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Simple Summary: Genetic improvements in feed efficiency (FE) and related traits could considerably
reduce pig production costs and energy consumption. Thus, we performed a genetic parameter
estimation and genome-wide association study of four FE and FE-related traits, namely, average daily
feed intake, average daily gain, the feed conversion ratio, and residual feed intake, of two pig breeds,
Yorkshire and Duroc. The results demonstrate the genetic relationships of FE and FE-related traits
with two growth traits, age and backfat thickness at 100 kg. We also identified many single-nucleotide
polymorphisms (SNPs) and novel candidate genes related to these traits. In addition, we found many
pathways significantly associated with FE and FE-related traits, and they are generally involved
in digestive and metabolic processes. The results of this study are expected to provide a valuable
reference for the genomic selection of FE and FE-related traits in pigs.

Abstract: Feed efficiency (FE) traits are key factors that can influence the economic benefits of pig
production. However, little is known about the genetic architecture of FE and FE-related traits. This
study aimed to identify SNPs and candidate genes associated with FE and FE-related traits, namely,
average daily feed intake (ADFI), average daily gain (ADG), the feed conversion ratio (FCR), and
residual feed intake (RFI). The phenotypes of 5823 boars with genotyped data (50 K BeadChip) from
1365 boars from a nucleus farm were used to perform a genome-wide association study (GWAS) of
two breeds, Duroc and Yorkshire. Moreover, we performed a genetic parameter estimation for four
FE and FE-related traits. The heritabilities of the FE and FE-related traits ranged from 0.13 to 0.36,
and there were significant genetic correlations (−0.69 to 0.52) of the FE and FE-related traits with two
growth traits (age at 100 kg and backfat thickness at 100 kg). A total of 61 significant SNPs located on
eight different chromosomes associated with the four FE and FE-related traits were identified. We
further identified four regions associated with FE and FE-related traits that have not been previously
reported, and they may be potential novel QTLs for FE. Considering their biological functions, we
finally identified 35 candidate genes relevant for FE and FE-related traits, such as the widely reported
MC4R and INSR genes. A gene enrichment analysis showed that FE and FE-related traits were highly
enriched in the biosynthesis, digestion, and metabolism of biomolecules. This study deepens our
understanding of the genetic mechanisms of FE in pigs and provides valuable information for using
marker-assisted selection in pigs to improve FE.

Keywords: feed efficiency; pig; GWAS; genetic parameters; DEBVs

1. Introduction

Feed costs account for approximately 64–72% of the total cost of pig production [1].
Improving the feed efficiency (FE) of pigs dramatically reduces production costs. The
feed conversion ratio (FCR) and residual feed intake (RFI) are two traits that have been
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used to evaluate feed efficiency [2]. Studies have shown significant genetic correlations
between feed efficiency traits with average daily gain (ADG) and average daily feed intake
(ADFI) [3,4], so they are important indicators of feed efficiency. In addition to nutritional
and management strategies [5,6], the identification of causative mutations constitutes a
promising perspective for the application of genetic selection on FE relying on molecular-
based prediction. An effective genome-based breeding program requires the understanding
of the genetic architecture of these traits. Genome-wide association analysis (GWAS) has
previously been demonstrated to be an effective method for the detection of FE and related
quantitative trait loci (QTL) and candidate genes in pigs. A previous study showed that a
total of 829 selected single-nucleotide polymorphisms (SNPs) from an association analysis
explained 61% of the phenotypic variance in RFI [7]. Wu et al. [8] identified 24 SNPs
that had direct genetic effects and 31 SNPs that had social genetic effects on ADFI and
ADG in Yorkshire pigs. Another study identified eight common significant QTL regions
associated with the same four FE and FE-related traits as those in our study [9]. Do et al.
performed a GWAS, and 19 SNPs were found to be significantly associated with two
different measures of RFI based on the phenotypes of 596 Yorkshire boars. In addition
to SNPs, studies have also revealed many potential candidate genes associated with FE
and FE-related traits in pigs. The melanocortin 4 receptor (MC4R), a signaling molecule
involved in the regulation of energy homeostasis [10], was identified as a candidate gene
associated with ADG, ADFI [11,12], and FCR [13]. Duy et al. [14] found that several
nearby genes of significant SNPs for RFI were clustered in the insulin signaling pathway,
and they finally identified insulin receptor tyrosine kinase (INSR) as a candidate gene
for RFI. Several genes involved in the transport process, such as AQP4, SLC22A23, and
SLC6A14, have been identified as potential candidate genes for FCR and ADFI in previous
studies [15]. An enrichment analysis showed that candidate genes affecting FCR pointed
to corresponding biological pathways related to lipid metabolism, olfactory reception,
and immunological status [16]. These studies might contribute to the improvement of the
genome selection of FE and FE-related traits. However, only 454 and 385 QTLs have been
listed as feed conversion and feed intake traits, respectively, while more than 2597 and
3511 QTLs have been listed as growth traits and fatness traits, respectively (PigQTLdb,
https://www.animalgenome.org/cgi-bin/QTLdb/SS/index (accessed on 13 May 2022)).
Studying genetic structures and variants affecting FE and FE-related traits does not provide
enough detail since phenotype data collection is difficult. Fu et al. [9] found that three QTL
regions related to ADFI and RFI traits overlapped. Ding et al. [17] found that a key SNP
on SSC 7 contributed 2.16% and 2.37% of the observed phenotypic variance for DFI and
RFI, respectively, and that another key SNP on SSC 1 contributed 3.22% and 5.46% of the
observed phenotypic variance for FCR and RFI, respectively. Additionally, many studies
have found significant correlations of FE and FE-related traits with growth traits [3,4,18].
Identifying genetic correlations with main growth traits is required before FE and FE-related
traits can be included in the breeding program.

To further identify quantitative trait loci (QTL) and potential genes associated with
four FE and FE-related traits in pigs, we conducted a GWAS on two purebred pig breeds,
Yorkshire (YY) and Duroc (DD). In addition, we estimated the genetic parameters of FE
and FE-related traits and their genetic correlation with two growth traits, backfat thickness
at 100 kg (BF) and age at 100 kg (AGE).

2. Materials and Methods
2.1. Phenotypes and Genotypes

The data used in this study were all from a nucleus breeding farm in the province
of Inner Mongolia of China. Details of the phenotype data collection and processing
procedures are explained in Appendix A. After data cleaning, a total of 3661 YY boars
were recorded to have at least one of the four FE and FE-related traits or two growth traits,
and 239,234 individuals were included in the pedigree, including 880 boars genotyped
with an in-house-designed SNP chip named CAU50K (detailed information presented in
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Appendix B). For DD, there were 2162 boars recorded with at least one of the six traits in
this study, and 24,576 individuals were included in the pedigree, of which 485 boars were
genotyped with the CAU50K SNP chip. After quality control, YY and DD populations
contained 32,322 and 25,539 SNPs, respectively.

2.2. Statistical Model

The best linear unbiased prediction (BLUP) method was applied to the six traits in
this study to determine the (co)variance components. For an evaluation of the genetic
relationships, the phenotypes have eight combinations between two growth traits with
four FE and FE-related traits. The following univariate and bivariate animal models were
used to estimate the variance components:

y = Xb + Z1a + Z2p + e

where y is the vector of observations for one of the six performance traits in univariate
analyses, while in the bivariate model, y is the vector of observations composed of one
FE-related trait and one growth trait. b is the vector of the fixed year-season effect; a is the
vector of additive genetic effects; p is the vector of random litter effects; e is the vector of
residual effects; and X, Z1, and Z2 are the incidence matrices of b, a, and p, respectively. The
distributions assumed for the random terms in the univariate model are a ∼ N

(
0, Aσ2

a
)
,

p ∼ N
(

0, Iσ2
p

)
, and e ∼ N

(
0, Iσ2

e
)
, while in the bivariate model, they are a ∼ N(0, G0 ⊗ A),

p ∼ N
(
0, Rp ⊗ I

)
, and e ∼ N(0, Re ⊗ I). σ2

a, σ2
p, and σ2

e are the additive genetic, litter, and
residual variances, respectively. G0, Rp, and Re are the 2 × 2 symmetrical direct additive
genetic effect, litter effect, and residual effect (co)variance matrices, respectively. I denotes
the identity matrix of adequate dimension, A denotes the numerator relationship matrix,
and ⊗ denotes the Kronecker product. The average body weight (ABW) of each individual
was computed as the average of the body weight at the start and end of testing. Metabolic
body weight (MBW) mid-test calculated as ABW raised to the power of 0.75 [17] was
included as a covariate for ADFI and FCR.

Using the estimated variance or covariance component from the bivariate analysis,
estimated genetic correlations were calculated as rg = σa12 /(σa1 σa2). We performed a
chi-square test with one degree of freedom using genetic correlation estimates and their SE
to study whether the genetic correlation is different from 0.

In the GWAS, a single-step genomic BLUP (ssGBLUP) [19,20] was first carried out to
estimate the genomic breeding values (GEBVs) for all animals in the pedigree by combining
their pedigree and genomic information, and the inverse of the relationship matrix (H) was
as follows:

H−1 = A−1 +

[
0 0
0 G−1 − A−1

22

]
where G−1 is the inverse of the genomic relationship matrix, and A−1

22 is the inverse
of the numerator relationship matrix for genotyped individuals. G was calculated as
G = wGr + (1 − w) A22 [21], where w = 0.95, and Gr is a genomic matrix before weighting,
calculated as VanRaden [22]. The same model as the above univariate model was used for
GEBV estimation by replacing A with H. Estimated variance components/GEBVs were
determined based on BLUP and ssGBLUP using the DMUAI module in the DMU soft-
ware package e. To eliminate the contribution of information from relatives, de-regressed
estimated breeding values (DEBVs) were used as the response variables in the GWAS.
According to the method proposed by Garrick et al. [23], the DEBVs of the genotyped
individuals were calculated based on the GEBVs from the univariate model using the R
package “blupADC” [24]. The GWAS was performed with the following a single-marker
regression model using GEMMA Software [25]:

y = Xm + Wa + e
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where y is the vector of the dependent variable (DEBV); m is the vector of the SNP
marker effects; a is the vector of the residual polygenic effects with a normal distribution
a ∼ N

(
0, Gσ2

a
)
, where G is the realized relationship matrix constructed with markers [8],

and σ2
a is the additive genetic variance; e is the vector of residual errors with a normal

distribution e ∼ N
(
0, Iσ2

e
)
, where I is an identity matrix, and σ2

e is the residual variance;
and X and W are the incidence matrices of y and are related to m and a, respectively.

For each SNP, the Wald statistic [26,27] was implemented to examine the significance
of the SNP’s association with each trait. Then, the Bonferroni correction was implemented
to define the significant threshold. To avoid missing the true hints of linkage, the genome-
wide significant and suggestive levels were set as p = 0.05/N and p = 1/N, respectively,
where N is the number of analyzed SNPs [28].

2.3. Candidate Genes and Functional Analysis

PigQTLdb [29] was used to annotate significant SNPs located in previously mapped
QTLs in pigs. The definition of QTL intervals followed the same procedures as those
of Delpuech et al. [30]. The region within 1 Mbp centered on each significant SNP was
defined as a “QTL window”. Then, overlapping windows were combined into a single QTL
region per trait within each breed. Gene contents within the detected QTLs were retrieved
from the Ensembl Genes 105 Database based on the Sscrofa11.1 genome assembly using
BioMart [31]. The biological functions of these genes were investigated in GeneCards [32]
and the reported literature. To provide insight into the functional enrichment of genes, Gene
Ontology (GO) [33] term and Kyoto Encyclopedia of Genes and Genomes (KEGG) [34] path-
way enrichment analyses were subsequently conducted using the KOBAS [35] database.

3. Results and Discussion
3.1. Phenotypes and Estimated Heritabilities

Table 1 shows the descriptive statistical results of the phenotypes and heritabilities
estimated in this study. A two-tailed Student’s t-test showed that the phenotypes among
the breeds were significantly different for all six traits. In general, AGE has a moderate
heritability, whereas BF has a moderate-to-high heritability [4,36]. In this study, AGE and
BF also had moderate heritabilities in YY and DD pigs (Table 1). The heritabilities of the
four traits in this study ranged from 0.14 (RFI) to 0.24 (ADFI) for YY and from 0.13 (ADG)
to 0.36 (FCR) for DD. The heritabilities estimated in this study were lower than those in
the study conducted by Homma et al. [18], which did not consider random environmental
effects. Our results agree with those of a previous study [4]; the estimated heritabilities are
different among breeds. In Chinese pig breeding, DD pigs are generally used as terminal
sires in combination with crossbred Landrace x Yorkshire sows. In DD pigs, there is a
greater focus on the selection of growth and FE, while in YY pigs, a major emphasis is
placed on improving litter size. In our study, the heritabilities of FE and FE-related traits in
DD were all above 0.30, except for that of ADG. Therefore, differences in breed management
might lead to differences in estimated heritability. In addition, differences in the inherent
genetic background of the varieties may be the main reason for this. Overall, it can be
concluded that the heritability estimates for the FE and FE-related traits of pig breeds
vary considerably depending on trait, statistical model, and population. The results show
that these traits have a moderate heritability. Thus, FE and FE-related traits could gain
considerable genetic advances with the implementation of genomic selection.
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Table 1. Number of observations (N), means (standard deviations), and heritabilities (standard errors).

Traits Unit
YY DD

N Means ± SD 1 h2 ± SE N Means ± SD h2 ± SE

ADFI kg/d 3656 2.38 ± 0.35 a 0.24 ± 0.04 2156 2.76 ± 0.35 b 0.36 ± 0.08
ADG kg/d 3555 0.83 ± 0.08 a 0.16 ± 0.04 2156 0.84 ± 0.08 b 0.13 ± 0.06
FCR kg/kg 3629 2.56 ± 0.24 a 0.17 ± 0.04 2148 2.70 ± 0.25 b 0.31 ± 0.07
RFI kg 3556 −0.07 ± 0.17 a 0.14 ± 0.03 2154 0.03 ± 0.19 b 0.32 ± 0.07
BF mm 3557 12.23 ± 2.46 a 0.48 ± 0.05 2157 11.75 ± 2.06 b 0.36 ± 0.07

AGE d 3548 159.88 ± 13.1 a 0.38 ± 0.06 2148 149.32 ± 9.7 b 0.19 ± 0.06
1 Means with different letters in a row are significantly different according to two-tailed Student’s t-test (p < 0.01).

3.2. Genetic Correlations of FE and FE-Related Traits with Growth Traits

Except for BF and RFI in DD (0.07), non-ignorable genetic correlations (>0.10) can be
found between two growth traits with FE and FE-related traits (Table 2). However, it is
worth noting that several genetic correlation coefficients have relatively large standard
errors. Consistent with Do et al. [4], we found that the BF of YY had positive genetic
correlations with ADFI (0.44) and ADG (0.13), while it was negative with RFI (−0.14).
This result implies that the selection of BF might have a negative effect on these FE and
FE-related traits, which is an unfavorable phenomenon for breeders. However, Hong
et al. [37] and Homma et al. [18] obtained positive estimated genetic correlations between
BF and RFI. Surprisingly, AGE was negatively correlated with ADFI (−0.25 for YY and
−0.36 for DD) and ADG (−0.69 for YY and −0.56 for DD), implying that selecting for a
lower AGE can improve a pig’s feed intake and growth rate. We also found that AGE and
BF had positive genetic correlations with FCR, suggesting that selecting a lower AGE made
animals eat more slowly, and this has also previously been reported [37]. As discussed
above, breeding experts must carefully determine the breeding scheme according to the
genetic relationships of growth traits with FE and FE-related traits in order to obtain the
maximum benefit.

Table 2. Genetic correlations (standard errors) among FE-related traits and growth traits in Yorkshire
(upper triangle) and Duroc (lower triangle) pigs.

Traits ADFI ADG FCR RFI BF AGE

ADFI 0.62(0.11)** 0.41(0.14) ** 0.80(0.06) ** 0.44(0.10) ** −0.25(0.19)
ADG 0.45(0.17) ** −0.44(0.13) ** 0.04(0.18) 0.13(0.13) −0.69(0.10) **
FCR 0.56(0.14) ** −0.44(0.19) * 0.48(0.12) ** 0.52(0.11) ** 0.38(0.18) *
RFI 0.93(0.04) ** 0.18(0.24) 0.77(0.08) ** −0.14(0.19) 0.32(0.13) *
BF 0.34(0.14) * −0.13(0.24) 0.23(0.16) 0.07(0.17) −0.18(0.11)

AGE −0.36(0.21) −0.56(0.28) * 0.27(0.23) −0.11(0.22) 0.15(0.21)

* (p < 0.05) and ** (p < 0.01) indicate genetic correlations different from zero with the chi-square test.

3.3. Genome-Wide Association Study

The descriptive statistics of the DEBVs used for the GWAS for FE and FE-related traits
included in this study are shown in Supplementary Table S1. We identified 61 significant
SNPs (Table S2) located on 12 different chromosomes (SSC), of which 15 SNPs reached
genome-wide significant thresholds (Table 3). As in previous studies [4,17], the genetic
backgrounds of the FE and FE-related traits were significantly different between breeds.
In addition, the P-values of the GWAS results were visualized using Manhattan plots and
Q–Q plots (Figures 1 and 2) by the R package “CMplot” [38]. Most of the significant SNPs
were retrieved in PigQTLdb (Table S2), revealing the reliability of the results. Surprisingly,
we found one novel SNP significantly related to each trait, ADFI (SSC18: 32623286), ADG
(SSC11: 67792739), FCR (SSC15: 16281234), and RFI (SSC8: 89446476), which might be a
potential new causative mutation for FE and FE-related traits.
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Figure 1. Manhattan plots and Q-Q plots of SNP additive effects for average daily feed intake
(ADFI), average daily gain (ADG), feed conversion ratio (FCR), and residual feed intake (RFI) traits
of Yorkshire. The X-axis is the position of SNP on each chromosome, and the Y-axis is the significant
level (−log10 p-value). The solid line indicates genome-wide significance (p-value = 1.55 × 10−6),
and the dashed line shows suggestive significance with a p-value threshold of 3.09 × 10−6.
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Figure 2. Manhattan plots and Q-Q plots of SNP additive effects for average daily feed intake (ADFI),
average daily gain (ADG), feed conversion ratio (FCR), and residual feed intake (RFI) traits of Duroc.
The X-axis is the position of SNP on each chromosome, and the Y-axis is the significant level (−log10

p-value). The solid line indicates genome-wide significance (p-value = 1.96 × 10−6), and the dashed
line shows suggestive significance with a p-value threshold of 3.92 × 10−6.
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Table 3. Identification of genome-wide significant SNPs associated with FE-related traits in pigs.

Breeds Traits Chr Location(bp) SNP Name Alleles 1 MAF 2 p-Value

DD
ADG

13 80,501,143 seq-rs710999761 T/G 0.468 2.27 × 10−7

13 98,302,557 seq-rs334871208 T/C 0.295 8.75 × 10−7

14 64,144,092 seq-rs80921027 A/G 0.282 1.77 × 10−6

FCR 15 16,281,234 seq-rs329844461 C/T 0.419 7.36 × 10−7

YY ADG

1 115,356,348 seq-rs344383954 C/A 0.050 1.32 × 10−6

3 83,351,277 seq-rs334252973 C/T 0.294 5.46 × 10−7

4 69,687,124 seq-rs322234522 T/C 0.053 1.58 × 10−9

6 105,104,215 seq-rs320347867 A/G 0.053 1.29 × 10−9

8 53,757,344 seq-rs339132738 T/C 0.056 2.92 × 10−8

13 38,267,479 seq-rs705817794 A/G 0.052 1.60 × 10−9

13 44,606,060 seq-rs793013452 C/A 0.050 2.03 × 10−9

13 147,609,391 seq-rs705621029 A/C 0.056 6.61 × 10−8

13 158,150,159 seq-rs338850979 T/C 0.052 2.56 × 10−8

14 66,511,894 seq-rs80790167 T/G 0.056 9.32 × 10−8

15 57,776,636 seq-rs699198332 A/G 0.063 8.52 × 10−8

1 Alleles: major/minor allele. 2 Minor allele frequency.

3.4. Candidate Genes and Functional Analysis

After merging overlapping “QTL windows”, we finally identified 8, 20, 2, and 7 QTLs
associated with ADFI, ADG, FCR, and RFI, respectively (Table S3). The four QTLs deter-
mined by four novel significant SNPs have not been reported in PigQTLdb. Considering
the biological functions of the genes annotated based on QTLs, 35 genes were identified
as positional candidate genes for FE and FE-related traits (Table S4). For example, ATPase
phospholipid transportation 8B1 (ATP8B1), a candidate gene of ADFI, is a protein coding
gene that is involved in ion-channel transport and the transport of glucose, bile salts, or-
ganic acids, metal ions, and amine compounds, and it has been identified as a candidate
gene for backfat thickness in pigs [39]. The melanocortin 4 receptor (MC4R) and lectin,
mannose binding 1 (LMAN1) were also identified as candidate genes for ADFI, and they
have been reported to be associated with AGE [10–13] and ADFI [40], respectively. The
insulin receptor (INSR) has repeatedly been reported to be an important gene affecting
RFI in relevant studies [14,41,42] because it plays an important role in synthesizing and
storing carbohydrates, lipids, and proteins. In addition, we identified eight candidate genes
(Table S4) in four novel QTLs, increasing the credibility of these QTLs, such as ZRANB3
and MCM6, which are essential for the initiation of genome replication.

In total, 617 enriched GO terms and 102 KEGG pathways were identified for candidate
genes of FE and FE-related traits, of which, 96 GO terms and 4 KEGG pathways were
considered statistically significant at FDR-corrected p < 0.05. The top 30 enrichment terms
are shown in Supplementary Table S5. The GWAS signals for FE and FE-related traits
were highly enriched in the biosynthesis (GO:0017101), digestion (KEGG:ssc04973), and
metabolism (KEGG:ssc00052) of biomolecules, such as carbohydrates and proteins. These
results are consistent with earlier findings by Li et al. [43]. We found that sialylation was
significantly associated with ADFI (GO: 0097503; p < 0.01), which is involved in the covalent
connection between sialic acid and substrate molecules and plays an important role in the
metabolism of macromolecular organic substances. The ephrin receptor signaling pathway
(GO: 0019899; p < 0.01) enriched on ADG is very important for protein synthesis, and it
regulates many major cellular processes that produce or use large amounts of energy and
nutrients. Therefore, it is an essential pathway for FE and FE-related traits [44]. Overall, FE
and FE-related traits were found to be related to diverse biological processes and pathways,
suggesting that they are highly polygenic traits regulated by many genes.
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4. Conclusions

In conclusion, the results show that the heritabilities of FE and FE-related traits ranged
from 0.13 to 0.36, and there were distinct genetic correlations (−0.69–0.52) of growth traits
with FE and FE-related traits. We identified four critical genomic regions for ADFI (SSC18:
32.12–33.12 Mbp), ADG (SSC11: 67.29–68.29 Mbp), FCR (SSC15: 15.78–16.78 Mbp), and
FCR (SSC8: 88.95–89.95 Mbp), and they might be potential new QTL regions for FE. We
also further identified 35 potential candidate genes for four FE and FE-related traits, and
they play an essential role in many biological processes, such as ion transfer, mitochondrial
activities, and the macromolecule metabolism. Some interesting KEGG pathways and GO
terms, e.g., sialylation, were found to have potential functions in FE in pigs. Overall, this
study’s estimation of genetic parameters and GWAS results helps us better understand the
genetic structure of FE and FE-related traits and provides important information for the
future genomic predictions of these traits.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani12151902/s1, Table S1: Number of observations (N), means
(standard deviations) of deregressed estimated breeding values (DEBVs), Table S2: Identification of
genome-wide or suggestive significant SNPs associated with FE and related traits in pigs, Table S3:
Identification of QTL regions associated with FE and related traits in pigs, Table S4: Candidate genes
associated with FE and related traits in pigs, Table S5: Top 30 terms or pathways ranked by corrected
p-values in enrichment analysis, Figure S1: SNP density plot of CAU50K SNP chip array; colors
represent number of SNPs within 1 Mbp.
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Appendix A

Two purebred pig breeds, Yorkshire (YY) and Duroc (DD), were used in this study.
Phenotypes were recorded from 2017 to 2019 to keep the environmental conditions con-
sistent as much as possible. All individuals in this study were boars, and they were
group-housed in half-open pens, with 12–15 individuals in each pen. All individuals in
this study remained in good health during the testing period. Both growth and feed intake
information were measured throughout the testing period, ranging from approximately
30 to 100 kg body weight (BW). Data collection in this weight range is mainly used to
improve the number of effective records and data accuracy. The original feeding record was
automatically generated by the automated feeding stations (Pig Performance Tester, Nedap,
Groenlo, the Netherlands). Backfat thickness was measured between the 10th and 11th ribs
of the pigs using real-time B-mode ultrasound at the end of testing. The phenotypic data
comprised individual ID, breed, birth date, starting weight, starting date, daily feed intake,
weight gain during testing, final weight, final date, and final backfat thickness. The 30 kg

https://www.mdpi.com/article/10.3390/ani12151902/s1
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to 100 kg BW data were collected from each pig during the testing period. Each animal was
labeled with a unique Radio Frequency Identification (RFID) tag on their ear, which can be
detected by the performance testing system. Once the pig visited the feeder, the date and
accurate start and stop times of feeding, the ID of the individuals, and feed consumption
were recorded.

All phenotypes in this study were from YY or DD boars. The traits (ADFI, ADG,
FCR, and ADG) of each pig were calculated during performance testing according to the
information provided by the performance testing system. Age at 100 kg (AGE) was adjusted
using the following formula:

AGE = AGEtest + (100 − BW)

(
AGEtest − A

BW

)
where AGEtest represents the age at the end of testing; BW is the body weight at the end of
testing; and A is the constant correction coefficients for boars and dams, with A = 50.775.

Backfat thickness at 100 kg (BF) was adjusted using the following formula:

BF = BFtest + (100 − BW)

(
BFtest

BW − B

)
where BFtest represents the backfat thickness at the end of testing; BW is the body weight at
the end of testing; and B is the constant correction coefficients for boars and dams, with
B = −7.277.

The average daily feed intake (ADFI) is the ratio of total feed intake and days during
the testing period. The feed conversion ratio (FCR) is the ratio of total feed intake to weight
gain during testing. The following formula calculated the average daily gain (ADG) during
the testing period:

AGE30 = AGEtest + (30 − BWs)b

ADG =
70

AGE − AGE30

where AGE30 is the age corrected to 30 kg; BWs is the body weight at the beginning of
testing; and b is the constant correction coefficients, with bYY = 1.550 and bDD = 1.536.

RFI was computed as the difference between the observed ADFI and the predicted
ADFI. The equation for the predicted ADFI [45] is as follows:

ADFI = β0 + β1(MBW) + β2(ADG) + β3(BF) + e

MBW =

(
BWs + BW

2

)0.75

where β0 is the intercept, β1 is the partial regression coefficient of ADFI on metabolic BW
(MBW) mid-test [17], β2 is the partial regression coefficient of ADFI on ADG, β3 is the
partial regression coefficient of ADFI on BF, and e is the residual error term. Then, we can
obtain the RFI from the residual. Data from animals with outlier phenotypes or DEBVs,
which were greater (lower) than the average plus (minus) 3.5 × SD, were also removed
from the final dataset.

There were 239,234 and 24,576 individuals with YY and DD pedigrees, respectively.
After preliminary screening, 3661 YY boars and 2162 DD boars could be used for the
subsequent data analysis. The SNP chip CAU50k designed in-house was used for genotyp-
ing. A total of 1314 boars, 920 YY and 494 DD, were genotyped using the CAU50K SNP
chip. Missing genotypes were imputed using Beagle software [46]. The quality control of
the genotype was carried out using PLINK [47] software (genotype call rate > 0.9, HWE
p > 10e−6, and MAF > 0.05). Individuals with an average SNP marker call rate < 0.9 or
missing DEBV were removed. Finally, 880 boars and 32,322 SNPs were retained in YY,
while 485 boars and 25,539 SNPs were retained in DD.
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Appendix B

The ear tissues of 1314 samples were collected, preserved with 75% alcohol, and
stored in −20 ◦C freezers. Genomic DNA was extracted from the collected frozen ear tissue
samples using a Qiagen DNeasy Tissue kit (Qiagen, Germany), and they were then analyzed
using spectrophotometry and agarose gel electrophoresis to ensure that they were of high
quality. All DNA samples were suitable for genotyping with a ratio of light absorption
(A260/280) between 1.8 and 2.0, a concentration > 50 ng/µL, and a total volume < 50 µL.

The SNP chip array named CAU50K used in this study was designed using the
Illumina platform based on pig genome version 10.2. SNP markers were chosen from
multiple sources, including SNPs related to major economic traits from the published
literature (5706 SNPs), SNPs with favorable polymorphisms detected in multiple pig
breeds at home and abroad (34,262 SNPs), and SNPs from the NCBI pig SNP database
(8265 SNPs). The panel had a total of 50,000 SNPs, of which 22,110 SNPs were shared
by CAU50K and Illumina 60K. The CAU50K SNP density plots drawn with R package
“CMplot” [38] are shown in Supplementary Figure S1, and they indicate that SNPs are
more evenly distributed across different chromosomes. The results show that our panel
could be effectively imputed to the Illumina 60K panel with an imputation accuracy higher
than 0.95 and vice versa (results not shown). UCSC liftOver [48] was used to transfer the
physical position aligned to the Sscrofa 10.2 genome assembly to those aligned to the latest
Sscrofa 11.1 genome assembly. SNPs located on the sex chromosomes and unmapped SNPs
(pig genome build11.2) were also excluded.
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