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Simple Summary: Although over 40 genetic variants are known to influence white spotting and
markings on the horse, many still have unknown genetic causes. Furthermore, some seem to be
influenced by pigmentation (base coat color) genes. We investigated two horses demonstrating
a heritable white spotting pattern of no known genetic cause. Through sequencing of the coding
region of candidate genes, we identified a mutation in the KIT proto-oncogene, receptor tyrosine kinase
(KIT) gene changing the coded amino acid, predicted to be deleterious to protein function. We
further evaluated this variant in a population of 147 horses, characterized using photographs scored
by three independent observers using a standardized Average Grade of White score. The KIT
mutation is significantly associated with a quantitative increase in white pattern (p = 3.3 × 10−12)
and demonstrates an influence of the MC1R Extension locus. We also report a complete link between
the previously reported KIT W19 allele and this mutation. We propose to name this mutation W34,
following established nomenclature. Given the quantitative effect on white markings and MC1R
influence, genetic testing for this allele can be of value for horse owners that desire to select for
white patterns.

Abstract: Over 40 identified genetic variants contribute to white spotting in the horse. White mark-
ings and spotting are under selection for their impact on the economic value of an equine, yet
many phenotypes have an unknown genetic basis. Previous studies also demonstrate an inter-
action between MC1R and ASIP pigmentation loci and white spotting associated with KIT and
MITF. We investigated two stallions presenting with a white spotting phenotype of unknown
cause. Exon sequencing of the KIT and MITF candidate genes identified a missense variant in
KIT (rs1140732842, NC_009146.3:g.79566881T>C, p.T391A) predicted by SIFT and PROVEAN as not
tolerated/deleterious. Three independent observers generated an Average Grade of White (AGW)
phenotype score for 147 individuals based on photographs. The KIT variant demonstrates a sig-
nificant QTL association to AGW (p = 3.3 × 10−12). Association with the MC1R Extension locus
demonstrated that, although not in LD, MC1R e/e (chestnut) individuals had higher AGW scores
than MC1R E/- individuals (p = 3.09 × 10−17). We also report complete linkage of the previously
reported KIT W19 allele to this missense variant. We propose to term this variant W34, following the
standardized nomenclature for white spotting variants within the equine KIT gene, and report its
epistatic interaction with MC1R.

Keywords: dominant white; white pattern; Arabian horse; American Quarter Horse; American Paint
Horse; chestnut

Animals 2022, 12, 1958. https://doi.org/10.3390/ani12151958 https://www.mdpi.com/journal/animals

https://doi.org/10.3390/ani12151958
https://doi.org/10.3390/ani12151958
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/animals
https://www.mdpi.com
https://orcid.org/0000-0001-5960-3883
https://orcid.org/0000-0002-4500-2689
https://doi.org/10.3390/ani12151958
https://www.mdpi.com/journal/animals
https://www.mdpi.com/article/10.3390/ani12151958?type=check_update&version=1


Animals 2022, 12, 1958 2 of 10

1. Introduction

The easily observed expression of novel mutations causing white spotting phenotypes
provides straightforward targets in studies of equine genetic variation. Forty-four genetic
variants, most of which are located in the KIT proto-oncogene, receptor tyrosine kinase (KIT)
and the melanocyte inducing transcription factor (MITF) genes, are implicated in white spot-
ting and depigmentation phenotypes in the horse (W1-W28, W30-W33 and SB1 on KIT;
SW1, SW3, SW5, SW6 and SW7 on MITF; SW2, SW4, LWO, TO and GR on other genomic
locations) [1–16]. Phenotypes for white spotting alleles vary from white markings on the
legs and extremities, as observed with KIT W20, to large white patches on the body, legs and
head or completely white phenotypes in a few other mutant KIT, MITF or multiallelic indi-
viduals. Occasionally, carriers of well-documented white spotting alleles may present no to
minimal white markings uncharacteristic of the spotting variant, a condition sometimes
named “crypto” for its cryptic expression [17].

Loci likely altering the eumelanin vs. pheomelanin pigment proportion are also
associated with the extent of depigmentation observed in the horse. The “chestnut” coat
color, caused by a Melanocortin 1 Receptor (MC1R, termed the “Extension” locus, symbol
“E” or “e”) loss-of-function mutation (e/e) and resulting in predominantly pheomelanin
pigmentation, displays greater KIT-associated white markings [18–20]. Comparatively,
“black” and “bay” coat colors, possessing the dominant eumelanin-producing functional
MC1R (E/-) [20], demonstrate greater MITF-associated white markings [18]. Interactions
between KIT and MC1R could be due to linkage, as both genes are located on Equus
caballus Autosome 3 (ECA3), although separated by ~42 Mbps and a centromere [21–23].
Alternatively, the e/e genotype may decrease melanocyte quantity or migration, intensifying
the white spotting QTL effect of KIT mutations [18].

White markings and spotting phenotypes are varying selection in some horse breeds,
depending on breeding goals and registry requirements. For the American Paint Horse,
a white spotting phenotype enables registration in the “Regular” registry rather than the
“Solid Paint-Bred” registry, significantly impacting the economic value of the horse [8,24].
The American Quarter Horse Association did not previously allow registration of horses
with white spotting phenotypes (a rule that changed in 2004), yet statements noting white
spotting as “undesirable” and “uncharacteristic” are maintained in the regulations (AQHA
Official Handbook, 67th Edition, 2019). Therefore, white markings or spotting phenotypes
with unknown/novel associated genetic loci are of commercial interest for the equine
industry, encouraging further studies on these variants.

We describe the investigation of a white spotting phenotype (extended white markings
on limbs and the ventral thoracic region), yet negative for all published white variants
(W1-W28, W30-W33, SW1-SW7, LWO, SB1 and TO) [1–16]. Using a quantitative white score
phenotype, we tested the association of this allele along with the MC1R Extension and ASIP
Agouti loci in 41 cases and 94 breed-matched controls lacking published white variants.
We report the significant association of a missense KIT polymorphism with a quantitative
increase in white spotting on the coat, as well as the epistatic interaction of this allele with
the MC1R loss-of-function genotype (chestnut). We also report the complete linkage of
the previously published KIT c.1322A>G; p.(Y441C) (W19) allele with this variant in 12
genotyped individuals.

2. Materials and Methods
2.1. Horses and Putative Candidate Variant Inspection

An Arabian and a Mangalarga stallion, submitted to Etalon Diagnostics (Menlo Park,
CA, USA) for commercial genotyping services, demonstrated a notable white spotting
phenotype but no spotting or depigmentation alleles at any of the 44 known loci (GR,
W1-W33, SW1-SW7, LWO, SB1 and TO) [1–16]. Both individuals exhibited white markings
extending past the distal part of the carpal and tarsal joints, as well as facial white markings
extending from the forehead to the upper and lower lips. Additionally, the Arabian showed
a large white spot on the ventral region of the body. The Mangalarga stallion was also
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reported to produce similar white phenotypes on its offspring (Figure 1). Given the likely
heritable phenotype, we pursued further evaluation of coding regions of candidate genes
KIT and MITF (known to cause phenotypically similar white spotting patterns in the horse),
using previously described methods of targeted exon sequencing and alignment [13].
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Figure 1. The subject stallions (a,b), demonstrating spotting phenotype extending past the distal
part of the carpal and tarsal joints, as well as a facial white marking extending from the forehead to
the upper and bottom lips along homozygote MC1R e/e phenotype, (a) also possess ventral white
markings extending past the ribcage; (c–f) the respective offspring of the Mangalarga (b) stallion
demonstrating the heritable phenotype.

Putative candidate polymorphisms were further evaluated by predicting functional
impacts using the PROVEAN [25] and SIFT [26] webtools, using the NCBI Equus Caballus
annotation release 103. To test for associations between novel variants and white spotting
phenotypes, while controlling for confounding effects originating from other known white
pattern variants, 41 unrelated individuals carrying only the candidate variant, as well as
94 negative control individuals that did not possess other known white spotting or depig-
mentation alleles (of 1431 previously genotyped by Etalon Diagnostics [27] representing
the general horse population) having submitted photographs, were selected for further
phenotyping (n = 135). Following genotypic selection for the novel candidate variants,
we observed that all W19 individuals (n = 12, four times the number of individuals in the
original W19 publication) in the Etalon Diagnostics genotyped population possessed at
least one allele of the candidate KIT variant; thus, we performed a second analysis including
this allele (n = 147).
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2.2. Linkage Disequilibrium Analysis with Dominant White 19 and MC1R

Due to the co-localization of loci on the Equus caballus autosome 3 (ECA3), we
calculated the linkage disequilibrium (LD) between candidate KIT loci, W19 and the
MC1R polymorphism using Haploview V4.1 (Broad Institute, MIT and Harvard), in the
147 phenotyped individuals.

2.3. Phenotyping and Statistical Analysis

Three blinded observers (LPR, KM and EM) scored the white phenotypes based on
anonymized photographs of individual horses, following a previously published procedure
for white pattern scoring [19]. In short, photos submitted by the owners were reviewed
by KM and EM, selecting for 1 or 2 photographs that best represented the individual,
where all 4 legs, the front of the head and any ventral/lateral white were visible for scoring
purposes. Aside from the 12 compound KIT W19 individuals, only two horses (EdX1476
and EdX4739) showed uneven body markings; these were scored based on the side with the
highest amount of white. We then scored the amounts of white on the head, legs and body
for each individual horse, which were then combined in a total score for each observer,
summed, then averaged by the number of observers (n = 3), generating the “Average Grade
of White” (AGW) value [19]. We modified the original score, awarding one point for white
within a square comprising the ventral thorax and ribcage, and one point if white patterns
were observed outside of the delimited region, to better quantify body markings (Figure 2).
The modified scheme graded white from a minimum score of 0 to a maximum of 38, with
a minimal effect on the original score maximum value of 36 [19]. Correlations between
observer scores were evaluated using Pearson’s pairwise multivariate correlation on SAS
JMP Pro V15 (SAS Institute, Cary, NC, USA).
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A multiple linear regression modeling the effects of candidate loci, coat color (MC1R
and ASIP genotype) and KIT W19 on AGW was done using SAS JMP Pro V15 (SAS Institute,
Cary, NC, USA). We independently evaluated the genotype impact of MC1R, ASIP and the
candidate mutation with (n = 147 horses) and without (n = 135 horses) the presence of W19
on the AGW (Table 1 and Table S2). Genotypes for all variants were obtained through the
Etalon Diagnostics (Menlo Park, CA, USA) commercial testing.

Table 1. Effect sizes of MC1R Extension, ASIP Agouti and KIT rs1140732842 loci on AGW (n = 135
horses) using binomial regression.

AICc MC1R Extension ASIP Agouti KIT rs1140732842

AGW 918.99

AGW + MC1R Extension 903.95 17.99

AGW + ASIP Agouti 915.54 5.57

AGW + KIT rs1140732842 869.13 32.51

AGW + MC1R Extension + KIT
rs1140732842 843.23 30.26 40.51

AGW + MC1R Extension + ASIP Agouti 904.51 13.51 1.54

AGW + MC1R Extension + ASIP Agouti +
KIT rs1140732842 845.29 28.14 0.13 39.09

p-value (full model) 4.71 × 10−7 0.7199 5.09 × 10−14

p-values are given for the full model incorporating AGW and genetic effects.

3. Results
3.1. Variant Analysis Suggests a Candidate in KIT Influenced by MC1R

Exon sequencing of both stallions identified homozygosity for two non-synonymous
variants, NC_009159.3:g.21551234C>G in MITF and NC_009146.3:g.79566881T>C in KIT, re-
spectively recorded as rs1148371483 and rs1140732842 on the Ensembl Variation Annotation
release 104 [28]. We did not observe an association between the MITF variant and the AGW
phenotype in the 135 horses (p = 0.4256; W19 individuals excluded). Functional predictions
also support that the MITF variant, a glycine to alanine change, is not a likely candidate,
as SIFT and PROVEAN predicted its effect as neutral (score = 0.23, SIFT; score = −0.356,
PROVEAN) [29].

The presence of the alternate allele at rs1140732842 is associated with a substantial
effect on the AGW quantitative phenotype (F (2, 132) = 32.51, (ANOVA) p = 3.3 × 10−12)
(Table 1). The KIT variant rs1140732842 is predicted by the SIFT method as not tolerated
(score = 0.03), and as deleterious by PROVEAN (score = −3.363). This variant substitutes
an uncharged polar threonine to a nonpolar alanine in the KIT protein structure (p.T391A).
The MC1R genotype alone also has a small yet significant effect on AGW (F (1, 133) = 17.99,
(ANOVA) p = 4.12 × 10−5), with e/e (chestnut) individuals demonstrating higher AGW
scores on average (mean score of 7.63) than MC1R E/- (eumelanin dominant) individuals
(mean score of 2.54) (Figure 3). The ASIP Agouti locus has no significant effect on the AGW
phenotype (Table 1). The KIT rs1140732842 variant appears to have an incomplete pene-
trance autosomal dominant, or additive mode of inheritance for AGW, that could be cryptic
in MC1R E/- individuals. When evaluating the effect of W19 in AGW (Table S2, N = 147),
the best-fitting model included all four loci (AICc = 919.73). Notably, the AGW scores from
the three independent observers were highly correlated (r(147) > 0.9846, p < 4.38 × 10−87),
demonstrating the repeatability of the AGW scoring methodology in this study.
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3.2. Linkage Disequilibrium between KIT and MC1R

We did not observe linkage disequilibrium between MC1R alleles and the KIT
rs1140732842 variant in the 147 horses (r2 = 0.0001, D′ = 0.065, LOD = 0.06). Similarly,
Brooks et al. [24] demonstrated that the KIT W20 allele (exon 14) was not in linkage dise-
quilibrium with the MC1R Extension locus in a cohort of 364 American Paint Horses [25].
However, the KIT W19 mutant allele (exon 8, 13.1 Kb apart) is in perfect linkage with
the rs1140732842 (exon 7) C variant (r2 = 0.17, D′ = 1, LOD = 6.49). Three horses demon-
strated compound genotypes (EdX4400 and EdX1926: KIT rs1140732842 C/C W19/KIT+
and EdX2927: KIT rs1140732842 C/C W19/W19), indicating that the KIT W19 may have
appeared after the rs1140732842 mutant variant, as we observed heterozygosity of the W19
allele in the presence of homozygosity of the KIT rs1140732842 C allele, yet not the opposite
(Figure 4, File S2).
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4. Discussion

Based on VGNC:19433 and NP_001157338.1 annotations as wild-type models, the
computational analysis of the protein change in folding free energy upon mutation predicts
that the p.T391A variant is destabilizing (Supplementary File S1) [30]. The amino acid
threonine is highly conserved (Genomic Evolutionary Rate Profiling (GERP) score = 3.33)
in this position in 91 eutherian mammals, including humans and mice [28], which could
explain the observed low (1.51%) minor allele frequency of the rs1140732842 variant in 1431
genotyped horses.

The effects of black or chestnut base coat colors on white spotting patterns were
previously observed in the Arabian [31,32], the Franches-Montagnes horse [18,19] and the
American Paint Horse [24]. While there is no linkage between the MC1R Extension locus
and the candidate KIT variant in our cohort, the epistatic effect might be explained by
other biological mechanisms. It is possible that the MC1R e/e genotype negatively affects
the proliferation and differentiation of melanocytes, as observed in the murine recessive
yellow (Mc1re) model [33]. Lower activity of the MC1R receptor, as is likely to result
from the loss-of-function variant, promotes pheomelanin production [34]. As KIT is also
involved in melanocyte pigmentation and development, the combined effect of deleterious
alleles at both loci likely promotes a higher likelihood of failed melanocyte migration or
maturation, resulting in unpigmented skin devoid of melanocytes [35]. Furthermore, exon
screening cannot rule out the possibility that rs1140732842 is tagging a haplotype bearing a
non-coding regulatory change in the KIT gene.

Individuals possessing at least one rs1140732842 alternate allele © included the Ara-
bian and its crosses, as well as Warmblood, Rocky Mountain Horse, American Quarter
Horse, American Paint Horse, Appaloosa, Mustang, Mangalarga, Mangalarga Marchador
and Morgan breeds (Table S1). Notably, the three original individuals in the KIT W19
publication are also recorded as compound rs1140732842 heterozygotes [5]. The W19 allele
seems to further increase the AGW (p = 1.88 × 10−20) and, given the AICc results, has
some effect on the ASIP locus that we could not properly access in our study due to the
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small sample size and confounding effect of the rs1140732842 variant. Due to the observed
linkage, further evaluation of the W19 allele’s phenotypic effects alone is suggested, along
with a possible effect of base coat color, including respective genotypes at ASIP and MC1R
as suggested by the model.

5. Conclusions

We report a white spotting QTL associated with the KIT variant rs1140732842 and
modified by the presence of the MC1R loss-of-function pheomelanin genotype in the horse,
as well as the observed linkage of KIT W19 to this variant in our population and in the
original publication. We propose to designate this polymorphism as W34, following the
standardized nomenclature for white spotting variants within the KIT gene. Given the KIT
rs1140732842 alternate allele’s significant association and QTL effect on white markings
and its MC1R epistatic influence, genetic testing for this variant can be of value for horse
owners that desire to select for quantitative white phenotypes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani12151958/s1, Table S1: Genotypes and AGW phenotypic
information for the 147 individuals; Table S2: Effect sizes of MC1R Extension, ASIP Agouti, KIT W19
and KIT rs1140732842 loci on AGW (n = 147 horses) using binomial regression; File S1: DUET—
Protein Stability Change Upon Mutation prediction results for the p.T391A variant impact on protein
stability; File S2: Graphical representation of the Linkage Disequilibrium heatmap between MC1R,
KIT W19 and rs1140732842 (W34), as well as respective allele frequency and haplotype demonstration
of the W19 C genotype (r2 = 0.17, D′ = 1, LOD = 6.49) to W34 C genotype in 147 horses.
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