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Simple Summary: In this study, the pairwise fixation index (Fst) and 7 ratio (case/control) genetic
parameters were used to identify the genes that influence the body size of pigs and analyze the
genetic basis of pig body size formation. The results of candidate gene (CG) annotation showed
that a series of CGs (MSTN, LTBP4, PDPK1, PKMYT1, ASS1, and STAT6) was enriched into the gene
ontology terms. Moreover, molecular pathways, such as the PI3K-Akt, HIF-1, and AMPK signaling
pathways, were verified to be related to body development. These findings will help us further
understand the genetic basis of animal body-size determination.

Abstract: This study aimed to identify the genes related to the body size of pigs by conducting
genome-wide selection analysis (GWSA). We performed a GWSA scan on 50 pigs belonging to four
small-bodied pig populations (Diannan small-eared pig, Bama Xiang pig, Wuzhishan pig, and Jeju
black pig from South Korea) and 124 large-bodied pigs. We used the genetic parameters of the
pairwise fixation index (FsT) and 7t ratio (case/control) to screen candidate genome regions and genes
related to body size. The results revealed 47,339,509 high-quality SNPs obtained from 174 individuals,
while 280 interacting candidate regions were obtained from the top 1% signal windows of both
parameters, along with 187 genes (e.g., ADCK4, AMDHD2, ASPN, ASS1, and ATP6V0C). The results
of the candidate gene (CG) annotation showed that a series of CGs (e.g.,, MSTN, LTBP4, PDPK1,
PKMYT1, ASS1, and STAT6) was enriched into the gene ontology terms. Moreover, molecular
pathways, such as the PI3K-Akt, HIF-1, and AMPK signaling pathways, were verified to be related to
body development. Overall, we identified a series of key genes that may be closely related to the
body size of pigs, further elucidating the heredity basis of body shape determination in pigs and
providing a theoretical reference for molecular breeding.

Keywords: domestic pigs; body size; genome wide; skeletal muscles

1. Introduction

As one of the earliest domesticated animals, pigs are affected by different long-term
artificial selection processes and the natural environment of their habitats. Consequently,
pig breeds exhibit numerous evident differences in phenotype appearance and growth per-
formance, particularly in terms of body size [1-3]. Some breeds, such as long white, Large
White, and Duroc pigs, are larger, with adults weighing more than 200 kg. Other breeds,
such as Bama Xiang and Wuzhishan pigs, are smaller, with adults generally weighing
below 50 kg [4].
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Breeds with smaller weight and size are frequently referred to as miniature pigs.
Miniature pigs are extensively used in many fields apart from animal husbandry. For
example, they have become ideal laboratory animals because of their small size, low
feed consumption, genetic stability, easy microbial control, convenient operation and
management, and docile temperament [5,6]. In particular, given that the physiological and
anatomical characteristics of pigs are highly similar to those of humans, these animals can
be used as important medical models [7-9]. They can also be bred as pets because of their
advantages in terms of appearance [10]. Research on miniature pig breeds has become
increasingly comprehensive, and the use of these pigs has become more common. For
example, miniature pigs are selected as medical models for respiratory toxicology [11,12],
reproductive toxicity [13], atherosclerosis [14,15], diabetes [16,17], and neurodegenerative
diseases [18,19]. At present, a large number of genes related to body size development
have been verified; they include HMGA2, BMP2, FGFR3, and insulin-like growth factor
(IGF)-1R.

In particular, studies have confirmed that the HMGA2-mediated JNK signaling path-
way can affect the differentiation of osteoblasts. Evidence of a close link between the
expression of the HMGA?2 gene and pig body size has also been found; that is, the HMGA2
gene is only activated during infant development and it controls the total number of cells
in an animal; in particular, its expression level is proportional to animal body size [20,21].
Simultaneously, previous studies have proven that the BMP2 and FGFR3 genes play key
roles in the cartilage and bone formation of pigs. The BMP2 gene promotes pig bone
development; conversely, the FGFR3 gene inhibits bone development in pigs [22]. Further-
more, evidence has revealed that mice with IGF1R deficiency will suffer from dwarfism
to a certain extent, and IGFIR defects can alter chondrocyte proliferation, leading to the
excessive hypertrophy of growth plates in the bone extension zone and apoptosis [21].

Although studies that used candidate gene (CG) markers to explore the genetic basis
of body shape in miniature pigs are extensive [23-25], these markers are not yet fully under-
stood at present. Accordingly, the current study aimed to compare the genetic divergence
between miniature and large pigs worldwide to recognize the genetic mechanism behind
miniature pigs with published SNP data from swine genome sequencing data. To achieve
this objective, we screened highly selective regions in miniature pigs to identify CGs that
may affect their body size compared with large pigs. The results could provide a theoretical
reference for the experimental model breeding of miniature pigs.

2. Materials and Methods

A public dataset that contained 174 pig genome [24,26-32] raw SNPs mapped by the
pig reference genome [Sscrofal(.2 (GCA_000003025.4); Table S1; http:/ /ftp.ensembl.org/
pub/release-89/fasta/sus_scrofa/dna/ (accessed on 3 July 2021)] was obtained from the
Genome Variation Map (https://ngdc.cncb.ac.cn/gvm/ (accessed on 13 February 2022)).
It included data from 50 small-bodied (case group) and 124 large-bodied (control group)
pigs, as detailed in Table S1. Moreover, the obtained genetic risk score data were subjected
to quality control detection by using fastp (v0.20.1). SNP sites with an average minimum
allele frequency of <0.05 were removed, and a high-quality dataset with 47,339,509 SNPs
was obtained.

In the current study, the genome-wide selection analysis strategy was performed with
the pairwise fixation index (Fsr) [33] and 7 ratio (case/control) [34] by using 40 kb-long
windows and 10 kb step size with VCFtools (http:/ /vcftools.sourceforge.net/ (accessed on
25 February 2022)) [35].

The interacted windows of both parameters with the top 1% windows were obtained,
and overlapped genes were annotated with the variant effect predictor. In addition, CGs
were subjected to gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) by using KOBAS 3.0 (http:/ /kobas.cbi.pku.edu.cn/; accessed on 16 February 2022).
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The significant enrichment thresholds were defined as p < 0.05. The formula for calculating
the p value of KEGG and GO enrichment was as follows:

=

n

)

where N is the number of all genes with GO annotations, n is the number of genes in N, M
is the number of all genes that are annotated to the specific GO terms, and m is the number
of genes in M.

3. Results

From the 174 pig genome-wide SNP data, 235,623 autosomal windows were obtained.
The thresholds of the top 1% selective signal windows were defined as 0.48 (Fst) and 0.31 (7
ratio) (Figure 1). A total of 187 CGs were identified from 280 interacted windows (Table S2).
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Figure 1. Wide-genome selective signal analysis of 174 pigs by SNP dataset. (a) The distribution of 67
ratio (—Log10[07 ratio(67tcase/Omcontrol)]) on the autosomal chromosome calculated by 40k sliding
window size with 20k step. (b) The distribution of Fs on the autosomal chromosomes calculated by
40k sliding window size with 20k step.

The GO analysis results revealed that 40 CGs were enriched to 369 GO terms. Among
the 369 enriched GO terms, 210 were biological processes. In particular, cell adhesion
was the most significant (including a variety of signaling pathways that regulate cell
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physiological processes), 76 were cellular components, and 76 were molecular functions. In
particular, 189 enriched terms were significant (p < 0.05) (Table S3, Figure 2A).
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Figure 2. Annotation and functional enrichment of candidate genes of pig body size determination.
Note: (A) Circle graphic of gene ontology (GO) enrichment. (B) Network graphic pattern of top
25 significant enriched molecular signaling pathways (KEGG).

In accordance with the functional classification of a GO term, a series of CGs was
enriched into GO terms related to muscle development regulation, such as cell growth
regulation (LTBP4) and skeletal muscle atrophy (MSTN). In addition, it enriches galvanic
processes related to cell appreciation, such as growth hormone secretion (LTBP4), mi-
totic cell cycle (TUBB3 and PKMYT1), growth hormone receptor signaling pathway via
JAK-STAT (STAT6), growth hormone response (ASS1), mitotic nuclear division regula-
tion (PKMYT1), insulin receptor binding (PDPK1), and cell growth regulation (LTBP4).
In particular, several GO terms related to bone growth and development were identi-
fied, such as the negative regulation of ossification (KREMEN?2) and regulation of bone
mineralization (OMD).

The results of KEGG enrichment showed that 20 genes were enriched to 88 KEGG
signaling pathways (Table 54, Figure 2B). Among these enriched pathways, 26 belonged
to the organizational system category, 7 belong to metabolism, 27 belong to human dis-
eases, 3 belong to genetic information processing, 13 belong to environmental information
processing, and 10 belong to cellular processes. A total of 12 enriched pathways were
significant (p < 0.05), such as the PI3K-Akt signaling pathway, collecting duct acid secretion,
and arginine biosynthesis.

Notably, 7 of the 20 CGs (e.g., PDPK1, STAT6, and ASS1) were not only enriched into
metabolic-related signaling pathways, including the thyroid hormone signaling pathway;,
and the alanine, aspartate, and glutamate metabolism, but also enriched into known cell
value-added growth regulation-related signaling pathways (e.g., cell cycle, apoptosis, JAK-
STAT signaling pathways) and growth/development-related signaling pathways (e.g.,
phosphatidylinositol signaling system and HIF-1 signaling pathways).

4. Discussion

The growth of an animal’s body is accompanied by the proliferation and differentiation
of various cells and the regulation of various types of growth hormones. In the current
study, the growth and development of muscles, fats, and bones are important influencing
factors. In this work, a series of high-selection signal regions and coding genes (e.g., MSTN,
LTBP4, and PDPK]1) related to body size was identified.

Evidence supports that cell number is the primary factor that affects body size in
mammals. [36]. Cell proliferation and apoptosis are inextricably linked to the number
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of cells [37]. Studies have shown that systemic factors (e.g., growth hormone) and local
signaling molecules (e.g., IGF) control the proliferation and apoptosis of various cells in the
body, ultimately controlling body size [23,38].

For many types of cells, hypoxia induces decreased cell proliferation, because in-
creasing cell numbers only exacerbates hypoxic stress, particularly in embryonic stem
cells (ESCs) [39-41]. A previous study found decreased bromodeoxyuridine incorporation
into DNA (a measure of DNA replication) when ESCs were exposed to hypoxia in mice.
Conversely, ES and fibroblasts from mice with HIF-1« functional loss with exposure to
hypoxia did not result in reduced DNA replication [40,42]. HIF-1x overexpression also
reportedly induced cell cycle arrest [43].

The size of muscle tissues is directly related to body size [44]. Studies have shown
that when the rate of protein anabolism exceeds that of protein catabolism, the result
can be skeletal muscle growth [45]. Two well-known molecular signaling pathways are
responsible for protein synthesis, namely, the IGF1-Akt-mTOR and inhibitin-Smad2/3
pathways, which positively and negatively regulate muscle growth, respectively [46].
The CG MSTN identified in this study was enriched in the aforementioned pathways.
Numerous studies have indicated that the functional loosening of MSTN is primarily the
genetic basis for the double muscle glute phenotype of robust muscle development in
domestic animals [47]. MSTN has also been demonstrated to impair satellite cell activation,
proliferation, and macrophage and myoblast migration to damage sites to inhibit skeletal
muscle regeneration [48].

Moreover, the LTBP4 gene identified in this study was confirmed to be associated
with the clinical manifestations of muscular dystrophy in mice and humans [49]. For
example, increasing the expression of the LTBP4 gene significantly increased body weight
and skeletal muscle mass in malnourished mice [50]. In particular, the increased expression
level of LTBP4 reduced MSTN expression [51]. LTBP4 has also been suggested to interact
with GDF11 protein, which is highly associated with muscle growth inhibition, to codirect
muscle development and regulation [52,53].

In addition, CG PDPK1 was enriched into the AMPK signaling pathway (5’-adenosine
monophosphate-activated protein kinase); this phenomenon has been extensively demon-
strated to regulate cell anabolism and catabolism by modulating many downstream targets
participating in skeletal muscle development and growth [54]. Pharmacological evidence
shows that AMPK inhibits muscle growth, and AMPK activation inhibits protein translation
increase after resistance exercise [55]. In theory, protein catabolism exceeding anabolism
leads to skeletal muscle atrophy [51,56]. The activation of AMPK can reportedly exert the
inhibitory effects of protein synthesis on multiple cell types [57,58], particularly muscle
cells and cardiomyocytes [52,59].

Moreover, AMPK exhibits protein synthesis inhibition through the rapamycin complex
1 (mTORC1) pathway [60,61], and mTOR has also been verified as a critical regulating factor
for skeletal muscle quality [62]. In particular, mTORC1 drives cell growth by stimulating
downstream protein synthesis through phosphorylation, such as ribosomal protein S6
kinase (p70S6K1) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) [63]. Studies
have shown that mTOR can also be involved in regulating mitochondrial function. For
example, mTOR can coordinate energy consumption and mitochondrial energy production
during messenger RNA translation by stimulating the synthesis of mammalian nucleus-
encoded mitochondrion-associated proteins (e.g., TFAM and mitochondrial ribosomal
proteins) [64,65].

AMPK also performs catabolic regulation depending on the AMPK stimulation of
FoxO. Several pieces of evidence have supported the theory that an injection of AMPK acti-
vator in mice increased the expression of FoxO1 and FoxO3 [66,67]. In skeletal muscles, two
E3 enzymes (atrogin-1 and MuRF-1) have been confirmed to guide the polyubiquitination
of proteins; these enzymes are also associated with muscle atrophy [68]. The expression
of muscle atrophy-related genes, i.e., atrogin-1 and MuRF-1, is known to be regulated
by transcription factors, particularly FoxO members [69]. Coincidentally, FoxO6 has been
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shown to be involved in the dietary obesity and type 2 diabetes of animals via insulin
resistance [70]. Therefore, the CG PDPK1, which was identified in the current study to be
enriched in the mTOR, AMPK, FoxO, and other related pathways, may be an important
genetic basis for determining the body size of pigs.

The region of the STAT6 gene, which is involved in growth hormone (GH) secretion,
was identified to be a highly selective signal in the current study. GH is a known pleiotropic
hormone that coordinates extensive physiological processes, including growing effects
on bones, muscles, and fats [71]. In particular, GH promotes anabolic effects in most
tissues [72].

Nitric oxide (NO) has been verified to play a key role in regulating systemic metabolism
and insulin sensitivity [73]. NO regulates aerobic respiration processes in the mitochon-
drion through mitochondrial activity and O, levels [11,12]. The ASS1 identified in the
present study is the enzyme responsible for the metabolism of citrulline in mammals; mean-
while, the arginine succinate produced by ASS1 is a direct precursor of arginine, which is
the raw material for the most common route to the intracellular synthesis of NO [74].

The PI3K/AKT/mTOR pathway enriched by a large number of CGs in the current
study has also been confirmed to be involved extensively in the growth and metabolism
of cells and their maintenance [75]. Furthermore, bone mineral density and bone volume
fraction in animals are known to be related to body size [76]. Recent studies have shown
that the PI3K/Akt signaling pathway also collaborates with glucocorticoids to control
osteoblast growth and differentiation by inhibiting osteoblast replication and function and
promoting osteoblast apoptosis [77].

Finally, the CG ITPKC was identified in the current study to be enriched in the phos-
phatidyl inositol (PI) signaling pathway. Previous findings have demonstrated that ITPKC
controls the biological functions of organelles by regulating vesicle transport and regulates
lipid distribution and metabolism via lipid transfer proteins [78]. In particular, numerous
clinical studies have shown that PI metabolism disorders are major causes of obesity and
diabetes [79].

5. Conclusions

In the current study, a series of hormone secretion regulation, resting oxygen con-
sumption of cell pathways, and related CGs was identified via whole genome resequencing
technology to help understand the genetic basis of pig body-size determination.
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