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Simple Summary: Cat’s health is impacted by several diseases and lesions for which cell therapy
could be an interesting treatment. Mesenchymal stem cells or adult stem cells are found in developed
tissue. Olfactory mucosa contains stem cells called olfactory ecto-mesenchymal stem cells which
have already been isolated from various animals as dogs and horses. The aim of this study was to
evaluate the feasibility of collecting olfactory ecto-mesenchymal stem cells in cats. For that purpose,
four cats were biopsied; the cells were collected and characterized. They show stemness features
and differentiation capabilities as all the other mammals previously studied. Therefore, olfactory
ecto-mesenchymal stem cells could be a promising tool for feline regenerative medicine.

Abstract: The olfactory mucosa contains olfactory ecto-mesenchymal stem cells (OE-MSCs) which
show stemness features, multipotency capabilities, and have a therapeutic potential. The OE-MSCs
have already been collected and isolated from various mammals. The aim of this study was to evalu-
ate the feasibility of collecting, purifying and amplifying OE-MSCs from the cat nasal cavity. Four cats
were included in the study. Biopsies of olfactory mucosa were performed on anesthetized animals.
Then, the olfactory OE-MSCs were isolated, and their stemness features as well as their mesodermal
differentiation capabilities were characterized. Olfactory mucosa biopsies were successfully per-
formed in all subjects. From these biopsies, cellular populations were rapidly generated, presenting
various stemness features, such as a fibroblast-like morphology, nestin and MAP2 expression, and
sphere and colony formation. These cells could differentiate into neural and mesodermal lineages.
This report shows for the first time that the isolation of OE-MSCs from cat olfactory mucosa is possible.
These cells showed stemness features and multilineage differentiation capabilities, indicating they
may be a promising tool for autologous grafts and feline regenerative medicine.

Keywords: olfactory stem cells; isolation; stemness; differentiation; characterization; regenera-
tive medicine

1. Introduction

Mesenchymal stem cells (MSCs) are plastic-adherent cells that show self-renewal and
high proliferative capabilities and can differentiate into the mesodermal lineage under
standard in vitro differentiating conditions [1,2]. Due to these abilities, MSCs have been
described as having therapeutic potential in several diseases, such as cancer [3], traumatic
brain injury [4], chondral defects [5] or cardiovascular diseases [6], even if these statements
should be confirmed by more extensive investigations.

Stem cell-based regenerative medicine is used in veterinary medicine to repair dam-
aged tissue by a disease or injury. Even if this kind of therapy still needs to be more
extensively investigated, in the future stem cells may be an alternative treatment in some
cases for which the conventional medicines cannot repair the damages tissues. MSCs have
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differentiation potential but also immune regulatory properties, influence on vascular-
ization, apoptosis, fibrosis and inflammation [7–9]. Regenerative cell therapy is used in
degenerative diseases (heart failure), immune mediated diseases (feline asthma, canine
atopic dermatitis, feline chronic gingivostomatitis) [10], inflammatory diseases (wound
healing defect). MSCs induce immune enhancing response and have an anti-inflammatory
effect [10].

In cats, MSCs have been first isolated in 2002 from bone marrow [11], then from fat, fe-
tal fluid, peripheral blood and amniotic membranes [12,13]. Feline MSCs have been already
used in trial against gingivostomatitis, enteropathies, chronic kidney disease, asthma, feline
eosinophilic keratitis, neurological ailments, cardiomyopathy. These studies gave variable
therapeutics results. Concerning the gingivostomatitis, grafts with autologous or allogenic
adipose stem cells led to complete remission in 3/7 and 2/7 cats, respectively, with 2/7 cats
that presented a substantial improvement in both cases [14,15]. In acute and chronic asthma,
Trzil and colleagues showed that the graft of allogenic adipose stem cells can induce an im-
provement in different parameters, among which airway eosinophilia [16,17]. Good results
were also shown in chronic enteropathy treatment with allogenic stem cells administration,
with an improvement of clinical signs in 5 of the 7 treated cats [18]. Finally, concerning
chronic and acute kidney disease treatment, the results seem less promising, going from
a mild decrease in serum creatinine [19–21] to no improvement in acute or chronic dis-
ease [22,23]. This heterogeneity suggests that more studies are needed to optimize the
MSCs administration and sources [12,13].

Among the various sources of MSCs, the olfactory mucosa is a promising candidate
for both humans and animals [24,25]. Indeed, the olfactory mucosa contains olfactory
ecto-mesenchymal stem cells (OE-MSCs) that are easily accessible and collectable due
to their localization [26]. OE-MSCs also show stemness and multipotency capabilities,
resulting in therapeutic potential, which has already been demonstrated in several diseases,
such as hearing loss [27], cerebral ischemia [28] and Parkinson’s disease [29].

We previously showed that it is possible to collect and isolate olfactory stem cells
from various mammals [26], but the feasibility has never been evaluated in cats. Since cats
may suffer from several diseases and lesions impacting their welfare [12], stem cells could
also be an interesting tool for cell therapies in this species, and OE-MSCs identified in the
olfactory mucosa are promising candidates for autologous grafts [24].

The aim of this study was to investigate the feasibility of isolating OE-MSCs from cats
and characterizing these cells.

2. Materials and Methods
2.1. Ethics Statement

This study was conceived and performed in accordance with French (2013-118) and
European law (2010/63/EU) on the protection of animals used for scientific purposes. This
protocol was approved by the Ministry of Higher Education, Research and Innovation of
France and by the IRSEA’s Ethics committee C2EA125 (approval number: UE-2018-EU0552).

2.2. Biopsy of Olfactory Mucosa and Isolation and Expansion of OE-MSCs

Four healthy cats from IRSEA’s facilities were included in the study (2 males,
2 females; 6 ± 4.6 years). Since the cats belonged to our facilities, the health status was daily
monitored by our veterinary team. Sedation was performed with ketamine (Imalgene 1000,
Merial SAS, Lyon, France) (10–20 mg/kg, sc), medetomidine (Domitor, vetoquinol, Lure,
France) (50 µg/kg, sc) and butorphanol (Dolorex, MSD Santé Animale, Beaucouzé, France)
(0.4 mg/kg, sc). Then, anesthesia was induced with propofol (Propovet, Zoetis, Malakoff,
France) (1.2 mg/kg) and maintained with isoflurane (Belamont) (2%). The biopsies of
olfactory mucosa were performed by nasal cavity exploration with a common rigid biopsy
forceps on anesthetized animals. To reach the olfactory mucosa, as for the other domestic
species, the forceps were inserted into the nasal cavity until its caudal limit. For each cat,
2 biopsy samples (1 per side) were obtained and placed at 4 ◦C in culture medium Dul-
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becco’s Modified Eagle’s Medium/Ham’s F12 (DMEM/F12, 1% GlutaMAX, Pan Biotech,
Aidenbach, Germany, cod. P04-41150) supplemented with 10% serum (fetal bovine serum,
(FBS, Dutscher, Bernolsheim, France), 2% penicillin and streptomycin 100X (P/S) (Dutscher,
Bernolsheim, France, cod. L0022-100), and 2.5 mg/mL amphotericin B (Hyclone, Marlbor-
ough, MA, USA, cod. SV30078.01) until culturing. The olfactory mucosa biopsies were
washed in DMEM/F12 medium and were mechanically dissociated using 25-gauge needles
to obtain pieces of a few square millimeters. Each pieces of biopsy were placed in a 2 cm2

culture well coated with poly-L-lysine (PLL, Sigma-Aldrich, Saint-Louis, MO, USA cod.
P1274) with 200 µL of the culture medium described above for 1 week. When the explants
adhered to the plate, the wells were filled with 400 µL of culture medium. Two weeks
after plating, the concentration of antibiotic and amphotericin B were halved. The medium
was renewed every two to three days. When confluence was reached, the cells were de-
tached, dissociated with trypsin EDTA solution (0.25%, Dutscher, Bernolsheim, France, cod.
L0931-100), pooled, centrifuged at 300× g for 5 min and replated at lower density.

2.3. Generation of Spheres

Cells were counted on Kova slides (Dutscher, Bernolsheim, France, cod. 050126)
and, plated at a density of 30,000 cells/cm2 in PLL-coated dishes (5 µg/cm2) and fed
with serum-free DMEM/F12 culture medium supplemented with 1% P/S, 1% insulin,
transferrin, selenium (ITS-X, Gibco, cod. 51300044), 50 ng/mL epidermal growth factor
(EGF, Gibco) and 50 ng/mL fibroblast growth factor 2 (FGF, Gibco, cod. PHG0311L). This
culture medium was renewed every two days. After one week of treatment, spheres were
observed with an inverted microscope.

2.4. In Vitro Neural Lineage Differentiation Assays

For neuronal differentiation, OE-MSCs after sphere generation were grown under
two culture conditions as described previously [30,31]. The spheres were dissociated with
trypsin EDTA solution and plated at a density of 15,000 cells per cm2 in a culture well
(2 cm2) on glass coverslip coated with PLL. The cells were cultured in two different media:
DMEM/F12 Glutamax, 1% P/S, 1% FBS, 2% B-27 Supplement (Gibco, cod. 17504044), 1%
N-2 Supplement (Gibco, cod. 17502048), 10 ng/mL EGF, 20 ng/mL FGF or DMEM/F12
Glutamax, 1% P/S, 1% FBS, 2% B-27 Supplement, 1 mM Valproic acid (Sigma-Aldrich,
Saint-Louis, MO, USA, cod. P4543). The medium was renewed every two days for one
week. For confirmation of the differentiation, the cells were fixed in paraformaldehyde
solution (4%, Alfa Aesar, Haverhill, MA, USA, cod. J61984), and immunocytochemistry
(ICC) of the Glial fibrillary acidic protein (GFAP) and Microtubule Associated Protein 2
(MAP2) proteins was performed as described in Section 2.9 with the antibodies in Table 1.

Table 1. Antibodies used for immunocytochemistry.

Antibody Target Host Supplier Reference Dilution Secondary
Antibody

Anti-nestin Stemness marker Rabbit Abcam ab7659 1/500 Alexa Fluor 488
Anti-GFAP Neural marker Chicken Abcam ab4674 1/500 Alexa Fluor 488
Anti-MAP2 Neural marker Chicken Abcam ab5392 1/500 Alexa Fluor 488

Anti-tenomodulin Tenoblast marker Rabbit Abcam ab81328 1/250 Alexa Fluor 488
Anti-scleraxis Tenoblast marker Rabbit Abcam ab58655 1/250 Alexa Fluor 488

2.5. Expression of Nestin

OE-MSCs (passage 6) were plated on glass coverslips in a 24-well plate at a density
of 15,000 cells per cm2 in growth medium (DMEM, 10% FCS, 1% P/S, 1.25 mg/mL am-
photericin B) for approximately 48 h. The cells were then fixed in a paraformaldehyde
solution (4%) and ICC was performed as described in Section 2.9 with the antibodies that
are reported in Table 1.
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2.6. Clonal Efficiency Assay

OE-MSCs (passage 7) were plated in 6-well plates at a density ranging from
10 to 320 cells/well in triplicate. After plating, the dishes were placed at 37 ◦C, in a
humidified, 5% CO2 atmosphere for 7 days. The culture medium (DMEM, 10% FCS,
1% P/S, 1.25 mg/mL amphotericin B) was renewed every two days. The colonies were
paraformaldehyde-fixed during 15 min at room temperature (RT). Colonies were stained
for 30 min using crystal violet, rinsed with tap water bath and let dry at RT. Then, the
colonies were observed with an inverted microscope and manually counted. For each
sample, clonal efficiency (% of clonogenicity) was calculated as follows:

(mean number of colonies/total number of seeded cells) × 100

When too many colonies overlapped, counting was not performed.

2.7. In Vitro Proliferation Assay

The assay was performed on OE-MSCs 2 months (10 passages) and 3 months (20 passages)
after the initial plating. The cells were seeded in 96-well plates in triplicate and counted with
CellTiter 96 Aqueous One Solution Reagent (Promega, Madison, WI, USA, cod. G3580)
according to the manufacturer’s protocol at 8 h, 24 h, 48 h, 72 h, and 96 h after seeding. Briefly,
20 µL of CellTiter was added for 100 µL of culture medium. The plate was incubated at 37 ◦C
in a humidified, 5% CO2 atmosphere for 1 h to 4 h. The absorbance at 490 nm was recorded
with a plate reader. The population doubling time (PDT) was calculated as follows:

Duration × ln(2)/ln(FinalConcentration) − ln(InitalConcentration)

2.8. In Vitro Mesodermal Differentiation Assays

For osteogenic differentiation, OE-MSCs (passage 8) were grown in DMEM/F12 Glu-
tamax, 10% FBS, 0.1 µM dexamethasone (Sigma-Aldrich, Saint-Louis, MO, USA), 0.15 mM
l-ascorbic acid (Sigma-Aldrich, Saint-Louis, MO, USA cod. A92902), and 1 mM Sodium
Phosphate Monobasic (Sigma-Aldrich, Saint-Louis, MO, USA) for 21 days. The culture
medium was renewed every two days. For analysis of osteogenic differentiation, cell
cultures were fixed in a paraformaldehyde solution (4%) for 15 min and stained with von
Kossa (Bio-Optica, Milano Italy, cod. 04-170801) or Alizarin Red stain (ScienCell, Carlsbad,
CA, USA cod. 8678) according to the manufacturer’s instructions. For chondrogenic dif-
ferentiation, the cells were grown in pellets in 15 mL polypropylene tube in DMEM/F12
Glutamax, 1% P/S, 0.1 µM dexamethasone, 0.15 mM l-ascorbic acid, 0.35 mM proline
(Sigma-Aldrich, Saint-Louis, MO, USA), 1 mM sodium pyruvate (Sigma-Aldrich, Saint-
Louis, MO, USA, cod. S8636), 1% ITS, and 10 ng/mL transforming growth factor beta-3
(TGF-β3, Invitrogen, cod. RP-8600) for 21 days and fixed in 10% buffered formalin (pH 7.4),
routinely processed and paraffin embedded. Four-micrometer-thick sections were cut and
stained with Alcian blue/PAS (Bio-Optica, Milano Italy, cod. 04-163802) according to the
manufacturer’s instructions.

For tenogenic differentiation, 30,000 OE-MSCs were grown in 24-well plates on a
5 µg/cm2 collagen-I matrix (Gibco, cod. A1064401) in DMEM/F12 Glutamax without
FBS, 50 ng/mL Growth Differentiation Factor 5 (GDF-5, R&D Systems, Minneapolis, MN,
USA, cod. 8340-G5-050), 50 ng/mL Growth Differentiation Factor 5 (GDF-7, R&D Systems,
Minneapolis, MN, USA, cod. 8386-G7-050) and 20 ng/mL TGF-B3 (Invitrogen, cod. RP-
8600) for 7 days. The culture medium was renewed every two to three days. For evaluation
of tenogenic differentiation, the cells were paraformaldehyde fixed, and ICC was performed
against the tenomodulin and scleraxis proteins.

2.9. Immunocytochemistry

Immunocytochemistry was carried out to assess the expression of nestin, the neural
proteins GFAP and MAP2, and the tenoblast proteins tenomoduline and scleraxis, with the
appropriate primary antibody (Table 1).
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Paraformaldehyde fixed cells were incubated for 1 h at RT with blocking solution (3%
bovine serum albumin (BSA, Sigma Aldrich Saint-Louis, MO, USA, cod. A7030), and 0.1%
Triton X-100, (Sigma-Aldrich, Saint-Louis, MO, USA, cod. T8787), 5% goat serum (Dutscher,
Bernolsheim, France) in phosphate-buffered saline (PBS, Hyclone, Marlborough, MA, USA,
cod. SH30264.01) solution. Glass coverslips were then incubated over-night at RT with
the appropriate primary antibody diluted in the staining solution PBS 3% BSA, 5% goat
serum). The cells were then rinsed 3 times in PBS and incubated for 3 h with the appropriate
AlexaFluor 488-conjugated polyclonal secondary antibody. After several washes in PBS,
cells were counterstained with 0.5 µg/mL Hoechst blue (33,258, Sigma-Aldrich, Saint-
Louis, MO, USA) for 10 min and mounted with anti-fading medium (ProLong Diamond,
Invitrogen, cod. P36965). Negative control conditions were carried out by omitting the
primary antibody.

2.10. Image Acquisition

Pictures were acquired with an inverted microscope EVOS®® FL Auto Imaging System
(Thermofisher, Waltham, MA, USA) and negative controls were used to adjust image
acquisition parameters. ICC pictures were acquired with monochrome camera on DAPI
(357/447 nm) fluorescence channel for Hoechst staining and GFP (470/525 nm) fluorescence
channel for Alexa 488 staining.

Non fluorescent images were acquired with color brightfield image mode.

3. Results
3.1. Biopsy of Olfactory Mucosa and Isolation and Expansion of OE-MSCs

Olfactory mucosa biopsies were successfully obtained from the 4 anesthetized cats.
The only undesirable effect observed immediately after the biopsies was nasal bleeding that
was rapidly stopped by applying a sterile gauze upon the nostrils. The animals recovered
from anesthesia with no other unwanted side effects. One to two weeks after the biopsies,
we observed adherent cells with fibroblastic morphology growing from the explants and
forming a homogenous monolayer (Figure 1A).

3.2. Stemness and Immature Features

The OE-MSCs displayed nestin protein expression, and under specific culture condi-
tions, these cells could generate spheres, as shown in Figure 1B,C.

3.3. Clonal Efficiency Assay

The OE-MSCs formed colonies at a low cell density (20 to 320 cells/well). The average
clonal efficiency for the feline OE-MSCs was 10.64% ± 10.48% (mean ± SD).

3.4. In Vitro Proliferation Assay

The population doubling times of the feline olfactory stem cells were examined at
2 months (P10: 50.07 h ± 43.13 h (mean ± SD)) and 3 months (P20: 80.69 h ± 22.42 h
(mean ± SD)) after the biopsies. The population doubling time increased from P10 to P20

3.5. In Vitro Neural and Mesodermal Differentiation Assays

Before neural lineage differentiation, the GFAP and MAP2 proteins were expressed
in cells in the basal state (Figure S1A,B in Supplementary Materials). Within in vitro
differentiation conditions, ICC demonstrated that the expression of these proteins was
increased (Figure 1D,E). Under the appropriate culture conditions, cells expressed biochemi-
cal features specific to osteoblasts, chondroblasts and tenoblasts. The differentiated cultures
showed Alizarin Red (Figure 1F) and von Kossa (photo not shown) staining after osteogenic
differentiation. In chondrogenic differentiation culture conditions, the cells aggregated,
and their histological sections were positive for Alcian blue/PAS staining (Figure 1G). The
OE-MSCs expressed the tenomodulin protein under tenogenic differentiation conditions
(Figure 1H). Consequently, feline OE-MSCs could differentiate into the mesodermal lineage.
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Figure 1. Morphology, stemness features, and assessment of neural and mesodermal differentiation 
abilities of OE-MSCs in vitro. (A) In growth culture medium, the OE-MSCs formed adherent cells 
with fibroblastic morphology (ob. × 40). (B) Grown in specific culture conditions, the OE-MSCs 
could generate spheres (ob. × 100). (C) Cells expressed the nestin protein (in green, ob. × 200). Neural 
lineage differentiation was assessed with ICC against GFAP (D) and MAP2 (E) (in green, ob. × 200). 
(F) Osteogenic differentiation was assessed with Alizarin Red, and calcium deposits were positively 
labeled in brown (ob. × 100). (G) OE-MSCs in chondrogenic differentiation medium were positively 
labeled with Alcian blue/PAS staining (in purple-blue, ob. × 40). (H) Tenogenic markers were as-
sessed with ICC against tenomodulin (in green, ob. ×200). For ICC, cells were colabeled with 
Hoechst (blue). 
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Figure 1. Morphology, stemness features, and assessment of neural and mesodermal differentiation
abilities of OE-MSCs in vitro. (A) In growth culture medium, the OE-MSCs formed adherent cells
with fibroblastic morphology (ob. × 40). (B) Grown in specific culture conditions, the OE-MSCs
could generate spheres (ob. × 100). (C) Cells expressed the nestin protein (in green, ob. × 200).
Neural lineage differentiation was assessed with ICC against GFAP (D) and MAP2 (E) (in green,
ob. × 200). (F) Osteogenic differentiation was assessed with Alizarin Red, and calcium deposits were
positively labeled in brown (ob. × 100). (G) OE-MSCs in chondrogenic differentiation medium were
positively labeled with Alcian blue/PAS staining (in purple-blue, ob. × 40). (H) Tenogenic markers
were assessed with ICC against tenomodulin (in green, ob. ×200). For ICC, cells were colabeled with
Hoechst (blue).

4. Discussion

Our study showed for the first time that OE-MSCs can be extracted from cat olfactory
mucosa. This tissue was easily accessible in the nasal cavity of anesthetized animals, and the
sampling presented few technical issues [26]. The Feline OE-MSCs presented fibroblastic-
like morphology and two stemness and immaturity features previously described in human
OE-MSCs [24], such as nestin protein expression, and the ability to form spheres, even
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if they were smaller than those in dogs, horses and rabbits [26]. The feline OE-MSCs
formed colonies at a low density, which is a characteristic of stem cells. The number
of colonies is less high than in the eight mammalian genera already characterized [26].
Clonal efficiency assay or colony-forming unit fibroblast (CFU-f) is used to quantify the
number of MSCs progenitors in bone marrow samples. Feline OE-MSCs have better clonal
efficiency than MSCs from bone marrow [32] but inferior compared to adipose-derived
stem cells [33]. These cells also showed differentiation into neural and mesodermal lineages
under appropriate specific culture conditions.

The feline OE-MSCs expanded and amplified rapidly, even if they proliferated slower
at P20 than P10 which reveals a decrease of the self-renewal capacity of OE-MSCs. The
feline OE-MSCs still have high proliferative capabilities in the early passages even if the
PDT is lower than that of dogs, rabbits and horses due to species specific diversity [26].
Moreover, the proliferation rate was the same [33] or better [34–36] than that of feline MSCs
from other tissues at P10. The feline MSCs seems to have short proliferation capabilities
with time and suffer of early senescence [10]. Indeed, feline adipose tissue derived MSCs
show a significant increase of the PDT after 4–5 passage [34,35]. Cat peripheral blood
MSCs stop proliferate at passage between 7 and 9 [36]. While these MSCs were evaluated
only until P10, OE-MSCs showed to be able to proliferate also at P20, suggesting that they
possess a longer duration in tested culture conditions. However, in previous studies, feline
MSCs have been transplanted much earlier than passage 20, commonly between P2 and
P5 [14,17]. In our study we did not evaluate the karyotype of OE-MSCs at P20, thus further
analyses should aim to assess if OE-MSCs possess any kind of alteration that make these
cells unsuitable for graft at this point.

Similar to those of rats, rabbits, dogs and horses, the feline OE-MSCs expressed GFAP
and MAP2 in the basal state, which is a known stemness feature [26]. The expression
of these proteins increased after in vitro differentiation (Figure S1A,B in Supplementary
Materials), indicating that these cells could differentiate into neural lineages. This finding
may open the way for further studies aiming to evaluate if the feline OE-MSCs could
represent a potential treatment for brain or neural lesions [28,37].

Our analyses showed that OE-MSCs could also be induced in osteoblast-like, chondroblast-
like and tenoblast-like cells under the appropriate differentiation conditions. Even if these
are only in vitro findings, they may suggest that future studies could investigate if OE-MSCs
may also have a potential role in the treatment of bones, cartilage and tendon lesions. MSCs
demonstrated their efficacy in equine tendinopathy [38,39]. They have also shown benefic
effect in bone healing in canine, ovine and caprine clinical model [40]. Canine MSCs have
cartilage regenerative effect in dog with osteoarthritis [41].

Compared to bone marrow stem cells, OE-MSCs are easier to collect. Indeed, olfactory
mucosa biopsy could be performed during a routine intervention requiring simple anes-
thesia. Since the olfactory mucosa is easily accessible, sampling is safer and less painful
than bone marrow biopsy. On the other hand, the adipose stem cells are the most largely
studied in cats, since they are easy to collect and possess a high proliferative ability [12],
even if this capability seems to be reduced after 4–5 passages [34,35]. However, the aim of
this study was to explore and propose another source of feline MSCs and to expand the
knowledge on feline stem cells.

5. Conclusions

This study showed for the first time that the olfactory mucosa is a source of MSCs in
cats. These cells can be easily isolated and amplified. Feline OE-MSCs display stemness
characteristics and differentiation capabilities. These results pave the way for further
studies that should evaluate if OE-MSCs could be a promising tool for feline autologous
stem cell therapy and for veterinary regenerative medicine.
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