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Simple Summary: We first report the complete mitochondrial genome of C. elongatus, which is
circular and 13,875 bp in size, containing 12 PCGs, 22 tRNAs, 2 RNAs, and 2 NCRs. Comparative
analyses and phylogenetic analyses show that C. elongatus is a member in Cylicocyclus based on mt
genome data.

Abstract: Cylicocyclus elongatus (C. elongatus) is one of the species in Cylicocyclus, subfamily Cyathos-
tominae, but its taxonomic status in Cylicocyclus is controversial. Mitochondrial (mt) genome is an
excellent gene marker which could be used to address the taxonomy controversy. In the present
study, the complete mt genome of C. elongatus was determined, and sequence and phylogenetic
analyses were performed based on mtDNA data to determine the classification of C. elongatus. The
circular complete mt genome of C. elongatus was 13875 bp in size, containing 12 protein-coding
genes (12 PCGs), 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes, and 2 non-coding
regions (NCRs). The A + T content of C. elongatus complete mt genome was 76.64%. There were
19 intergenic spacers with lengths of 2–53 bp and 2 overlaps with lengths of 1–2 bp in the impact
complete mt genome. ATT and TAA were the most common start and termination codons of 12 PCGs,
respectively. Comparative analyses of mt genomes nucleotide sequence and amino acid sequence
showed that there were higher identities between C. elongatus and five other Cylicocyclus, rather
than with P. imparidentatum. Phylogenetic analyses based on concatenated nucleotide sequences
of 12 PCGs of 23 species in the family Strongylidae showed that C. elongatus was closely related to
Cylicocyclus species, rather than P. imparidentatum. We concluded that C. elongatus was a member in
Cylicocyclus based on comparative and phylogenetic analyses of mt genome sequences. The data
of the complete mt genome sequence of C. elongatus provide a new and useful genetic marker for
further research on Cyathostominae nematodes.

Keywords: Cylicocyclus elongatus; mitochondrial genome; comparative analyses; phylogenetic analyses

1. Introduction

Cyathostominae (Strongylida: Strongylidae) nematodes are a group of significant
pathogens of equines which inhabit the large intestine [1]. There are more than 50 species
in the subfamily, and the occurrence of co-infection of different kinds of parasites is quite
common in hosts [2]. Co-infection of these adult parasites can cause dropsy, diarrhoea, and
weight loss, and the larvae can cause fatal cyathostominosis [3–5].

Cyathostomins are considered to be one of the primary parasites of equids. The taxa
controversies in the subfamily have been discussed for at least one century. Researchers
have primarily presented their views on the classification at the generic level of these
nematodes [6,7]. Cylicocyclus Ihle, 1922 is the largest genus of Cyathostominae, and the
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taxonomic status of some species in the genus is still controversial [8]. C. elongatus is one
of the members in the genus, which has a greatly elongated bursa and differs from con-
geners [1]. Phylogenetic analyses combining internal transcribed spacers (ITS)-1 and ITS-2
data suggested that C. elongatus clustered with the comparative species (Petrovinema pocula-
tum and Poteriostomum imparidentatum), indicating that C. elongatus represents members of
other genera [8].

Mt genomes have been successfully applied in parasite taxonomy, population genetics,
and systematics, because of characteristics such as strict maternal inheritance and compar-
atively conserved genomic structure [9,10]. In previous studies, mt genomes have been
used to address a lot of controversies on the status of certain taxa, such as the taxonomy
of Triodontophorus, the identification of species complex, etc. [11–13]. Now, 13 complete
mt genomes of Cyathostominae nematodes have been determined, including 5 complete
mt genomes in Cylicocyclus [10–12,14]. However, the complete mt genome of C. elongatus
has not been completed. Thus, to identify the classification of C. elongatus, the aims of the
present study were to sequence the complete mt genome of C. elongatus, to compare the
obtained complete mt genome sequences among congeneric species, and to reconstruct the
phylogenetic relationships to assess the status of C. elongatus within the Cyathostominae.

2. Materials and Methods
2.1. Parasites and Molecular Identification of Specimens

Adult nematodes of C. elongatus were collected from naturally infected horses from a
slaughterhouse in Daqing, Heilongjiang Province, China. The nematode was identified to
the species level based on morphological features and molecular biology techniques [1].
Total genomic DNA was extracted from one adult C. elongatus by the TIANamp Genomic
DNA Kit according to the manufacturer’s instructions (TIANGEN Biotech, Beijing, China)
and stored at −20 ◦C until use. The ITS of C. elongatus were amplified for the identification
of molecular biology using universal primers NC5 (5′-GTA GGT GAA CCT GCG GAA GGA
TCA TT-3′) and NC2 (5′-TTA GTT TCT TTT CCT CCG CT-3′), reported previously [15].

2.2. The Amplification and Annotation of C. elongatus Complete Mt Genome

The primers of the complete mt genome amplification in this study were designed
according to the mt genomes sequences of the congenic species. The conservative sequences
of each region in those of congener species were selected to use as the candidate primers.
The evaluation of these primers was performed using Oligo 6.0. Eight primers were used
to amplify the complete mt genome as 8 overlapping fragments from genomic DNA (Table
S1). PCR was conducted in a 50 µL reaction mixture containing 1 × Ex Taq Buffer, 0.2 mM
dNTP Mixture, 0.625 U TaKaRa Ex Taq, 0.4 µM of each primer, and 1 µL gDNA under
the following condition: an initial denaturing at 94 ◦C for 5 min, followed by 35 cycles
(denaturing at 94 ◦C for 1 min, annealing at 55–40 ◦C for 30 s, and extension at 72 ◦C for
1–2 min), and a final extension at 72 ◦C for 7 min. All positive amplicons were purified,
cloned into pMD 18-T vector, and transformed into E. coli DH5α. The positive clones were
sent to Sangon Biotech Co., Ltd. (Shanghai, China) for sequencing.

The complete mt genome of C. elongatus was aligned with those of Cyathostominae
nematodes [11,14,16]. Gene boundaries including 12 PCGs, 22 tRNAs, and 2 rRNAs were
determined by the species in Cylicocyclus using Clustal X 1.83, MEGA X, and tRNAscan-SE
2.0 (tRNAscan-SE Search Server (ucsc.edu)) (accessed on 11 August 2020) [17,18].

2.3. Comparative Analyses of Cylicocyclus Species and P. imparidentatum Mt Genomes

Comparisons of C. elongatus complete mt genome with those of five species (Cylicocylus
ashworthi, Cylicocyclus insigne, Cylicocyclus radiatus, Cylicocyclus auriculatus, and Cylicocy-
clus nassatus) in Cylicocyclus available in GenBank were performed, including lengths,
identities, A + T contents, and protein codons [10,16,19]. Percentages of A + T content
of each gene/region was computed using DNAStar (v. 12.1) [20]. GC and AT skews
were calculated according to the following formulas: AT skew = (A − T)/(A + T) and
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GC skew = (G − C)/(G + C). The identities of amino acids and nucleotides sequences
among 6 Cylicocyclus species and P. imparidentatum were calculated by MegAlign 5.01 [20].

2.4. Phylogenetic Analyses of 23 Strongylidae Nematodes

Phylogenetic analysis in the present study was based on the concatenated nucleotide
sequences of 12 PCGs and complete mt genome nucleotide sequences of 23 Strongylidae
nematodes available in GenBank, respectively. Oxyuris equi was used as the outgroup.
The sequences of 12 PCGs of 23 Strongylidae nematodes were aligned using MAFFT
7.471 and then concatenated into a single alignment [21]. Sites of ambiguous alignment
were eliminated using the online server Gblocks (Phylogeny.fr: Gblocks) (accessed on
12 October 2020). Maximum likelihood (ML) method was used to reconstruct the relation-
ships by Mega X.

3. Results
3.1. The Annotation of C. elongatus Complete Mt Genome

The complete mt genome of C. elongatus was 13,875 bp in length. It contained 36 genes,
including 12 PCGs (cox1-cox3, cytb, atp6, nad1-nad6, and nad4L), 22 tRNAs, and 2 rRNAs
(Table 1, Figure 1). The A + T and G + C contents of C. elongatus complete mt genome were
76.64% and 23.36%, with 0.39 and −0.19 AT skew and GC skew, respectively. These PCGs
started at ATT and TTG, and stopped at TAA and TTG. Cox3 used the incomplete codon
“T” as a stop codon. In the mt genome of C. elongatus, there were 19 spacer regions and
two short overlaps. The spacer regions ranged from 2 bp to 52 bp in length, and the size of
overlaps were all 1–2 bp.

There were two rRNAs (rrnL and rrnS) in the mt genome of C. elongatus, with lengths
of 968 bp and 699 bp, respectively. The sizes of 22 tRNAs in the mt genome of C. elongatus
were 53–63 bp. Moreover, a large NCR with a length of 286 bp and a shorter NCR with a
length of 81 bp were found in the mt genome of C. elongatus. The A + T contents of the
large and shorter NCRs were 85.31% and 81.48%, respectively.
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Table 1. The gene composition, position, codons, and spacer/overlap regions of complete mt genome
of C. elongatus.

Genes/Regions Positions and Sequence
Lengths (bp)

Initiation and Stop
Codons

Intergenic
Nucleotides

cox1 1–1578 (1578) ATT/TAA 0
tRNA-Cys (C) 1579–1634 (56) – 0
tRNA-Met (M) 1648–1706 (59) – 13
tRNA-Asp (D) 1707–1765 (58) – 0
tRNA-Gly (G) 1787–1843 (57) – 22

cox2 1844–2539 (696) ATT/TAA 0
tRNA-His (H) 2540–2593 (54) – 0

rrnL 2601–3568 (968) – 7
nad3 3572–3907 (336) ATT/TAA 4
nad5 3918–5501 (1584) ATT/TAG 10

tRNA-Ala (A) 5501–5556 (56) – −1
LNCR 5557–5842 (286) – 0

tRNA-Pro (P) 5843–5897 (55) – 0
tRNA-Val (V) 5931–5985 (55) – 33

nad6 5986–6420 (435) ATT/TAA 0
nad4L 6473–6706 (234) ATT/TAA 52

tRNA-Trp (W) 6732–6787 (56) – 21
tRNA-Glu (E) 6815–6874 (60) – 27

rrnS 6877–7575 (699) – 2
tRNA-SerUCN (S2) 7576–7631 (56) – 0

tRNA-Asn (N) 7630–7684 (55) – −2
tRNA-Tyr (Y) 7693–7748 (56) – 8

nad1 7749–8621 (873) TTG/TAA 0
atp6 8632–9231 (600) ATT/TAA 10

tRNA-Lys (K) 9248–9309 (62) – 16
tRNA-LeuUUR (L2) 9328–9382 (55) – 18
tRNA-SerAGN (S1) 9383–9435 (53) – 0

nad2 9436–10,281 (846) TTG/TAA 0
tRNA-Ile (I) 10,288–10,346 (59) – 6

tRNA-Arg (R) 10,374–10,436 (63) – 27
tRNA-Gln (Q) 10,444–10,498 (55) – 7
tRNA-Phe (F) 10,505–10,559 (55) – 6

cytb 10,560–11,672 (1113) ATT/TAA 0
tRNA-LeuCUN (L1) 11,683–11,737 (55) – 11

cox3 11,738–12,506 (769) ATT/T 0
tRNA-Thr (T) 12,507–12,564 (58) – 0

nad4 12,565–13,794 (1230) TTG/TAA 0
SNCR 13,795–13,875 (81) – 0

Total size (bp) 13,875 –
Note, “–” is no data.

3.2. Comparative Analyses of Mt Genomes among Cylicocyclus Species and P. imparidentatum

A comparison of amino acids and nucleotides sequence identities and lengths was
made among six Cylicocyclus species and P. imparidentatum (Table 2 and Table S1). The
identities of nucleotides sequences of the complete mt genomes among six Cylicocyclus
species and P. imparidentatum were 82.9–90.7%. The identity of nucleotides sequence of
complete mt genomes between C. elongatus and P. imparidentatum was 84.3%. These results
showed that the identities between C. elongatus and P. imparidentatum were lower than
those among Cylicocyclus species, indicating that C. elongatus had higher identities with
congeneric nematodes (Table 2).

The lengths of 12 PCGs of C. elongatus were the same as those of other Cylicocyclus
species, except for cox3 gene, which was 3 bp longer than that in the other five Cylicocyclus
species. The size of cox3 in C. elongatus was longer than that in P. imparidentatum in
Cyathostominae, but the size of nad4 was shorter (Table S1). As regards the identities of
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each mt gene, P. imparidentatum has lower identities to all five of the Cylicocyclus species,
than those among Cylicocyclus species.

Table 2. The identities of nucleotides sequences of complete mt genomes among 6 Cylicocyclus species
and P. imparidentatum.

Species
Identity Nts (%)

C. el C. as C. i C. au C. n C. r P. i

Total Size (bp) 13,828 13,817 13,876 13,836 13,831 13,846 13,875
C. as 87.1 – – – – – –
C. i 88.1 88.2 – – – – –

C. au 87.2 87.4 89.6 – – – –
C. n 87.1 90.7 88.0 87.2 – – –
C. r 87.4 90.7 88.0 87.6 89.4 – –
P. i 84.3 82.9 83.6 82.9 83.0 83.3 –

Note, “–” is no data.

The A + T contents and skewness of C. elongatus were similar to those of Cylicocyclus
species; however, the A + T content of 1st coding position of C. elongatus was higher
than those in Cylicocyclus species and P. imparidentatum. The A + T skewness of first and
second coding positions of C. elongatus was higher than those of Cylicocyclus species and
P. imparidentatum, but the A + T skewness of third coding positions was lower than those of
others in the present study (Figure S1).

3.3. Phylogenetic Analyses of 23 Species in the Family Strongylidae

In the current study, the phylogenetic relationship was reconstructed based on concate-
nated nucleotide sequences of 12 PCGs from 23 species in the family Strongylidae using ML
method (Figure 2). The topological structure of the phylogenetic trees divided Strongylidae
into two clades. One clade included 2 species, Strongylus, and another clade grouped 21
other species together in the family Strongylidae. C. elongatus and congeneric species are
closely related to each other rather than to P. imparidentatum. Moreover, based on the tree in
the current study, the results showed C. elongatus formed a distinct branch in the clade of
Cylicocyclus, indicating that C. elongatus might be relatively closely related to other Cylico-
cyclus species that did not obtain complete mt genomes. The phylogenetic relationships
reconstructed by nucleotide sequences of complete mt genomes of 23 species of the family
Strongylidae were similar to those of Figure 2 (Figure S2). In the trees, C. elongatus was also
closely related to congeneric species rather than to P. imparidentatum.
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4. Discussion

The complete mt genome of C. elongatus was described first in the present study. Its
composition, gene orders, transcription direction, and codon usages were the same as other
Cyathostominae parasites [11,12,14]. Its sizes were slightly shorter than that of C. ashworthi
(13,876 bp), longer than those of others in Cyathostominae, such as P. imparidentatum, C.
nassatus, and C. radiatus [11,12,14]. The A + T contents of C. elongatus complete mt genomes
were 76.64%, which was similar to those of nematodes such as C. radiatus, Cy. catinatum,
and Cs. minutus [11,14]. The complete mt genome of C. elongatus had an impact structure
that was similar to C. insigne, C. radiatus, and P. imparidentatum [10,11,14].

Comparison of nucleotide and amino acid sequences of mt genomes among six Cylico-
cyclus species and P. imparidentatum was performed. In previous studies, the identities of
nucleotide sequences of complete mt genomes in congeners were 94.6% identity between
Cyathostomum pateratum and Cyathostomum catinatum, 84.7% identity between Chabertia
ovina and Chabertia erschowi, and 86.0% identity between Triodontophorus serratus and Tri-
odontophorus nipponicus, respectively [22–24]. In the present study, C. elongatus had higher
identities to congeneric nematodes rather than to P. imparidentatum, indicating that C. elon-
gatus was more similar to Cylicocyclus species in terms of nucleotide sequences [11,14,16].
The results also indicated that C. elongatus might be a member to Cylicocyclus. AT bias
in nucleotide composition of the complete mt genomes reflected a bias in the amino acid
composition of proteins. Highly AT-rich regions for each genome may represent the origin
of replication [10,25]. In the present study, higher A + T skewness of first and second coding
positions were found in the complete mt genome of C. elongatus indicating that it might be
more easily changed in the evolution.

In the current study, the phylogenetic relationships were reconstructed by nucleotide
sequences. The topological structures of phylogenetic trees were similar with different
data, which all supported that C. elongatus was closely related to Cylicocyclus, rather than
to P. imparidentatum. The results were inconsistent with a previous study, which showed
that C. elongatus was closely related to P. imparidentatum, C. ultrajectinus, and P. poculatum
based on the combined ITS-1 and ITS-2 sequences [8]. The discrepancy was caused by the
different gene markers used for evolutionary analysis. In many previous studies, it has been
demonstrated that mt genomes are better gene markers for phylogenetic analyses, because
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of characteristics such as strict maternal inheritance, apparent lack of recombination, rapid
evolutionary rate, and comparatively conserved genomic structure [9,10,25]. ITS, as the
important region in rDNA, was more suitable for species identification. Though we did not
obtain the complete mt genomes of C. ultrajectinus and P. poculatum, we also concluded that
C. elongatus did not closely relate to P. imparidentatum, and C. elongatus did not represent
members of other genera. We also expect to sequence more complete mt genomes in
Cyathostominae to discuss and support these views. Moreover, for all trees in the present
study, it is interesting that Cyathostomum tetracanthum arose within Cylicocyclus. The result
was not in conformity with the classification based on morphology. More complete mt
genomes of Cy. tetracanthum should be obtained to explain the reason. Further, the taxa in
Cyathostominae may be redefined based on mt genomes data.

5. Conclusions

The present study first reported the complete mt genome of C. elongatus, which
contained 12 PCGs, 22 tRNAs, 2 rRNAs, and 2 NCRs. Our findings further supported
that C. elongatus belong to Cylicocyclus based on mt genomes. Our results also provide a
beneficial reference for taxonomy, population genetics, and systematics studies of Cyathos-
tominae species.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani12121571/s1. Table S1: PCR primers used in the amplification
of complete mt genomes. Table S2: The gene/region lengths and their amino acids and nucleotides
sequence identities of 6 Cylicocyclus species and Poteriostomum imparidentatum. Figure S1: A + T and
G + C contents and skews of 12 PCGs, rRNAs, tRNAs, and complete mt genome sequences of C.
elongatus. Figure S2: Phylogenetic analyses reconstructed using nucleotide sequences of complete mt
genome sequences in 23 Strongylidae species. The tree was developed using ML method. Oxyuris
equi is an outgroup. C. elongatus in current study is underlined.
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