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Simple Summary: Near-infrared spectroscopy (NIRS) has been applied to analyse the quality of
forage and animal feed. However, grasslands more than other raw materials are linked to many
variability factors (e.g., site, year, occurring species, etc.) that can represent strong points as well
as weak points in NIRS estimation. This research is aimed at testing NIRS application for the
determination of chemical characteristics of fresh, undried and unground samples of meadows
and grasslands located in north-central Apennine. The interest lies in the possibility of monitoring
grassland resources, supporting the decision in terms of the need of supplementation and identifying
the critical periods for cutting grassland intended for animal feeding. The results indicated that
FT-NIRS models could be used in the real-time quantification of crude protein, fibrous fraction
and dry matter, while for lignin only a screening test could be considered. Minor components of
grassland such as ash and lipids need improvement. As a practical point, a key factor of FT-NIRS in
grassland chemical quality estimation is the absence of samples preparation and the importance of
the parameters that have obtained the best results in animal diet formulation.

Abstract: Near-infrared spectroscopy (NIRS) and closed spectroscopy methods have been applied
to analyse the quality of forage and animal feed. However, grasslands are linked to variability
factors (e.g., site, year, occurring species, etc.) which restrict the prediction capacity of the NIRS.
The aim of this study is to test the Fourier transform NIRS application in order to determine the
chemical characteristics of fresh, undried and unground samples of grassland located in north-central
Apennine. The results indicated the success of FT-NIRS models for dry matter (DM), crude protein
(CP), acid detergent fibre (ADF), neutral detergent fibre (NDF) and acid detergent lignin (ADL) on
fresh grassland samples (R2 > 0.90, in validation). The model can be used to quantitatively determine
CP and ADF (residual prediction deviation-RPD > 3 and range error ratio- RER > 10), followed by DM
and NDF that maintain a RER > 10, and are sufficient for screening for the lignin fraction (RPD = 2.4
and RER = 8.8). On the contrary, models for both lipid and ash seem not to be usable at a practical
level. The success of FT-NIRS quantification for the main chemical parameters is promising from the
practical point of view considering both the absence of samples preparation and the importance of
these parameters for diet formulation.

Keywords: meadows; NIRS; botanical composition; forage quality; quantification

1. Introduction

The importance of maintaining grassland systems is now well known because failure
to maintain these systems is linked to the loss of biodiversity [1] and the reduction of
ecosystem stability [2]. Land use intensification and homogenization of landscapes [3,4], as
well as the lack of agriculture adaptability to changing environmental conditions, could
affect the maintenance of ecosystems and the services they provide [5]. The main service
supplied by grassland ecosystems is the supplying of forage requirements for ruminants
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both in terms of quantity and quality [6,7]. The decision on integration needs is essentially
based on the quantity and quality assessments of the grassland. The first, easy to assess,
is determined by the yield, while the second represents the nutritional value available for
animals, which is more difficult to evaluate in terms of both sampling and analysis.

A further concern is the continuous variation of grassland quality, linked to numerous
direct factors such as species composition and variety [8], abundance [9], phenological
phase and growing condition [10], soil resource availability [11] and management prac-
tices [12]. In the long term, indirect factors can affect the variability of grasslands [13]; in this
context climate change can impact crop and forage resources, with effects on the growing
season length and the ripening of species, but also on the yield and species distribution [14].

Since the first application in 1976, feed evaluation research has been evolving to replace
traditional wet chemistry analyses with near infrared spectroscopy (NIRS). This technique
can be successfully applied in grassland systems because plants consist of structural and
soluble carbohydrates, protein, fat, and organic acids that chemically contain the most
relevant groups (C–H, N–H, O–H) for potential NIRS identification [15]. NIRS is based on
the absorption of photon energy and the excitation of molecular overtones and combined
vibrations from chemical groups containing mainly hydrogen [16].

In natural science, NIRS and other spectroscopy methods, such as Fourier transform
near-infrared spectroscopy (FT-NIRS) and visible near-infrared spectroscopy (VISNIRS),
have been implemented in basic and applied science [17], including in studies of animal
feed composition. It is known that NIRS has the capacity to estimate chemical compositions
of several feeds, including dried mixed forages and silages [18,19], Medicago sativa [20,21],
Zea mays [22] as well as whole cereal plants [23] and woody forage [24]. With regard
to natural grasslands, the vast majority of studies reported success for the estimation of
chemical composition of dried ground samples [25–28]. Other works [29,30] described the
application of NIRS to fresh samples of herbage in order to reduce the time of analysis,
considering that the high water content affects the spectra results. The effect of samples
preparation has been considered by Alomar et al. [29], who reported the fresh herbage
of Southern Chile pasture, while Reddersen et al. [30] studied the effect of sampling
conditions (standing sward, silage, hay/chopping and milling) on fresh grassland biomass.
In vegetation ecology, NIRS has been implemented for discrimination analysis of functional
types and single species [31].

Considering the spatial and temporal variation of meadows and pastures in terms
of botanical composition, the high cost of traditional analyses and the long waiting times,
NIRS gives the opportunity for fast and efficient analysis of large numbers of samples.
In this context, the application of the Fourier transform algorithm to NIRS (FT-NIRS)
could allow for both an improved spectral resolution and a reduced scan time. However,
NIRS always needs to be calibrated, and the application of a multivariate model is always
necessary in order to compare spectral results with the samples with known compositions.
Partial least square regression (PLS), as well as other mathematical approaches (principal
component regression (PCR)) or techniques of statistical learning (artificial neural networks,
Random Forest) were applied for the regression model developments. For the model
validation, cross validation or an internal test set of samples were often used, even if those
models’ systems may cause fewer errors with respect to the use of external data sets of
validation [32]. Karayilanli [33] reported that validation models demonstrate great accuracy
in closed populations, referring to a subset of the validation samples included in calibration
data sets or belonging to the same natural population, and that forage crops could be
represented by the same harvest or field [32]. NIRS estimation capacity should not decrease
the accuracy if a sample from other harvests or of different origin is predicted. Indeed, a
less common adjustment was necessary, using a more variable initial calibration set, while
validation was often much less successful.

The validation of data including many variables, such as data from pastures and mead-
ows, and influenced by numerous variability factors, should be solved in order to practically
apply the NIRS approach. In fact, considering the global change scenarios, there is a need
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of increasing research and monitoring of forage quality of grassland systems [7]. However,
nutritional quality monitoring is rarely done due to the complexity of determining forage
quality, the high variability of natural systems and low financial interest.

The aim of this study is to test the NIRS application in order to determine the chemical
characteristics of fresh, undried and unground samples of meadows and grasslands located
in north-central Apennine. At the practical level, the interest lies in the possibility of moni-
toring grassland resources, supporting the decision in terms of the need of supplementation
and identifying the critical periods for cutting grassland intended for animal feeding.

2. Materials and Methods
2.1. Forage Sample Set

The study used 150 samples collected in the period of 2014–2019 in seminatural and
artificial grasslands in north-central Apennine at an altitude between 300 and 1174 m.a.s.l.

The experimental sites for each area were chosen for the representativeness of the
respective territory. Each site was sampled at least two times during the growing season,
including both primary growth and secondary regrowth. Samples were obtained from
an area of 1 sqm. The area of study included meadows intended for cutting and pastures
dedicated to animal grazing. Samples were obtained from sites that encompassed 4 groups:

i. Old alfalfa meadows re-colonized by spontaneous species (n = 35);
ii. Grass–legume mixtures recently established (n = 30);
iii. Old legume mixtures grassland re-colonized by native species (n = 60);
iv. Alfalfa crops recently established (n = 25).

The botanical composition was assessed inside the same sample plots for each cutting.
The percentage proportion of each botanical species was estimated visually as the percent-
age contribution to the herbage mass [10]. Herbaceous species were grouped in grasses,
legumes and other forbs, as is usually performed in forage research [34].

Old alfalfa pure stands(i) (8–12 years old) were highly naturalized by local species
belonging to grasses and forbs, and the ground cover of alfalfa was reduced, even if this
percentage became higher in the second and third cut.

Recent grassland mixtures(ii) (less than 4 years of age) presented a high presence of
sown species (about 70–80% as the annual average), mainly represented by Medicago sativa
or Trifolium sp., Dactylis glomerata being the most frequently occurring grass.

Old legume mixtures grassland re-colonized by native species(iii) presented about
65% of grass species (belonging to genus Dactylis, Festuca, Lolium, Avena, Poa and Bromus)
and 25% of legumes and the rest of the other forbs.

Recent alfalfa crops(vi) (2–4 years old) presented a percentage of the sown legume
around 75–85%, with the main weeds represented by grasses (belonging to genus Lolium,
Poa and Bromus).

2.2. Sample Preparation and Spectral Measurement

Fresh herbage samples (stalks and leaves) were cut by hand shears to 2–4 cm in
length and mixed by hand. For each sample, three sub-samples weighing about 30 g were
randomly selected. After this procedure, while maintaining a constant temperature, each
sub-sample was exposed by a cup spinner to an electromagnetic scan over the wavenumber
range of 4000–9999 cm−1 and corrected against the background spectrum. For each aliquot,
a spectral measurement was obtained from 32 scans performed using an FT-NIRS Antaris II
model (Thermo Scientific, Waltham, MA, USA) at a lab room temperature of approximately
20–21 ◦C. Spectral data were collected as reflectance (R) and converted as absorbance
(log1/R). The average spectrum of the three measurements was calculated for each sub-
sample and used as the final spectrum.

2.3. Chemical Analysis

After the FT-NIRS collection, the samples were dried in a forced-air oven at 60 ◦C at
constant weight and grounded through a mill (Brabender OHG, Duisburg, Germany) to
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pass 1 mm. The main chemical components were determined according to the AOAC [35]
methods: dry matter (DM) content using the 934.01 method, crude protein (CP) by the
976.05 method, ash via the 942.05 procedure, crude fat (CF) using the 2003.05 method, acid
detergent fibre inclusive of residual ash (ADF) and acid detergent lignin (ADL) using the
973.18 method. Neutral detergent fibre, inclusive of residual ash (NDF), was analysed in
accordance with Van Soest et al. [36].

2.4. Statistical Analysis

For the model development, we randomly split the available samples into a calibration
set (80%) and a validation set (20%) within each group (i, ii, iii and iv), ensuring that
samples of similar botanical composition were present in both data sets.

For each chemical constituent (DM, CP, ash, CF, NDF, ADF and ADL), an individual
model was developed and the entire measured spectra region (3999–9990 cm−1) was
considered. A single spectral pre-treatment option, or a combination of options, was
applied to spectral data prior to calibration of the model.

First derivate of the spectral data was calculated in order to correct the light scat-
tering contributions [37]; however, it did not correct the pathlength variation, for which
multiplicative scatter correction or standard vector normalization were necessary.

The Savitzky–Golay smoothing filter was useful for improving the appearance of
peaks obscured by random noise, considering 3 data points and a polynomial order. By
contrast, in some cases smoothing was not necessary.

Mathematical pre-treatment was specific for each parameter and remained identical
both in calibration and in validation.

Processing of spectral data was performed to identify outliers with the TQ Analyst
software [38], guaranteeing the removal of outliers below 2% of the population, as suggested
by Williams et al. [39].

Lastly, PLS was applied to predict the chemical composition of samples, setting the
upper limit at 10 PLS factors. A good model, in fact, should have as few independent latent
variables or principal components as possible. The optimal number of PLS factors used for
model development was that which determined the lowest error in cross-validation, also
considering the results of the PRESS (predicted residual error sum square).

The quality of NIRS calibrations was evaluated in terms of the highest coefficient
of determination (R2), which represents the proportion of the explained variance of the
response variable in the calibration (R2) or validation dataset (R2v). Errors were evaluated
in terms of the lower root mean square error in calibration (RMSEC) and in validation
(RMSEV). Small differences between RMSEC and RMSEV were always preferred.

The residual prediction deviation (RPD), the ratio between the standard deviation (SD)
of the reference values and the mean error of prediction, was calculated as the qualitative
assessment of the results. A small error of prediction compared to reference values meant
a high RPD value resulting in a good model. Pérez-Marín et al. [40] reported that when
reference data variance is low, the values for the R2 and the RPD cannot be very high.

The model can be considered sufficient for a screening if RPD is between 1.5 and
2.5 [41]. Some authors, i.e., Williams and Sobering [42], suggested an accurate estimation
capacity if the RPD values were higher than the limit of 2.5, even though in the following
years it seems that the limit of accuracy evaluation was increased to 3 [41]. However, higher
values for the RPD suggest increasingly accurate models.

Furthermore, the relationship between the range of composition of the reference data
and the RMSEP, known as the range error ratio (RER) index [40], was calculated. The
RER was considered as statistical indicators with the greatest weight in the precision of
an NIRS calibration model [43]. The RER values in the range of 4–8 suggest the possibility
of discriminating between high and low values, while RER values in the range of 8–
12 represent the possibility of predicting quantitative data [44,45].
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3. Results
3.1. Near-Infrared Spectra

Original near-infrared spectra (Figure 1) show high peak regions around wavenumber
between 6800 and 6900 cm−1, 5100–5200 cm−1 and a slope at 5600 cm−1.
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3.2. Descriptive Statistics

The mean, standard deviation, median and range of the chemical composition of the
data set obtained by wet chemistry are shown in Table 1. The samples are reported after the
removal of outliers and split into calibration and validation sets. The results of traditional
chemical analyses show a wide range of values for most of the parameters, except for crude
fat, which presented the narrowest range. This result was expected and approved due
to the different origins of the samples: years, sites, origins, botanical composition and
phenological phases.

Both in calibration and in validation, the descriptive statistics of the parameters
showed the same behaviour. Mean and median were similar in all parameters even if Crude
protein, ADF and ADL had higher median values compared to mean values, indicating
that a proportion of the population had a higher value than the rest of the population. By
contrast, the distribution of reference data seems to be within the sample population; in fact,
dry matter and NDF each had a lower median than mean, as well as a high SD, suggesting
that a proportion of the population was lower than the rest according to the considered
parameters. Ash and crude fat each presented a similar mean and median, and were also
associated with the lowest SD.



Animals 2022, 12, 86 6 of 12

Table 1. Descriptive statistics of wet chemistry reference analysis of the samples.

Parameters
Calibration Validation

n Mean Median SD min max n Mean Median SD min max

Dry matter g/100 g 115 20.04 18.50 6.71 11.14 43.12 30 20.29 18.87 5.25 12.22 32.00
Crude protein 118 17.73 18.25 4.74 7.43 25.79 30 17.69 18.64 4.54 10.04 25.37

Ash 114 10.52 10.61 2.05 4.49 15.33 30 10.86 10.96 1.23 7.70 12.71
Crude fat 115 2.28 2.32 0.40 1.25 3.09 30 2.35 2.34 0.34 1.49 2.87

NDF 116 51.11 50.61 8.59 32.77 71.68 30 48.53 48.08 7.07 40.04 65.83
ADF 117 34.85 34.96 6.94 22.13 45.49 30 35.61 36.06 4.94 25.00 43.00
ADL 116 6.65 6.94 2.40 1.72 12.36 30 7.27 7.55 1.39 4.00 9.25

Data are expressed as g/100 g DM unless specified; NDF = neutral detergent fibre; ADF = acid detergent fibre;
ADL = acid detergent lignin.

3.3. NIRS Models

A summary of the statistics for the performance of the calibration and validation
models are reported in Table 2. For each parameter, the optimal number of PLS factors
used, as well as the mathematical treatments, are included. The NIRS regions used for each
chemical constituent are also specified. For dry matter the area referred to a combination
of O–H stretching, including from 4800 to 7100 cm−1, was used. The optimal wavenum-
ber for CP was both 4800–5200 cm−1 (1923–2080 nm) and between 6200 and 7200 cm−1

(1389–1613 nm), which corresponded to the combination of N–H stretching. For ash the full
available near-infrared region was used, while for crude fat only the initial and final part of
the NIRS region (5100–9200 cm−1) were excluded. For the NDF, the region considered, from
5500–6200 cm−1 (1612–1818 nm), was the same as that for ADF, while ADL was referred to
a larger area, including in 5183–8333 cm−1 (1200–1930 nm).

Table 2. Near-infrared spectroscopy (NIRS) predictive equations (calibration and external validation).

Parameters FPLS
Range WN

(cm−1) Math Treat.
Calibration Validation

RPD RER
R2 RMSEC R2v RMSEv

Dry matter g/100 g 6 5118–6817
4800–7100 1; 3; 5 0.951 1.88 0.938 1.97 2.7 10.1

Crude protein 6 4800–5200
6200–7200 2; 3; 5 0.905 1.45 0.901 1.48 3.1 10.4

Ash 3 4000–9000 2; 4; 5 0.837 0.73 0.754 1.01 1.2 5.0
Crude fat 3 5100–9200 1; 3; 5 0.737 0.66 0.652 0.24 1.4 5.8

NDF 5 5500–6200 2; 3; 6 0.911 2.45 0.885 2.47 2.9 10.4
ADF 5 5500–6200 1; 4; 6 0.946 1.06 0.936 1.23 4.0 14.6
ADL 10 5183–8333 1; 4; 6 0.908 0.63 0.880 0.60 2.3 8.8

Data are expressed as g/100 g DM unless specified; NDF = neutral detergent fibre; ADF = acid detergent fibre;
ADL = acid detergent lignin. FPLS = number of factors in PLS; Range WN = range of wavenumbers; Math Treat.
= mathematical pre-treatment; 1 = MSC; 2: SNV; 3 = first derivate; 4 = second derivate; 5 = Savitzky–Golay
Filter (data points: 3, polynomial order: 7), 6 = no smoothing. R2 = coefficient of determination in calibration;
RMSEC = root mean square error of calibration; R2v = coefficient of determination in validation; RMSEv root
mean square error of validation; RPD = residual prediction deviation in validation; RER = range error ratio
in validation.

The MSC or SNV mathematical pre-treatment appeared always to be necessary, aswas
true of the first or second derivative. By contrast, smoothing was not essential and was
applied only in some cases.

The result of the calibration of the NIRS models (Table 2) reported coefficients of
determination higher than 0.90 for DM, CP and all fibrous fractions (NDF, ADF, ADL).
Nevertheless, in external validation R2 values were from 1% to 1.5% lower for DM, CP
and ADF, while they were slightly higher for NDF and ADL (5% and 3% higher in vali-
dation than in calibration, respectively). Both ash and crude fat obtained a medium R2 in
calibration, in particular for the lipid parameter, but in validation this coefficient became
lower. The figures of the models obtained by the main components—DM, CP, NDF, ADF
and ADL—are reported as supplementary material (Figures S1–S5, respectively).
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Root mean square errors were similar in calibration and validation, even if ash and
crude fat showed, also in this case, the worst behaviour in external validation, with higher
errors. The RPD results were above 3 for CP and ADF, although values close to this limit
were obtained for NDF and DM (2.9 and 2.7, respectively). Encouraging was the RPD (2.3)
obtained from ADL, which is sufficient for screening, while ash and crude fat were below
the 1.5 limit and need improvement.

For all parameters, the RER numbers were around four to five times larger than those
for the RPD. The RER were higher than 8 for DM, CP, NDF, ADF and ADL, suggesting the
success in the quantitative prediction for those constituents, while the ~5.4 value of ash
and CF might suggest the possibility of discriminating between high and low values.

4. Discussion

The resulting descriptive statistics were straightforwardly linked both to different
the phenological phase of the samples, and consequently tissue aging development, and
to the different forage resources considered. On the other hand, the wide range of the
chemical composition can also suggest that the samples are representative of the inherent
variability of different fields, sites and years of sampling. The high water content of fresh
herbaceous samples (~80%) determined the dominance of the water absorption features
(bands) in the NIR spectrum, as reported for other biological products, such as fruit, by
Magwaza et al. [46].

Grassland spectra showed broad and strong water-absorption features at about 6944
and 5155 cm–1 (1440 and 1940 nm), which were characteristics of the vegetation region
related to moisture content in the biological samples [47].

The optimal wavenumber model for CP corresponded both to the combination of N–H
stretching and to the first overtone of N–H stretching, as suggested by Stuart [48]. Ash
cannot be associated with an NIRS region probably due to the absence of energy absorption
of inorganic substances as minerals. Regarding crude fat, the selection of the region should
be possible due to the characteristic aliphatic –CH adsorption [48]. Nevertheless, the
accuracy of models was not enhanced if the specific region was selected for lipids, probably
due to low tissue concentration [16]. Consequently, it seems that only the NIRS region
that excluded spectra information might be avoided (5100–9200 cm−1). Contrarily, Berauer
et al. [7], working on the extraction of information from the spectra, built models using
only 1.3% and 7.7% of the spectra wavelengths, respectively, for ash and fat.

According to Lugassi et al. [49], a specific absorption was shown at 5500 and 5700 cm−1

(~1700 nm) that could be linked to organic bonds of plant biochemicals due to the presence
of lignin and cellulose [50]. Schwanninger et al. [51] reported that wavelengths around
1715 nm and 1735 nm result from overtone C–H stretching vibrations in polyoses (hemicel-
lulose) and cellulose. A larger area seems necessary for the prediction of lignin according
to Li et al. [52], who reported the wavelength at 1243 nm related to the first overtone of
phenolic O–H stretching in lignin [53,54] and identified a larger set of relevant wavelengths
between 1450 nm and 1700 nm.

Nevertheless, the detection of effective absorption bands was relatively wide and com-
plex in hydrated objects because they were characterized by complex hydrogen bonding
interactions between water, sugar, protein, etc. Wavelength drift or shift in informative
peaks may be due to differences in chemical composition, in the temperature or in the
structure of the samples that cause variations in the optical path [55]. Slight differences
in the physical structure of samples can affect the penetration of light, which resulted in
high absorbance in our samples. Moreover, Cougnon et al. [56] reported that environ-
mental variation and small differences in the preparation of samples can also affect the
resulting equations.

The selection of wavebands based on known chemical functional groups [30], as
performed in this study, in order to by-pass the large water absorption band of fresh
samples, allows on the one hand for work on the reduced data set, but on the other
may reduce the available information of the full NIRS spectra. On the contrary, Biewer
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et al. [57] obtained better results with the full spectrum for legume–grass swards instead of
selecting wavebands.

As regard the mathematical pre-treatments on spectra, according to Elle et al. [58]
standard normal variate (SNV) and multiplicative scatter correction (MSC), specifically
intended to corrected NIRS spectra noise, seem to be always necessary to delete the scatter
radiation [59]. In addition, our results showed that first-or-second-derivative standard-
ization as well as smoothing are also necessary to enhance the accuracy of unprocessed
spectra (raw spectra), as reported in previous studies [60]. Savitzky–Golay filter smoothing
could improve the contributions of part of the spectral signal distortion in the data. Never-
theless, it remains difficult to select a priori the best pre-processing method, and the aims
of the spectral pre-treatment are mainly to avoid the use of incorrect pre-processing and to
enhance the accuracy of the spectra [61].

The better models in terms of R2 in validation were obtained for DM, ADF, CP and
NDF, while slightly lower results were shown by the lignin component. The RPD and
RER indexes, considering additional criteria for determining the prediction utility of each,
showed an absence of an exact relationship between those values, probably due to the
distribution of samples in the test validation set. However, the results seem to be applicable
for all those parameters, even if ADL parameters are in need of improvement and might be
used only for the screening of high and low values (based on RPD and RER values).

Several studies on roughage animal feed suggested the better regression models
obtained for DM, CP and NDF [27,28,30], while ADF, not considered in all the research,
produced contradictory results [26]. However, most research focused on dried and milled
samples, while the use of fresh samples can mainly interfere with the DM prediction. It is
well known that differences in the physical structure of particle size, moisture content, as
well as other biochemical compounds affect spectral the spectroscopic information obtained
from the NIR measurement [59] even if spectra pre-treatment has been applied.

A good result, however, was obtained for protein thanks to the spectral importance
of nitrogen associated with the adsorption NH bond [16], which is a major component
of proteins and of the larger range of proteins in our samples in comparison to other
parameters such as ash or fat.

Regarding the ADF and NDF considered as two important limiting factors for the
estimation of the nutritive qualities of feed and forage, contradictory results have been
reported. Yang et al. [62], studying dried samples of Lolium multiflorum both for NDF and
ADF, reported better R2 and RPD compared to our study. Berauer et al. [7], working on
crude fibre content (that is, the parameter most similar to ADF) by Vis-NIRS measuring did
not report suitable results in species-rich mountain pastures. Conversely, according to our
study, Chen et al. [63] reported that the NIRS model for NDF was less accurate than those
for ADF.

The ADL models seem to be encouraging especially if compared to past studies on
dried samples of mixed pasture by Andrés et al., Danieli et al. and Fekadu et al. [25,26,64],
who reported lower results for this constituent. In the main case, the unsatisfactory results
were associated with the negative influence of chemical methods used as the reference
methods. In our case, the ADL estimation was low in terms of accuracy, causing RPD and
RER to be slightly lower than other parameters. Improvements of this model might include
artificial sampling, which involves increasing the samples in the specific range of the data
set where low numbers of data are present which, in this case, coincide with the tail from
10 to the maximum (Figure S2).

Crude fat, often neglected from a nutritional point of view in forage and plants due to
its low content, obtained the lowest results in terms of R2, as well as low RPD and RER,
suggesting the non-applicability of the model in practical terms. Berauer et al. [7], studying
dried and milled pasture samples and analysing fat, reported both slightly higher R2 (0.83,
0.73 in calibration and validation, respectively) and RPD (1.69) than our study, yet they
were evaluated as sufficient. Even if inorganic substances did not adsorb energy in the
near region and consequently did not give spectral information, ash reached good results
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in terms of R2 and RMSE according to Berauer et al. [7]. Nevertheless, the RPD and RER
values indicated that the model is not usable.

The models developed seem to be applicable for the estimation of the main chemical
characteristics of the grassland components intended for animal feed. The success of
the calibrations could be largely attributed to the robust set of environments used for
sample collection compared to those used by Karayilanli et al. [33], who only considered
alfalfa–grass mixtures.

Norman et al. [65], assessing the nutritional value of dried forage species in Australia,
suggested the importance of including all sources of variability in the calibration set for the
following quantification of unknown samples. Nevertheless, those authors reported that
when studies considered global calibration, including samples across seasons and sites,
they did not perform as well as the calibration based on a unique site and year.

The results of our research were certainly affected by numerous variability factors,
which on the one hand have a negative effect on the accuracy and a large influence on the
resulting equations. On the other hand, the high variability of sample conditions (years,
sites, species) in both calibration and validation sets allows for a reasonable confidence
that the equations will adequately predict the main chemical components of multiple grass
species according to Karayilanli et al. [33].

The strategy to improve the results of a very different dataset, such as the grassland of
our study referring to a very large area, years and different species, could introduce both
an increase of the number of samples and the selection of an artificial calibration set. This
could be achieved through the addition of a specific data set including known samples and,
in particular, a specific set of samples in different proportions where data are scarce.

5. Conclusions

The results referring to fresh samples without milling procedure indicated that the
FT-NIRS models developed can potentially be used to quantitatively determine both crude
protein and ADF, and that suitable models can be achieved to measure DM and NDF; for
the lignin fraction, only a screening seemed to be achieved.

The FT-NIRS seems to be able to quantify the main chemical compositions of grass-
lands deriving from different sites and years as well as with different occurring species. In
order to enhance the NIRS quantification capacity of other chemical parameters, improve-
ments could be considered, such as an increase of the number of samples in the calibration
regression or the addition of an artificial data set.

The importance of a “real time” and high-throughput approach, such as NIRS, for
estimating the principal parameters of chemical composition relates to the low feed cost
and the very short time of analysis, considering that the samples do not have to be dried
and milled. From the practical point of view, the successful quantification of the main
nutritional component seems promising, because those parameters are the most important
features for assuring an optimal diet formulation and, indirectly, both for maintaining high
levels of animals’ welfare and for modulating animal greenhouse gas emissions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ani12010086/s1, Figure S1: Regression models of DM, Figure S2: Regression models of CP,
Figure S3: Regression models of NDF, Figure S4: Regression models of ADF, Figure S5: Regression
models of ADL.
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