC4),
leukotriene D4 (LTD4), chenodeoxycholate, linoleate, and other metabolites to be signifi-
cantly different in a Mycoplasma gallisepticum (MG) and Escherichia coli (E.coli) co-infection
model in serum. LTC4 in serum has been found as a potential biomarker for identifying
poultry respiratory illness. Furthermore, to identify the consequences of co-infection, an
arachidonic acid (AA) metabolic network pathway with metabolic products and enzyme
genes were created and showed a similar dramatic increase in LTC4 expression, which was
linked to varied degrees of infection.

As discussed above, metabolomics is expected to enhance the accuracy of diagnosing
the health status of patients by offering up reliable biomarkers. The expansion of the
dynamic range of detection of low-abundance metabolites, in conjunction with the advent of
artificial intelligence, will eventually pave the way for the detection of metabolic signatures
as biomarkers; however, in the near future it is expected that such diagnostics will remain
the domain of centralised facilities rather than point-of-care testing.

2.5. Lipidomics

Lipidomics is a discipline concerned with the study of lipids, not only in terms of their
structures and transformations, but also in terms of their diversity and activities in relation
to cellular, metabolic, and environmental factors that influence living organisms [116].
Lipids represent major components of the cell membrane and are involved in a range of
biological processes (organ function, metabolism, inflammation, endocrine signalling, etc.).
Therefore, ratios of certain lipid species or classes are likely to be altered in response to
pathological conditions and various physiological states, potentially serving as sensitive
biomarkers. Indeed, lipids already form a useful component of clinical veterinary pathol-
ogy, with cholesterol and triglycerides a mainstay of routine biochemistry analyses and
extensively characterised for their association with a range of pathological and physiologi-
cal processes. These lipids are readily measured in serum, plasma or cells using enzymatic
reaction kits coupled with spectrophotometric detection. Newer analytical approaches are
now allowing much higher resolution detection of lipid species, down to the lipid ion level,
thus opening up potential for lipidomic signatures to serve as specific biomarkers.

Traditionally, three defined analytical approaches have been identified in lipidomics:
direct infusion shotgun approaches, chromatography-based separation approaches, and
imaging mass spectrometry. Within these approaches, the terms “untargeted” and “tar-
geted” also describe how the decided analytical output influences the sample preparation,
methodological technique, and data processing. There are also newer categories such as
‘macrolipidome’ and ‘microlipidome’ that refer to the particular lipid classes’ abundance
and activity [117].

While the proteomes and transcriptomes of many pathologies and physiological states,
tissues, and organs have already been mapped, the field of lipidomics is younger and
fundamental descriptive studies to characterise normal lipidomes are currently underway.
These will be crucial for providing the foundations and data repositories needed before
biomarkers can be sought to differentiate disease states from normal physiology. Nonethe-
less, altered lipid levels have been identified in numerous diseases in both model animals
and humans, e.g., differential fatty acid levels were identified in kidney [118] and liver [119]
diseases, with such changes associated with other biochemical indicators. Lipid biomarkers
are being sought for a range of veterinary applications, including predictors of wildlife
mortality events [120], livestock production efficiency markers [121], early detection of
subclinical disease and monitoring of drug toxicities [122].
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MRM-profiling has been used to detect changes in the lipid composition of the epi-
dermis in atopic dogs even when the skin seems clinically healthy, and sex is a modifying
factor in the lipid profile of canine atopic dermatitis [123]. This study contributes to a better
understanding of epidermal lipid alterations with the development of atopic dermatitis
and as the chronic inflammatory process progresses. The high prediction rate for disease
development provided by the lipid biomarkers found here by the machine learning tech-
nique suggests that they could be used as a molecular evaluation tool for atopic dermatitis
diagnosis and monitoring, as well as patient response to treatment.

In milk obtained from cows with subclinical mastitis, untargeted lipidomics analyses
revealed 597 lipids to be altered in abundance more than 10-fold versus non-infected
samples [124]. Principal component analysis demonstrated distinct clustering based on
both lipid class and lipid species between infected and healthy samples, although data are
considered preliminary due to small sample size. It is also yet to be determined whether
lipidome changes precede infection or are a consequence; nonetheless once identified, such
markers could serve to indicate at-risk animals or those requiring further investigation.

Additionally, in cattle, several studies have revealed the potential of specific lipid
classes for the identification of peripartal metabolic dysfunction [125,126]. Certain phos-
phatidylcholines appear to distinguish between healthy cows or those manifesting clinical
metabolic disease during the periparturient period [125]. LC-TOF MS lipidomic profiling of
plasma from cows affected by hepatic lipidosis (fatty liver disease), which also commonly
affects dairy cows in transition from pregnancy to lactation, revealed a distinct plasma
lipidomic profile with reduced phosphatidylcholines [127]. Diagnosis of fatty liver disease
currently requires confirmation through biopsies to determine the hepatic lipid content, so
a plasma biomarker could be extremely useful. Further investigation is needed to identify
and validate specific phosphatidylcholines that could serve as a practical diagnostic tool
for this disease.

Lipidomic profiling has been applied in the investigation of wildlife mass mortality
events; remarkably, adipose tissue collected from Mozambique tilapia (Oreochromis mossam-
bicus) affected by pansteatisis (an environmentally derived inflammatory disease) showed
up to a 1000-fold increase in ceramides and correlated with disease severity [120]. This high-
lights the potential utility of lipidomic biomarkers within biopsy or post-mortem-collected
tissue samples in addition to fluids such as plasma.

Untargeted lipidomics has also been successful in profiling the lipids in plasma
and urine of cats treated repeatedly with meloxicam, a non-steroidal anti-inflammatory
(NSAID), thus identifying putative biomarkers for monitoring the effect of NSAIDs [121].
Here, 6 lipids in plasma and 5 in urine could discriminate meloxicam-treated from saline
treated-cats. This work may ultimately lead to feline-specific pre-clinical biomarkers of
NSAID-induced toxicity and would assist clinicians make therapeutic decisions according
to individual needs, including selecting optimal dose intervals, thus minimizing the risk of
adverse effects.

Another preliminary study identified lipidomic signatures that could potentially be
used as a proxy for digestive efficiency in chickens, with important potential consequences
for livestock production efficiency and economic output in the poultry industry [122]. How-
ever, as with many lipidomics studies, the exact chemical nature of the markers remains
unconfirmed, and they are yet to be validated in an independent population. Notably,
the authors report that the lipidomic investigation was triggered by an observation of
differences in serum colouration between the two lines of broilers representing different
digestion efficiencies. Indeed, a spectrophotometric analysis showed difference in absorp-
tion between 430 nm and 516 nm, corresponding to the signature of orange–red lipophilic
pigments. Such observations tentatively promise innovative yet simple downstream appli-
cations of lipidomic biomarkers where incidental properties of certain lipid classes may
facilitate means of detection that do not rely on the complex analytical methods used to
identify the biomarkers in the first place.
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In the horse, elevated cyclic phosphatidic acid and diacylglycerol have been detected
in surfactant from severely asthmatic horses using shot-gun lipidomics and suggested as
useful biomarkers of this important inflammatory condition [128]. Yet again, these data can
only be considered preliminary, and it is currently unknown whether the plasma lipidome
is similarly altered in affected horses.

Lipid biomarkers have long been a routine component of clinical diagnostics in veteri-
nary medicine, and discovery of new markers via innovative lipidomics platforms is on the
horizon. There is clear evidence for the association of specific lipid profiles with disease
and physiological states; at present these are yet to be translated into practical and widely
used diagnostic biomarkers. The putative lipid biomarkers described here are a long way
away from widespread application, limited by the preliminary nature of most datasets, lack
of standardisation in the metabolites and diseases studied, and few studies characterising
the normal lipid profile in different physiological states and across species. Maturation of
the lipidomic platforms, particularly with regard to standardised methods of analysis and
interpretation of data, as well as expansion of publicly accessible data repositories, will
facilitate efficient translation, as discussed further in this review.

2.6. Multiomics

A rapidly developing new approach for biomarker discovery is that of using multi
modal integration. Omics technologies, as previously described, measure all or nearly all
incidences of the targeted molecular environment in the assay, offering comprehensive
perspectives of the biological system because they are high-throughput biochemical assays
that evaluate molecules of the same type from a biological sample comprehensively and
simultaneously. Initially, omics research focused on a single type of assay and produced
single-omics results. However, more recently, researchers have designed multi-omics
datasets by combining different assays from the same set of samples [129]. Because multi-
omics data obtained for the same set of samples can reveal valuable information about the
flow of biological information across many levels, it can aid in the understanding of the
mechanisms behind the biological state of concern [130]. The advent of numerous new
multi-omics projects has been fuelled by the constrained findings of early single-omics
studies, such as the Human Genome Project, and the expansion of facilities that offer omics
tests as a service. Identifiers from several timepoints in one or more omic types, phenotypic
details such as treatment/control labelling, and pertinent clinical characteristics such as
age and sex may all be included in multi-omics data. These findings give a comprehensive
picture of disease-driven biological pathway dysregulation, as well as early proof for the
establishment of new targets or intervention techniques [131].

Multi-omics’ increased potential has been evident for some time, but the challenge of
maintaining and integrating such multi-dimensional data remains problematic. For big
datasets, data storage, quality control, and statistical analysis are all more difficult, therefore
adhering to the FAIR principles is naturally incredibly hard. Furthermore, creating full
multi-omics datasets with the same set of omics tests for all research samples is an extensive
undertaking. As a result, researchers who want to make use of these datasets’ multiplatform
nature frequently have difficulty getting entire data records or finding appropriate multi-
omics datasets for their research topics. Additional quality control metrics that analyse the
link across datasets should be explored in the case of multi-omics data. These extra quality
indicators are important since omics technologies differ in terms of accuracy, technical
noise, and signal dynamic range, thus reliable integrative analytic results can only be drawn
when quality is similar across platforms [129].

Omics data can be integrated in a variety of ways after pre-processing. Broadly there
are two main approaches. One is post integration where each ‘omic’ approach can be
analysed or modelled independently and then the findings integrated; the other is prior
integration where data for all omic modalities can be integrated before any statistical or
computational modelling takes place. Data may need to be prepared differently depending
on which integration strategy is used. When using a prior integration, scaling analyte
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measurements suitably within each omic approach is especially important. In addition, the
multi-omics datasets’ sample origin influences which integrative strategy can be employed.
A prior integration necessitates the collection of data in the same biospecimens such as
tissue, blood, etc., or individuals in order to match measurements to the same sample,
whereas a post-integration does not. It is not possible to examine direct links between
genes and metabolites and how they may relate to phenotype when the study is performed
on the same individual but distinct biospecimens, such as genomic data from blood and
metabolomic data from urine. Despite this limitation, it is possible to determine if data fit
one biological paradigm; in this example; metabolites may serve as biomarkers for what is
occurring at another level (i.e., genome) or alternatively, one omic modality can be used to
orthogonally confirm biological pathways discovered by another omic modality [131].

Many human-focused studies have increasingly turned to the use of multiomics
techniques (e.g., integration of genomic, transcriptomic, proteomic, and metabolomic
platforms) to find relevant and accurate biomarkers. For example, in the past decade,
multiomics studies of atrial fibrillation have identified a number of potential biomarkers
of this condition [132]. Another study investigating the results of a metabolome and
transcriptome-wide association study to identify genes influencing the human metabolome,
found that this integration can support the causal role of ALMS1 (Alstrom syndrome
1) gene expression levels on N-acetylated compound concentration, whereas for HPS1
(Hermansky-Pudlak syndrome), a negative feedback loop between its expression levels
and TMA (Trimethylamine) using an untargeted approach in nuclear magnetic resonance
spectroscopy (NMR) and methylation quantitative trait loci (mQTLs) analysis. Multi-omics
integrative analyses have also found use in investigateions of nutrition and functional
food components [133], as well as in deciphering regulatory networks for complex disease
traits [134]. Previous research has shown that a systems-level multi-omics investigation
can provide more robust and valuable insights into biological mechanisms than a single
platform analysis, especially where the condition under study can arise from a range of
different underlying pathological mechanisms. Li, et al. [135] used advanced metabolomics
and transcriptomics approaches to identify molecular and metabolic pathway abnormalities
that could contribute to canine degenerative mitral valve disease (DMVD) development
and progression. The goal of their study was to find pathways that could be altered
with nutritional or pharmaceutical interventions to prevent, reverse, or control DMVD.
While there are few studies of this depth in the veterinary field at present, we expect that
integrative approaches showcasing multi-omics research in veterinary sciences will become
increasingly important and prevalent over coming years, facilitating efficient biomarker
discovery and development.

3. Challenges to Successful Biomarker Development

The example biomarker studies described in this review have been performed in
different species and focus on diagnostics and monitoring of a wide range of conditions.
While many are considered promising, the bulk of the biomarkers identified have yet to be
developed into commercial products or diagnostic tests in practice. In many cases, the full
suite of necessary validation steps required for a biomarker to enter clinical use has not
been conducted or has not been published. Further, it appears that the rate of successful
completion of biomarker studies to clinical use is higher for human medical applications
than for the veterinary field. Although many of the same challenges persist in both human
and veterinary medicine, some issues are more pronounced in the veterinary field and may
help explain the deficits in this translational pipeline. Understanding and subsequently
addressing these challenges is key to the future success of biomarker science in this field
and realisation of the associated improvements in animal production efficiency and welfare
they promise.
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3.1. Time and Finance towards the Biomarker Discovery

One of the foremost challenges is the time and expense required for establishing a
biomarker. Research funding remains a major constraint in biomarker development, as
extensive studies with a large sample size are required to ensure that any given biomarker is
not only associated with, but truly able to predict, the clinical outcome [136]. Additionally,
translating those identified markers into clinical practice requires further time and invest-
ment. Importantly, continuity of funding is essential as the path from discovery to clinical
application is likely to take many years and interruptions in this process can compromise
the ultimate success of even the most promising biomarkers. One example is the use of
urinary estrogens to diagnose pregnancy in giant pandas, where researchers have been
analysing estrogen metabolites as markers of pregnancy and viable cub development [137];
studies working towards this biomarker began a decade ago, characterising the biological
and technical aspects and demonstrating the value of estrogen as a biomarker [137–139].
However, estrogen metabolites are yet to be validated and to undergo the clinical trials
needed to confirm their utility as a robust test in zoo medicine practice and such studies
are expected to take several additional years.

Furthermore, there are unique challenges to the development of biomarkers for vet-
erinary medicine. A given biomarker may need to be qualified multiple times, once for
each applicable species. Other limitations relate to sample handling requirements, and
difficulties in establishing cut-off values owing to breed differences. Historically, many
animal biomarkers have relied on previous experiences from human medicine to reduce
the time taken for many studies, exploiting already established methodologies and making
modifications according to species-specific requirements. This application is very lim-
ited but useful if implemented with care and sufficient knowledge of species variation
of the particular biomarkers. Examples of such scenarios include N-terminal pro b-type
natriuretic peptide (NT-proBNP) and cardiac troponin T (cTnT): cardiac biomarkers used
in human medicine that have been adapted to evaluate systemic inflammatory response
syndrome (SIRS) in dogs. These biomarkers are well established markers in diagnosing
cardiac dysfunction and evaluating prognosis in human medicine. Since cardiac dysfunc-
tion secondary to systemic inflammation has been reported in human medicine known
as myocardial hibernation, increased concentration of these markers reported in SIRS in
humans has been associated with myocardial hibernation [16,17]. Cardiac hibernation has
been reported in dogs with experimentally induced sepsis, and more recent data suggest
that plasma concentrations of cardiac biomarkers are increased in dogs with SIRS [140,141].
Thus, it has been hypothesised that these cardiac biomarkers may help in the diagnosis of
cardiac dysfunction and the evaluation of prognosis in people with SIRS, and may also be
useful to evaluate dogs with SIRS [142]. Indeed, NT-pro BNP and cTnT were found to be
significantly increased in dogs with SIRS regardless of underlying diseases. Additionally,
this study confirmed that the cTnT concentration was associated with survival in dogs with
SIRS. Studies investigating the correlation of cardiac biomarkers with echocardiographic
findings and inflammatory cytokines in canine patients with SIRS are warranted. Evidently,
the background of research performed for human applications provides a huge advantage
for the development of this biomarker in animal applications and its translation to clinical
veterinary practice, reducing both time and funding required.

A similar approach is to directly use commercially available kits of identified biomark-
ers to validate their use in veterinary medicine. Cardiac troponin I (cTnI) is also a peripheral
blood biomarker for myocardial diseases in humans and veterinary medicine [82,84,127].
There are commercially available kits to monitor the cTnI levels in humans. It has been
suggested that commercial human cTnI assays could be used in horses, cattle, and sheep
and some assays have been evaluated and validated for use in camelids [101], cattle [99,143],
horses [144] and goats [145]. Another example is biomarker identification for treatment
monitoring in leishmaniosis in dogs. This research identified apolipoprotein A1 (APO-A1)
as a potential biomarker using 2-dimensional electrophoresis followed by mass spectrome-
try analysis, observing that concentration of APO-A1 was low in dogs with leishmaniosis
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and increased with good response to treatment. From a panel of 8 differentially expressed
proteins in leishmaniosis, selection of the APO-A1 biomarker was mainly based on its
ability to be easily measured by an established automated immunoturbidimetric method
and on previous work indicating its value as a possible diagnostic/prognostic biomarker of
visceral leishmaniasis in humans [146]. Whilst incorporating expertise from other species,
in particular from human medicine, can be advantageous in terms of time and finance, care
must be taken to ensure that such biomarkers are truly the most appropriate and useful op-
tion for clinical decision making. Furthermore, in many situations human markers cannot
be directly applied to veterinary medicine, not only because of differences in physiology,
but also pragmatic aspects such as ease of collection of sample type (e.g., in many species
collecting urine is more difficult than taking a blood sample), and clinical priorities (e.g.,
where patient comfort is prioritised over remission of neoplastic conditions or herd health
is more critical than individual prognosis). Another example is the not-yet-elucidated
maternal recognition of pregnancy (MRP) signal of horses, a factor that remains elusive de-
spite being a fundamental component of reproductive biology. The review of Swegen [147]
clearly shows how the biological and physiological differences between horses and other
species pose challenges leading to lagging diagnostics in the early pregnancy of horses. The
review also elaborates how the time and technological advances are accumulating knowl-
edge towards pregnancy biomarker identification. Recent omics approaches including the
proteomic analysis of early equine embryo secretome, blastocele fluid and capsule [148],
uterine fluid of pregnant mares [149] together with transcriptomics studies [150,151] have
provided more positive insight for the biomarker discovery to address the gap. Truly novel
markers will require the full suite of discovery and validation studies in a given species
and relevant clinical setting. Researchers, clinicians and funding bodies must work closely
together to ensure clear goals, realistic expectations and thorough planning for all phases
of biomarker development.

3.2. Requirement of Standardised Methodologies

Evidently, the scale and screening capacity of ‘omics platforms provide unparalleled
appeal for biomarker discovery. However, sophisticated equipment and rapidly evolving
technology mean that developing appropriate protocols for sample collection, processing
and analysis is not always straightforward, nor consistent between studies. A thorough
understanding of multiple components is required, e.g., biochemistry for sample prepa-
ration, analytical chemistry for instruments, and computational biology for data analysis.
Thus, it is an essential requirement to have well-established standard methodology for
each of these steps. Across all the omics platforms, collection and preparation of samples
must be treated as a delicate process that necessitates close care to avoid sample handling
bias [89]. In case–control studies any variation in sample selection and processing can
result in systematic bias [20,152–155]. As an example, variation in sampling times between
different studies can yield different results and it is important to take this into account
when interpreting omics results or planning further studies.

As a more established platform, proteomics has engaged in some interdisciplinary
collaboration to standardise methods [156–158], while the lipidomics community is now
initiating international standardisation [158]. The following steps have been suggested to
minimise systematic bias [156].

1. Sample selection

• Avoiding the pooling of samples
• Not using a combination of blood plasma and serum, but instead consolidating

around the exclusive use of a single substrate

2. Collection of Samples

• Blood collection and pre analytical procedures should be standardised
• Blood collection-to be conducted by the same person,
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• Pre-analytical procedures–use of identical conditions for centrifuging, containers,
storage temperatures and times

• Immediately centrifuging blood to generate plasma
• Immediately harvesting plasma after centrifugation
• Not withdrawing the last 500 µL of plasma at every possible stage to avoid

contamination with platelets. If not, incorporating a second centrifugation clean-
up step

• Immediately freezing samples after harvesting

Furthermore, apart from these guidelines there are some standard analytical and
statistical methods in use with a level of understanding in the international proteomics
community [71,142,143]. Though some of these can apply to other omics approaches such
as sampling standards, each field will need to agree on and publish clear standards in line
with the relevant platforms’ requirements [158].

Likewise, metabolomics platforms are yet to develop universal standards for methods
in biomarker discovery. As in other fields, those operating at the highly specialised end
of the spectrum may be not fully aware of the clinical setting and requirements, while
clinicians are unfamiliar with the technical aspects of metabolomic tests as well as the bio-
chemical interdependencies of metabolites. Effective collaboration across the full spectrum
of translation is clearly essential for successful development of truly useful assays. With
increasingly complex datasets and a clear role for pattern recognition and machine learning,
new statistical methodologies must be investigated for some study designs [110]. Towards
this goal, there is ongoing improvement of the livestock metabolome database (LMBDB,
available at http://www.lmdb.ca accessed on 27 July 2022), however further refinement
of this dataset and its annotation promises to facilitate future untargeted metabolomics
studies by increasing the number of identified metabolites. Nevertheless, for NMR-based
approaches there remains considerable variability in the reference methods used for cali-
bration. In brief, metabolite identification relies heavily on the mass spectrometry expertise
of the operator and is further constrained by the availability of standards and as such,
many of the inventories of promising markers contain only putative identifications. Thus,
standardising the methods used within and across countries and laboratories remains a
major challenge [159].

In addition to technical aspects and sample preparation, the standardisation and
detailed reporting of experimental circumstances and animal traits are essential, and
individual species should have their own guidelines [160]. Due to the snapshot nature
of the results provided from most omics approaches, there remains a general problem of
extrapolating findings to other scenarios, species, etc. Although it is nearly impossible to
standardise experimental conditions and replicates across the entire range of veterinary
species spanning from large to small animals, important information such as age, lactation
number and stage, body condition, diet composition and feeding regimen, as well as a
detailed description of sampling procedures and timing relative to physiological state, can
be reported. Computer based algorithms can then be harnessed to model/integrate data
from papers reporting on the proteome and other omics of animal diseases and facilitate
the assembly of an atlas of all proteins and other biological agents present, regardless of
their abundance or statistical analysis. Most proteomics and lipidomics investigations do
not provide absolute quantitative data; they instead report patterns, such as an increase or
reduction in comparison to internal standards. Although such studies have contributed
substantially to our understanding of the pathophysiology of diseases, using proteomic
techniques to study metabolic diseases has not yielded a comprehensive and consistent list
of biomarkers. In the context of metabolic diseases, it could be argued that metabolomics
has greater potential to identify suitable biomarkers. Thus, producing a cohesive atlas
that includes all previously detected biological markers across independent studies, along
with methods and animal data, will be very useful for accurate identification of markers in
future studies.

http://www.lmdb.ca
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The multivariate outcomes from omics techniques, in accordance with computational
and data requirements, necessitate significant bioinformatics resources, which are generally
available online [113]. The identification of a limited number of potential candidates from
thousands of proteins quantified by untargeted MS proteomics for downstream verification
and validation using targeted assays is one of the rate-limiting phases in protein biomarker
development [160]. Despite the fact that MS-based discovery platforms may measure a
huge number of proteins they are frequently performed with a small number of samples,
resulting in the “big p, small n” dilemma [161]. Thus, protein markers identified from
discovery data may not be generalisable to independent datasets due to the limited sample
size of typical discovery research. This issue arises frequently in omics-based association
research, and it is frequently addressed using dimension reduction techniques such as
principal component (PC) analysis and its supervised equivalents [162]. Because each
PC is a linear combination of all original properties, predictive models based on PCs
require genome-wide measurements as inputs and hence cannot be used as tailored clinical
diagnostics but can be used to identify proteins serving as the main contributors to the
predictive model and flag these for further investigation. As we can see from the summary
details (Table 1) several novel cluster selection approaches and statistical methodologies
are being developed to assist in these processes. Algorithms developed by Shi, Wen, Gao
and Zhang [160] allowed for functional interpretation of the detected markers and should
facilitate a smooth transition to the verification and validation platforms. Additional
bioinformatics tools to assist modelling and validation are expected to emerge in the near
future and will contribute significantly to the efficiency of the biomarker discovery process.

Table 1. Summary of ‘omics platforms and their role in biomarker discovery (Refer to the Supple-
mentary Table S1 for detailed description of bioinformatical and statistical methods, sample numbers
and validation methods).

Omics Platform Reference Species Concern Result Main Technology

Genomics

Meurs et al.,
2007

Dog-
Doberman Pinscher

Familial Dialated
Cardiomayopathy (DCM)

Demonstrated that DCM in the
Doberman Pinscher dogs is a

familial disease inherited as an
autosomal dominant trait.

Polymerase Chain
Reaction

(PCR), Sequencing

Brooks et al.,
2010

Horse-
Arabian foal

Lavender Foal
Syndrome (LFS)

Identified a frameshift mutation
in the MYO5A gene that leads
to Lavender Foal Syndrome in

the Egyptian Arabian breed
of horse.

PCR, Sequencing,
and Genotyping

Neibergs et al.,
2014 Holstein calves Bovine respiratory

disease complex (BRDC)

Identified common genomic
regions associated with BRDC

susceptibility that can be
further characterized and used

for genomic selection.

Genomic Wide
Association

Analysis-SNP
identification-

qPCR

Arendt et al.,
2015

Dogs-
Golden retrievers

Genetic associations
between Canine Mast

Cell Tumours (CMCT).

Identified a SNP associated
with development of CMCT in

the GNAI2 gene and a
candidate mutation that

resulting in a truncated protein.

Genotyping of
SNP- PCR,

Illumina 170K
canine HD
SNP arrays

Menzi et al.,
2015 Holstein cattle Cholesterol deficiency

A mutation represents a 1.3kb
insertion of a transposable LTR
element (ERV2-1) in the coding

sequence of the APOB gene,

Genotyping,
Sanger sequencing

Transcriptomics Barrey et al.,
2010 Horses

To identify miRNA
candidates in the muscles

of control and affected
horses suffering from

polysaccharide storage
myopathy (PSSM) and

recurrent exertional
rhabdomyolysis (RER).

A specific miRNA profile was
related to each myopathy: a

higher expression of mir-1, 133,
23a, 30b, 195 and 339 in RER-TF

vs. control-TF a higher
expression of mir-195 in

PSSM-Cob vs. control-Cob.

Real-Time
Polymerase Chain
Reaction (RT-PCR)
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Table 1. Cont.

Omics Platform Reference Species Concern Result Main Technology

Desjardin et al.,
2014 Horses

Equine cartilage and
subchondral bone

miRNAs and suggest
their involvement in
osteochondrosis (OC)

physiopathology

Observed miRNAs
differentially expressed

between healthy and OC
cartilage and bone.

Next-generation se-
quencing

Dirksen et al.,
2016 Dogs

Distinguish between
parenchymal, biliary, and

neoplastic
hepatobiliary ds

Demonstrated a micro-RNA
panel consisting of miR-21,
miR-122, miR-126, miR-200c,
and miR-222; distinguishing
between the parenchymal,

biliary and neoplastic
hepatobiliary ds

Reverse
Transcription
and RT-QPCR

da Costa
Santos et al.,

2018

Horse
Warmblood cross Equine Insulin Resistance

Results demonstrated different
miRNA profiles between two
groups: Insulin sensitive (IS)

and Insulin resistant (IR)

Microarray,
RT-QPCR

Lecchi et al.,
2019 Water buffaloes Brucella infection miR-let-7f, miR-151, miR-30e,

miR-191, miR-150 and miR-339b
Next Generation

Sequencing

Proteomics

Kuleš et al.,
2014 Dogs

Identification of dogs
naturally infected with

Babesia canis canis

Confirmed two dominant
pathogenic mechanisms of
babesiosis, haemolysis and
acute phase response which

may be helpful in future
biomarker studies.

Two-dimensional
electrophoresis

(2DE), Electrospray
Ionisation Mass

Spectrometry

Mudaliar et al.,
2016 Cow

Bovine milk in an
experimental model of

Streptococcus
uberis mastitis:

2552 non-redundant bovine
peptides were identified, and

from these, 570 bovine proteins
were quantified

On-line
reversed-phase

liquid
chromatography

and mass
spectrometry

(LC-MS),

Martinez-
Subiela et al.,

2017
Dogs

Identification of
biomarkers for treatment

monitoring in canine
leishmaniosis

Identification of new serum
proteins that significantly

change in concentration after
canine leishmaniosis treatment.

Tandem Mass Tag
(TMT), LC-MS

Escribano et al.,
2019 Sheep

Identification of possible
new salivary biomarkers

of stress in sheep-
identify biological

pathways and proteins
differentially expressed in

the saliva proteome.

4 new metabolic pathways and
13 proteins differentially

represented in the saliva of
sheep after an application of

acute stress.

TMT incorporated
LC−MS/MS

Ploypetch
et al., 2019 Dogs Canine oral tumours

SENP7, TLR4 and NF-κB as
potential salivary biomarkers of

canine oral tumours.
MALDI-TOF MS

Liu et al., 2020 Cats
Congestive heart failure
(CHF) due to primary

cardiomyopathy

27 proteins differentially
regulated in feline CHF.

Tandem Mass Tag
(TMT), LC-MS

Lazensky et al.,
2021

Florida manatee
(Trichechus

manatus
latirostris)

Investigating an increase
in Florida manatee

mortalities

Identified proteins that were
differentially expressed in the
serum of manatees affected by

two distinct mortality episodes.

2D-DIGE and
isobaric tags for

relative and
absolute

quantification
(iTRAQ)

LC–MS/MS.
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Table 1. Cont.

Omics Platform Reference Species Concern Result Main Technology

Metabolomics

Hailemariam
et al., 2014 Cow

Identifying postpartum
or periparturient disease

states in dairy cows.

Found (carnitine (C0),
propionyl carnitine (C3), and
lysophosphatidylcholine acyl
C14:0 (lysoPC a C14:0), 4 wk

before parturition and
phosphatidylcholine acyl-alkyl
C42:4 and phosphatidylcholine
diacyl C42:6 could be used to
discriminate healthy controls

from diseased cows 1 wk
before parturition

Targeted
quantitative

metabolomics ap-
proach

Wu et al., 2020 Poultry

Mycoplasma
gallisepticum (MG) and
Escherichia coli (E. coli)
co-infection model in

respiratory disease
in poultry

Co-infection induces distinct
alterations in the serum

metabolome owing to the
activation of Arachidonic Acid

(AA) metabolism. LTC4 in
serum could be used as the

biomarker for detecting poultry
respiratory disease.

Non-targeted
metabolomics
LC-MS system

Lipidomics

Christmann
et al., 2019 Horses

Evaluation of asthma
caused by exposing

to hay

cPA 16:0 and DAG 36:2 were 2
novel lipid mediators identified

in surfactant obtained from
asthmatic horses with

clinical disease.

Shotgun lipidomics
on ion-trap mass

spectrometer.

Rivera-Velez
et al., 2019 Cats

Determine the effects of
repeated meloxicam

administration on the
feline plasma and

urine lipidome.

Identified lipids in plasma urine
that could serve as biomarker

candidates.

Untargeted
approach-liquid

chromatography–
quadrupole

time-of-flight mass
spectrometry

approach.
(LC-QTOF-MS)

Koelmel et al.,
2019 Fish

Investigation of wildlife
mass mortality events-
affected by pancreatitis

1000-fold increase in ceramides
and correlated with disease

severity

UHPLC system in
positive and

negative ion mode.

Ceciliani et al.,
2021 Cow Subclinical mastitis

Influence of NAS-IMI
[Inflammatory Infection

(IMI)caused by non-aureus
staphylococci (NAS)] on the

milk lipidome.

Untargeted
approach-

LC-QTOF-MS

Jackeline et al.,
2021 Dog

Lipid Biomarkers for
diagnosis and disease
progression of canine

atopic dermatitis (CAD)

A feature selection strategy
found oleic acid containing

triacylglycerides, long-chain
acylcarnitines and

sphingolipids as predictive
lipids that highly correlated (R2
= 0.89) with the disease severity

score of patients.

MRM-
LC-QTOF-MS

equipped with a Jet
Stream ESI ion
source -rapid
lipid-profiling

mass spectrometry

Multiomics Li et al., 2015 Dog

Identify nutritional
targets for Degenerative

Mitral Valve
Disease (DMVD)

Data suggested that the fatal
gene program hypothesis,
wherein the stressed heart

switches to anaerobic
metabolism, decreasing fatty

acid oxidation, and increasing
glycolysis may apply also

to dogs.

Metabolomics-
LC-MS

Transcriptomics-
RNA-seq, RT-qPCR

3.3. Determining the Clinical Utility of Biomarkers

Following the discovery of a biomarker and development of an accurate, statistically
robust test, substantial hurdles remain in terms of establishing clinical relevance. These
hurdles include evaluation of biological variability, diagnostic accuracy and diagnostic
performance of the biomarker. All biochemical analytes display inherent biological vari-
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ability, a crucial factor to consider in interpreting the diagnosis and developing cut-off
values or guidelines. Indeed, both intraindividual (within-subject) and interindividual
(between-subject) variation can impact biomarker performance in practice [163].

The estimated sensitivity (Se) and specificity (Sp) of a test are commonly used to
evaluate its diagnostic accuracy [164], and the importance of each will vary according to
the condition in question and clinical purpose of the assay. In some cases, there is a need
for very high sensitivity while specificity may be lower; for example, in screening tests
where a condition can be ruled out using the biomarker. On the other hand, in detecting
conditions where diagnosis may result in high-risk procedures or culling, high specificity is
required and therefore a very low rate of false positives is acceptable [165–167]. Optimising
one of the Se or Sp by changing the cut-off value will result in decreasing the other as there
is an inverse relationship between these two. A cut-off-independent method is provided
by Receiver Operating Characteristic (ROC) analysis, which thereby prevents the loss of
information compared to the traditional method of reporting Se and Sp at a single arbitrary
cut-off value. ROC analysis summarises the diagnostic accuracy of a test across all possible
operating points as pairs of 1-Sp and Se. For estimation of these pairs a gold standard is
required, yet unfortunately such standards simply do not yet exist, or are not practicable,
for many animal diseases owing to limitations in the clinical setting or pragmatic and
financial constraints. Unless further information on the accuracy of one or more of the
tests can be provided, the problem is not statistically identifiable in the absence of a gold
standard. Consequently, methods for estimating ROC curves in the absence of a gold
standard are required. For this reason, many researchers have used the Bayesian technique,
i.e., using a likelihood method to link the data from the current evaluation study with
prior information such as expert opinion and/or previously published data to provide
posterior estimates of the estimated ROC curve and the Area Under the Curve [168]. Further,
positive and negative predictive values (PPV and NPV) are determined for evaluating the
diagnostic performance of a biomarker [169]. If the prevalence of the disease or condition
in the population being tested is known, the predictive values of a diagnostic test can be
calculated. When utilising a biomarker to identify a patient’s illness status, predictive
values are essential factors in clinical practice because they can help select the patient
population in which a specific test is likely to give meaningful results. Because PPV
and NPV are dependent on disease prevalence, studies reporting these values should be
critically evaluated and interpreted with caution if predictive values are estimated based
on study prevalence, as this may not reflect disease prevalence in the population for which
the test will be used. The disease prevalence in the study may differ from the disease
prevalence in a specific clinical setting, and only a few diseases’ true prevalence is known
in veterinary medicine [165,170] as the lack of gold standard tests in veterinary medicine
affects this method as well.

Using multiple markers (i.e., a ‘panel’) of the same type or a combination of types, i.e.,
proteins, DNA, RNA, lipids, and metabolites, will likely offer more information than the
traditional measurement of a single marker. As clinical detection methods become simpler
and more accessible, panel-type assays will be a welcome development, considering that
most systemic conditions are indeed a complex matrix of biochemical parameters rather
than a dramatic change in a single measurement. Examining patterns rather than single
markers is expected to generate more powerful diagnostic assays and could provide
additional information, such as disease staging or prognosis [129,130]. Thus, studies
should aim at the identification of a panel of candidate biomarkers, which may collectively
improve the sensitivity and specificity for detecting the disease. One such study [170] has
shown that incorporating several inflammatory biomarkers associated with disease process
alongside functional biomarkers describing digestive, absorptive, and secretory capacity
of the gastrointestinal tract and degree of dysbiosis into an algorithm may provide an
improved strategy to manage dogs with chronic inflammatory enteropathies in the future.

A major point for consideration in the design of veterinary biomarkers is the cost–
benefit ratio. Distinct from medical practice, the health of animals is often attributed
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economic value and the costs of treatment are generally covered directly by animal owners
rather than health insurance or public health systems. In some cases, the health of the
herd or public health outcomes must be prioritised over individual health. This will, in
turn, impact the type of diagnostic assay that is considered affordable in any given clinical
situation. In some instances, empirical treatment or culling are an economically preferable
option to definitive diagnosis/treatment. In cases where herd health or reproductive
performance are prioritised, the situation is reversed as relatively expensive but rapid and
definitive diagnosis of a single animal may protect the health (or prevent culling) of an
entire population or limit economic losses for a whole breeding season. Thus, it is crucial
to consider the clinical context and decision-making that will surround the use of a given
biomarker early in the discovery process, particularly aiming to ensure that the type of
biomarker being sought is compatible with translational detection methods appropriate to
the clinical setting.

3.4. Selecting a Point of Care Test to Use in Clinical Setup

While omics platforms provide remarkable discovery power, the ultimate destina-
tion for many biomarkers is incorporation into simple and rapid test protocols that can
be performed in-house at a clinic, farm or field setting. Notably this is not an essential
requirement for all biomarkers; some will be useful as send-away tests to be conducted
in central laboratory facilities, especially for genetic screening and other non-time-critical
scenarios. However, since the goal of many biomarkers is to improve speed and simplicity
of diagnosis, selecting an appropriate method for how the biomarker can be detected at
point of care (POC) is a crucial part of the development process. Point of care tests need to
be simple to perform and cost-efficient, and to satisfy the sensitivity and specificity require-
ments appropriate for the clinical condition [171]. If chosen well, POC tests are a simple,
quick, and generally inexpensive way to shorten hospital stays, reduce complications,
and improve medication adherence. Test ordering, sample transfer to laboratories, and
data reporting can all be reduced by using POC tests. Several high-throughput automated
technologies have made it possible to introduce a wide range of tests that may be conducted
quickly and easily, i.e., without the need for highly trained staff and without the need for
laboratory processing [172].

Small bench-top analysers and hand-held devices are the two basic types of POC
testing formats accessible in the clinical setting. Small bench-top analysers are essentially
a downsized version of mainframe central lab equipment, with a few key differences to
avoid operator error and offer quick, repeatable results. Handheld devices are created by
employing cutting-edge microfabrication techniques that essentially combine many crucial
analytical procedures, such as sample preparation, separation, analysis, and data reporting.
Immunoassay methods are commonly used in devices for cardiac biomarker POC test-
ing [172]. The most common formats for these devices are 2-site immunometric techniques,
lateral-flow technology, and flow-through immunoassay systems. Rapid advancements
in the field of antibody-based biosensors, on the other hand, are expected to usher in
a new era in POC test development [173]. To offer the best quality diagnostic services,
efficient management of POC test networks necessitates standardisation and integration of
dedicated resources, policies, and multidisciplinary commitment and cooperation [171].
Emerging POC diagnostic instruments benefit from precision miniaturisation, perform as
well as central laboratory methods in terms of analytical performance [174], and can ac-
commodate multiplexed POC test biomarker panels. In reality, because of the significantly
reduced number of sample-handling stages, POC testing has a real chance of improving
analytical precision.

New and emerging technologies are enhancing the range of POC possibilities and
the range of analytes that can be readily detected but selecting the appropriate and most
compatible test is not always straightforward and may require significant investment into
trials and optimisation. This must be considered when planning research and development
particularly as a biomarker approaches clinical use/commercialisation phases. In addition,
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many of the newer technologies, e.g., microfabrication and microfluidics-based applications
and those that combine multiple steps, have been developed commercially and are subject
to intellectual property protection. This emphasises the need for researchers and clinicians
to integrate with industry and pursue extensive collaboration in order to see biomarker
projects realise their maximum potential.

3.5. Challenges Specific to ‘Omics Platforms
3.5.1. Transcriptomics

Despite recent breakthroughs in RNA biomarker research, circulating RNAs have
struggled to make it into the clinic, owing to their inconsistent specificity and repeatability
concerns as biomarkers under various physiological and pathological situations. As pre-
viously mentioned, one of the key concerns is that RNA is generally unstable at ambient
temperature due to the possibility of destruction by ribonucleases (RNase). As a result,
both endogenous and exogenous RNases can impact the detection accuracy by degrading
the target RNA over time throughout the incubation phases. The use of an RNase inhibitor
in the experiment, as proven by Frei et al. [175], is one possible solution to this problem.
However, RNAs found in numerous vesicles and biological components, such as exosomal
RNAs, are protected by the exosome’s membrane structure and thus rendered inaccessible
to RNases [176,177].

The choice of sample source and preparation process have a significant impact on
RNA detection efficiency [178]. Wang et al. [179] demonstrated that the expression level
of miRNA can differ between a person’s serum and plasma. Clinically relevant RNA
concentrations in tissues, serum, and other bodily fluids are extremely low. As a result,
a highly sensitive and specific approach for collecting RNAs from bodily fluids must be
developed. Because a small disagreement in the analysis could result in false-positive
diagnoses, the RNA extraction procedure is also critical. This was also demonstrated in
work by McDonald et al. [180], who found that the extraction technique was responsible
for the majority of the variance in RNA detection. Furthermore, physicochemical analysis
and sequencing has revealed that RNAs from the same family frequently share identical
properties [181]. As a result, the background response from closely comparable sequences
of nontarget RNAs can readily compromise the accuracy and sensitivity of RNA detection.
Natural variation in RNA expression levels across and within subjects is a significant
challenge in RNA detection in clinical samples, which can be caused by changes in gender,
race, age, diet, and other factors. It has also been discovered that when the sample size
is small (less than 100 people), the variation is greater; consequently, the variation can
be reduced by recruiting a large sample cohort [77]. For reliable detection, selecting the
appropriate extraction method, as well as careful optimisation (i.e., incubation duration,
centrifugation speed, etc.) of the extraction steps, is required [54].

3.5.2. Proteomics

Proteome-based biomarker discovery benefits from a well-established analytical plat-
form, extensive characterisation and bioinformatics resources, and a suite of widely avail-
able methods of validation based on the relative stability of proteins and their antigenic
properties. Traditionally, MS-based findings are validated using antibody-based techniques.
This means that verification of novel biomarkers has relied heavily on the availability or
production of suitable antibodies [113,182] for use in immunoassays such as immunoblot-
ting, ELISA, immunohistochemistry, and flow cytometry. Antibody reagents with adequate
specificity and sensitivity to assess new protein biomarkers are not always readily available,
particularly where the protein is of interest is species-specific or novel/poorly characterised.
Technical difficulties in multiplexing immunoassays for panels of biomarkers, as well as the
high cost and extensive development time required to produce high-quality immunoassay
reagents present further obstacles [113].

The specificity of antibodies is a limiting factor in many antibody-based approaches,
and species-specific changes in amino acid sequence may limit the application of antibodies
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generated against the target protein in other species [113]. Furthermore, the performance
of antibodies in various experimental setups can vary. Immunoassays such as ELISA have
good quantitative power, however building a reliable ELISA system is time-consuming.
Setting up a system with a working antibody is frequently thought to be faster in im-
munoblotting, which has recently become a de facto prerequisite for publishing as an
orthogonal validation method for quantitative proteomics data [183], but when working
quantitatively, complete validation is also required, and finding changes as small as 2 to
4-fold may be impossible [184]. Because of these constraints, “biological validation” is
frequently performed to assess the matching mRNA concentration, preferably from the
same sample, for validating proteomics results. However, because the quantity of mRNA
does not always correspond to the abundance of the encoded protein [185], relying on a
direct, absolute correlation between protein and mRNA levels is not a failsafe validation
assessment [186]. Nonetheless, despite its flaws, assessing mRNA abundance is still the
only method available in many circumstances [185], and it is limited to cells and tissues
where both mRNA and proteins are accessible. Only protein, not mRNA, is available
when proteomics is performed in bodily fluids such as saliva, urine, and blood serum.
Optimistically, expanding commercial interests in manufacturing antibodies and assays
specific for many animal species, including cattle, may soon fill this gap [113].

3.5.3. Metabolomics

Being a more recently developed approach, metabolomics has yet to gain the pop-
ularity of proteomics and transcriptomics in the biomarker discovery field. Because of
the intimate link between individual metabolites, a metabolomic biomarker differs from a
protein biomarker and transcriptome biomarkers. Although there may be patterns of abun-
dance that represent a disease state, the components assessed in other “omics” technologies
are independent. Meanwhile a metabolome reveals co-related metabolites that change
at the same time; the interdependence of metabolites results in a disease signature. As a
disease progresses, the “signature” may change. A random change in a single metabolite
will not produce a misleading signal because a metabolomic biomarker is a meta-biomarker.
As a result, metabolomic signatures can be an effective tool for tracking changes in an indi-
vidual’s health over time [110]. The major limitation presently is that significant artificial
intelligence/algorithm work is associated with this form of signature/pattern detection,
and this may not be easy to translate to a point-of-care test. On the other hand, species-
specificity is less of a challenge in metabolomics than proteomics, as metabolic pathways
are largely conserved across species [109]. The putative identification of metabolites, which
very often cannot be confirmed, and small groups of samples, decrease the credibility of the
metabolomics tools, as does the choice of controls and the presence of confounding factors;
all of which can have a significant impact on assay outcomes. Such limitations explain, at
least in part, why studies conducted for the same disease, with the same type of sample,
and using the same analytical instruments frequently yield different results [187].

Another current issue in metabolomics is that there are two broad analytical ap-
proaches (NMR versus MS coupled with LC/GC) and the choice of platform appears
to strongly affect the number and type of metabolites detected. NMR generates highly
reproducible information on the identity and quantity of a limited number of metabolites,
while MS is more sensitive and less reproducible [188]. Accordingly, in most cases MS-
based biomarkers cannot be translated directly to clinical applications and additional work
is needed to build robust and sensitive kits that can be used easily at the point of care.
Metabolite validation, demonstration of clinical value, and development of suitable clinical
procedures to make their measurement simple and reliable will therefore all be required
before metabolite biomarkers may be used in clinical settings.

The potential for metabolites as diagnostic markers to reach the clinic and make
a significant difference in patient health is enormous provided these obstacles can be
addressed, which will hopefully take place over the next several years as the analytical
and bioinformatic platforms continue to evolve and become more widely accessible. Once
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these research-to-clinic barriers have been overcome, metabolome-based biomarkers are
expected to significantly improve diagnoses, staging, prognosis, and therapy for a variety
of diseases [91,92,95,173,175,176].

3.5.4. Lipidomics

The primary challenges in lipidomics-based biomarker discovery relate to the intrinsic
complexity of lipids as a biochemical class and to the relative immaturity of the network of
tools used to interpret lipidomics outputs. Lipids are an enormously diverse biochemical
category, encompassing hundreds of thousands of different molecules with widely ranging
structural and physicochemical properties. Ultimately, this means that even so-called
‘untargeted’ lipidomics techniques cannot include all the classes of lipids in a single analysis,
and that there is no true shotgun approach; instead, different extraction, processing and
analytical methods must be chosen based on the lipid classes of interest, or multiple analyses
conducted. This evidently has consequences for the cost and logistics of conducting
screening studies for lipid biomarker discovery. The other implication of this diversity is
that characterisation of lipids detected by MS can be a complex undertaking. Lipidomics
does not benefit from the same direct relationship that exists between proteins and their
coding genes as unique identifiers; instead, lipidomic signatures emerge as patterns in
mass and retention times, while the precise molecular identity of each lipid species is
often ambiguous. Structural validation and absolute quantification are then required using
targeted techniques and internal standards. Isotopic species and the formation of adducts
can further complicate this process [189]. While pioneering groups in the field have put
forward recommendations to ensure quality and consistency of data generation [189,190],
the field is yet to reach consensus and, further, analytical technology platforms and lipid
structure databases are constantly evolving requiring updated guidelines generated at
a relevant pace. Beyond biomarker discovery, deriving optimal value from lipidomics
data also means effectively integrating the lipidomics output with associated biological
pathways and metabolic networks. Due to discrepancies in identifiers and in quality of
annotation bet22ween data and metabolic networks, mapping experimentally measured
lipid molecules onto metabolic networks is currently difficult. Researchers are addressing
this by making their methods publicly and freely available in an open-source format. Ideally,
both the metabolomics/lipidomics and network modelling communities must annotate
metabolites with both ontology identifiers (e.g., ChEBI) and chemical representations
(InChIKeys, SMILES) [191,192].

Beyond the discovery stage, a key consideration in the lipidomics field is how a
putative biomarker can be detected in a clinical setting. Whereas proteins can be quite
consistently detected using immunoassay-based approaches, the detection of lipids is less
straightforward, and the specific biochemical properties of each lipid class will determine
the options available for detection at POC. While clinical MS is an option, this would often
entail major investment, specialised staff/training, and involved sample preparation. This
can only be justified in scenarios where large numbers of samples are to be analysed and
is unlikely to be a suitable point-of-care approach in the veterinary field. Portable and
benchtop NMR-based sensors are under development for clinical application but are not yet
at a stage where resolution and sensitivity are adequate for reliable quantitative detection
of individual lipid species [193]. Alternative options include the design of enzymatic assays
or biosensor technology exploiting the optical, electrochemical or mechanical properties
of the lipid species in question [194]. This, in turn, requires appropriate expertise in lipid
biochemistry and engineering, as well as significant time and funding for the design,
prototyping and optimisation of such devices. This phase of biomarker development
may be difficult to plan for since the final lipid classes of interest revealed by screening
studies cannot be known at the outset, making resource requirements impossible to predict.
Expanding knowledge of the normal and pathological lipidomes across different tissues
and species and their integration with other ‘omics datasets in the future will alleviate this
challenge to some extent. Future biomarker screening studies should balance retaining
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their discovery aspect with guidance by existing data and can be hypothesis-driven; prior
knowledge about a biological process will help predict which lipid classes are most likely
to be quantitatively altered and therefore to hold promise as biomarkers.

4. Conclusions and Future Directions

Biomarker discovery is clearly a rapidly expanding research area in the veterinary
field. Successful biomarker discovery, development and translation is being facilitated by
emerging technologies but remains challenging due to several factors such as financial
support, species variations, a smaller number of samples in some species, difficulty in
sample collection, and lack of method standardisation or bioinformatics resources with
which to analyse the output of some platforms. Identifying such challenges early in the
research and development planning process can help to overcome many obstacles and
maximise the chance of success of such projects. Here, we also emphasise the critical need
for close collaboration between clinicians, researchers and funding bodies and the need to
set clear goals for biomarker requirements and realistic application in the clinical setting,
ensuring that biomarker type, method of detection and clinical utility are compatible, and
adequate funding, time and sample size are available for all phases of development. We
contend that embracing these approaches will assist in many of the promising preliminary
biomarkers attaining their full potential in clinical application, ultimately reducing work-
load in veterinary practice, enhancing animal welfare outcomes, and improving economic
viability of livestock industries.

Supplementary Materials: The following supporting information can be downloaded at: https:
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veterinary medicine.
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