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Simple Summary: The size at which 50 percent of a fish population reaches sexual maturity is an
important parameter of life history and is useful for setting conservation goals and fishing efforts.
Based on 305 individuals in a population of giant electric rays, Narcine entemedor, collected in artisanal
fisheries in the Bahía de La Paz, Mexico in its northern distribution over a 2-year period, females
were larger than males, but males dominated the sex ratio. Total length at maturity for females was
55.87 cm with mature females present all year; there was no apparent seasonality in the reproductive
pattern. Using these data sets, there appeared to be continuous annual reproductive activity.

Abstract: The size at which a certain fraction of a fish population reaches sexual maturity is an
important parameter of life history. The estimation of this parameter based on logistic or sigmoid
models could provide different ogives and values of length at maturity, which must be analyzed and
considered as a basic feature of biological reproduction for the species. A total of 305 individuals of
Narcine entemedor (N. entemedor) were obtained from artisanal fisheries in the Bahía de La Paz, Mexico.
For the organisms sampled, sexes were determined and total length (TL) in cm was measured from
October 2013 to December 2015. The results indicated that the females were larger, ranging from
48.5 cm to 84 cm TL, while males varied from 41.5 cm to 58.5 cm TL. The sex ratio was dominated by
males ranging from 45–55 cm TL, while females were more abundant from 60 to 85 cm TL. Mature
females were present all year long, exhibiting a continuous annual reproductive cycle. The length at
maturity data were described by the Gompertz model with value of 55.87 cm TL. The comparison
between models, and the model selection between them, showed that the Gompertz model had
maximum likelihood and smaller Akaike information criterion, indicating that this model was a
better fit to the maturity proportion data of N. entemedor.

Keywords: maturity; reproductive peak; sigmoid model; length structure

1. Introduction

The size at which a certain fraction of the fish population reaches sexual maturity is
an important parameter of life history [1]. This information is relevant for demographic
analysis, stock assessment, and providing information for fishery control rules, such as
establishment of minimum legal length and closed fishing seasons [2,3]. In such analyses,
one can achieve biological reference points, defined as metrics of stock statuses, such as
fishing mortality values and biomass level [4,5].
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The data used to estimate an appropriate size at sexual maturity should provide infor-
mation on two aspects: (1) an observed proportion of physiologically mature individuals,
meaning organisms capable of producing viable gametes, and (2) the proportion of these
that are actually producing eggs at a given time [6]. Thus, the logistic model is most
commonly used to describe the relation between body size and sexual maturity [1,7]. The
plot of this model represents a proportion of mature females in each size class, consequently
an S-shaped relationship with an asymptote approaching 1.0 for the largest sizes is com-
monly estimated. However, in some iteroparous species, not all females are physiologically
mature during the reproductive season. In several cases reproduction occurs through batch
fecundity (e.g., anchovies, sardines) and, for these species, the values of length at maturity
are highly variable and the asymptote denoting the proportion of maturity will differ from
1.0 [6].

There are many methods for estimating the length at maturity, often referred to as
the length at which 50% of the organisms are mature (L50). These include the models of
Gompertz [8], Lysack [9], and more recently White et al. [10]. In many studies, the criteria
for selecting a model are often arbitrary [11,12]. Therefore, the estimation of L50 parameters
and their precision in these models are based solely on a single average model [13]. To
have a better and more robust approach, the model selection based on information theory
and maximum likelihood theory is a relatively new paradigm in which several models
are compared to each other, evaluating the support of the observed data with respect to
each model [13,14]. Studies in reproductive biology using multimodel inference to estimate
L50 are scarcely reported in the literature, and this is mainly in teleost fishes, such as
bigeye tuna (Thunnus obesus) [15] and herring (Opistonema libertate) [3]. In elasmobranchs,
particularly from Mexican waters, only the shark, Rhizoprionodon terraenovae [12], and
the bat ray (Myliobatis californica) [16] have been analyzed using the approach previously
described.

According to the data observed, the estimations of L50 based on logistic or sigmoid
models could provide different ogives, such that the choice of the candidate model influ-
ences the expected L50. In addition, its values could be biased whether the model used
does not fitthe data set adequately, affecting the biological interpretation of the length at
which 50% of the organisms are mature. This situation is crucial when the species exhibits
viviparity, such as in several species of elasmobranchs. Biologically, the knowledge of L50
does not indicate a maternity condition for all those females reaching this length. According
to Walker [17] (pp. 81–127), the ogives of L50 and the maturity condition are independent;
particularly the L50 could provide the beginning of the maternity condition. Therefore, the
accuracy of L50 is relevant because it would be indicating the females that are recruited
to the reproductive stock. However, the adequate quantification of the number of births
is necessary for the estimation of the size at maternity, which must be larger than the
size at maturity. Hence, the first step is the estimation of an L50 value that is sufficiently
informative for simultaneously understanding the length at which 50% of the females are
mature, as well as the beginning of their potential size at maternity. Consequently, the
multimodel inference approach for estimating L50 is a statistical procedure useful for this
purpose.

According to this biological background, the giant electric ray, Narcine entemedor
(Jordan and Starks, 1895), is identified as a viviparous species with a continuous annual
reproductive cycle and limited histotrophy as a reproductive mode, exhibiting embryonic
diapause [18]. The population is distributed from Bahía Magdalena, on the west coast of
Baja California Sur to Peru, including the Gulf of California and Galapagos Islands [19,20].
This species is incidentally captured by artisanal fisheries in the Eastern Tropical Pacific
and is bycatch from fisheries that target higher-valued teleost or crustaceans [21–23]. Given
this incidental feature, the species has been poorly studied and there is limited biological
information in the region. The information is mainly associated with descriptions about its
reproductive biology, age, and growth, along with its food and feeding patterns; therefore,
key population features based on quantitative analysis are necessary to understand the
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demography of this species. Thus, in this study, we reanalyzed the length at maturity for
Narcine entemedor using a multimodel inference approach based on candidate models with
different shapes, number of parameters, and biological assumptions.

2. Materials and Methods
2.1. Collection of Samples

A total of 305 individuals were obtained from artisanal fisheries in the Bahía de La Paz,
which is located in the Gulf of California, Mexico between 24◦07′ and 24◦21′ latitude north
and 110◦17′ and 110◦40′ longitude west. The individuals collected are very common and
abundant in the Gulf of California; the species is not protected throughout its range, and is
a very well-known commercial species. Additionally, all applicable international, national,
and/or institutional guidelines for the care and use of animals were followed. In this study,
experimental use of organisms was not required. Sex was determined and total length was
measured (TL, cm) for all individuals sampled from October 2013 through December 2015.
The maturity data of N. entemedor were taken from Burgos-Vázquez et al. [18].

2.2. Criteria for Evaluating Maturity

Maturity in N. entemedor individuals was defined as immature (0) or mature (1), with
macroscopic characteristics using the criteria proposed by Burgos-Vázquez et al. [18]. For
females, the total length and degree of vitellogenesis of the ovarian follicles in the ovary, as
well as the anterior oviduct and uterus condition, were considered. Females that presented
ovaries with translucent ovarian follicles ≤5 cm and abundant ovarian stroma, slight
differentiation between the anterior oviducts and the uterus, and uteri between 0.2 cm and
1.2 cm wide without eggs or embryos were considered as immature. Females that presented
ovaries with yellow ovarian follicles ≥6 cm, a uterus that was well differentiated from the
anterior oviducts, with widths ≥1.3 cm, with or without eggs or embryos were considered
as mature. Based on this microscopic evidence, the macroscopic criteria for defining the
binomial classification (0,1) were validated such that the macroscopic and microscopic
condition of the ovaries and uterus showed matches [18]. Consequently, the uncertainty
associated to the binomial classification describing the observed length at maturity from
the macroscopic characteristics of N. entemedor is negligible.

2.3. Sex Ratio

Sex ratio was calculated monthly. The sex ratios were compared using a chi-squared
(X2) test, assuming that the sex ratio was 0.5. The null hypothesis was rejected if the X2

estimated value was greater than 3.84 (α < 0.05, df = 1) [24,25]. Additionally, the sex ratio
was also represented for each 5 cm (TL) length class.

2.4. Length at Maturity

Length at maturity of females was estimated using a binomial code (immature = 0
and mature = 1), the data were modeled into two length-at-maturity models (Table 1). Pi
was the estimated proportion of mature fish in size class i, exp refers to the exponent which
is the number of times a number is multiplied by itself, TLi was the total length of size
class i, γ was the rate parameter related to the speed of size change from non-reproductive
to reproductive status, L50 was the length at which 50% of the organisms were mature, ε
was the maximum proportion of maturity reached, L95 was the length at which 95% of the
organisms are mature, and µ was the amplitude of the maturity ogive. The WHI equation
was modified, expressing it as a three-parameter function for modeling changes in the
proportion maturity; thus, the ε parameter varied as follows: 0 ≤ ε ≤ 1, which allowed for
the maximum fraction of mature females to be less than 1 [6].
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Table 1. Candidate length-at-maturity models used to estimate L50 for Narcine entemedor.

Model Abbreviation Function Source

Gompertz GOM Pi = exp−exp−γ(TLi−L50 ) [8]

White WHI
Pi =

ε

1+exp
[− ln (19)

(TLi−L50)
(L95−L50)

] [10]

The objective function for estimating the parameters in the candidate length-at-
maturity models were fitted by minimizing the negative log-likelihood (− lnL) [26]:

− lnL = −
n

∑
i=1

[
mi × ln

(
Pi

1− Pi

)
+ Pi × ln(k)

]
where ni was the number of individuals in size class i, mi was the number of mature fish

in size class i, and the quantity κ =

(
ni
mi

)
was defined as the binomial coefficient and

was computed as κ = ni!
mi!×(ni−mi)!

Given that these models exhibited a correlation between
parameters, estimates of confidence intervals (CI) in each model were obtained using the
likelihood contour method [27]. A chi-squared distribution with df = 2 was used, such that
values that were equal to or less than 5.99 were accepted within the CI [24]. The chi-squared
estimator was [28]:

CI = 2[− lnL(θest)− (− lnL(θi))] ≤ χ2
d f ,1−α

where − lnL(θest) was the negative log-likelihood of the most likely value of θi, − lnL(θi)
was the negative log-likelihood based on hypotheses of the value of θi, χ2

1−α was the value
of the chi-squared distribution with a confidence level of 1-α = 0.05 and df = 2 [28]. Model
performance was evaluated using Akaike’s information criterion (AIC), where the best
model was the one with the lowest AIC value [29,30].

3. Results

In total, 260 females and 45 males were collected from October 2013 to December
2015 in the Bahía de La Paz, Mexico. Females ranged in size from 48.5 cm to 84 cm TL,
males ranged from 41.5 cm to 58.5 cm TL. Thus, the females were larger than males in the
biological samples during the study period. The sex ratio of Narcine entemedor showed
that there was a dominance of males in the range of 45–55 cm TL; conversely, the females
were more abundant from 60 cm to 85 cm TL (Figure 1). The monthly sex ratio showed
a dominance of females and an absence of males was observed during January, April,
and June. However, during July–September, the presence of males increased (Figure 2).
Nonetheless, the sex ratio assessed from the X2 test (p < 0.05) showed that only during
three months the sex ratio was 1:1. These months were March (X2 = 1.80, df = 1), September
(X2 = 0.75, df = 1), and November (X2 = 1.80, df = 1) (Table 2).

All males analyzed in the present study were mature. Of the total number of females
analyzed, 17.7% were immature. The proportion of maturity, expressed as the relationship
between immature and mature females, showed that the larger females of 55 cm TL were
mature, and the dominance of mature females was observed from 65 cm TL. An overlap
between immature and mature females was identified for individuals smaller than 70 cm TL
(Figure 3). The monthly proportions of maturity showed that mature females were present
all year round, with the first change in proportions of immature females observed from
January to April, with high values during January–February, and low proportions during
March–April. A second change in the proportion of immature females occurred with a
decrease from May to September, and the third change was an increase in proportions of
immature females observed from October to December (Figure 4). These results suggested
that there was no seasonality in the reproductive pattern for N. entemedor, given than the
females were mature from 55 cm TL and in high proportions throughout the year.
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Table 2. Monthly values of chi-squared (X2) test estimated for Narcine entemedor from the Bahía de La
Paz, Baja California Sur, Mexico.

Female Male X2

January 21 0 10.50
February 37 4 13.28

March 8 2 1.80
April 8 0 4.00
May 35 3 13.47
June 17 0 8.50
July 33 13 4.35

August 33 10 6.15
September 15 9 0.75

October 16 1 6.62
November 8 2 1.80
December 29 1 13.07

The estimates of length at maturity and parameters for each model are shown in Table 3.
The L50 value estimated through GOM and WHI showed a difference of approximately
2 cm, where the GOM exhibited a smaller value. The parameterization of WHI indicated
that the asymptotic value expressed from ε was 1, indicating that the females from 60.64 cm
TL progressively increased their maturity proportions at length until reaching the total
length of 85 cm, although the asymptote was promptly described by both models from
65 cm. The comparison between models and the model selection between them showed
that the GOM model had the maximum likelihood (73.6) and smaller AIC, indicating that
this model was a better fit to the maturity proportion data of N. entemedor. A partial overlap
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between trajectories estimated that mature proportions for the two models were observed.
The trajectories computed for both models showed that the GOM underestimated the
maturity proportions at length for smaller lengths (55 cm TL) (Figure 5).
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Table 3. Parameters (in bold) and confidence intervals (in parenthesis) estimated from negative
ln-likelihood contours (p < 0.05). L50 is the length at which 50% of the organisms were mature, L95 is
the length at which 95% of the organisms are mature.

Model L50 γ L95 ε −lnL AIC

GOM 58.50
(56.2–60)

0.231
(0.16–0.31) 73.585 151.16

WHI 60.64
(58.6–62.2)

70.37
(67.6–74.4) 1 72.970 151.94
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4. Discussion
4.1. Length at Maturity

This study reanalyzed the length at maturity data for N. entemedor, mainly because an
interesting feature was observed in previous studies. This feature was the symmetry of
the model reported and its performance for fitting observed data, which was apparently
well distributed around the model. Our results showed a lack of symmetry in the observed
data fitted to the L50 model. Commonly, the observations could be expected, assuming
that the cumulative distribution function was symmetric; however, the data set provided
more information close to the asymptotic value, therefore the functional form of both
models and observed data were important for estimating L50. In this study, two models
were statistically compared (GOM and WHI), avoiding an analysis based on mathematical
expressions yielding similar estimates of L50, such as was documented by Oviedo-Pérez
et al. [12] and García-Rodríguez et al. [16]. The estimates obtained from GOM indicated
that the L50 value for this species was similar to the length reported by Burgos-Vázquez
et al. [18], while the WHI provided a larger L50 value. This comparison suggested that
the data set was distributed around the model, covering all the size classes. Whether
this condition was observed or not could have caused misspecifications in the models,
providing bias in L50 estimates with evident poor fit [31–33].

Estimates of length at maturity were different between the two models used. The
values associated with the Akaike information criterion indicated values of 151.16 (GOM)
and 151.94 (WHI); consequently, the GOM was the best model selected using the maximum
likelihood values estimated [30]. In this study, the WHI was implemented for the final
estimation of L50, the main assumption was that the reproductive event in Narcine entemedor
was a nonlinear process related to its total length, assuming that not all mature females
had reproductive activity at the same time; thus, the maximum proportion of maturity
reached will be different to an asymptotic value of 1 [6] (pp. 81–127, [17]). However,
this assumption was not satisfied for this species. Conversely, the proportion of maturity
observed in N. entemedor was sufficiently informative for an asymptote equal to 1, this was
clearly influenced for females larger than the 65 cm size class (TL), indicating that it was a
coincident with a continuous annual reproductive cycle and the absence of a reproductive
peak for mature females.

4.2. Features of the Reproductive Biology Affecting L50

This analysis was supported by biological information obtained from commercial
artisanal fisheries, where N. entemedor was not a target species. Consequently, the data
were limited, nonetheless there was the biological information necessary for analyzing
the basic features of reproduction for the giant electric ray. We observed that the sex
ratio of Narcine entemedor was dominated by males with a total length less than 55 cm,
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while the females with a total length above 65 cm were more abundant. Females were
dominant across all months observed through the annual cycle. According to Villavicencio-
Garayzar [19], the males of this species are scarce; thus, the annual sex ratio estimated
during 1992 was ~11:1. This change in sex ratio could be attributed to differences in the
growth pattern by sex. Smith et al. [34] reported for Hypanus dipterura, that the age structure
of the population was sexually dimorphic, in that males had a longevity of 19 years while
that of the females was 28 years. A similar age structure was found for Himatura astra,
in which the males had 19 age classes and the females had 30 age classes [35]. A similar
pattern was described for Platyrhina sinensis, with a maximum age reported for males of
5 years and for females the respective age was 12 years [36].

The length structure of Narcine entemedor was also different by sex, with females being
larger than males. Similarly, for Hypanus sayi (H. sayi), Torpedo torpedo (T. torpedo), and
Torpedo marmorata (T. marmorata) the females attained a larger size than the males [37,38].
For H. sayi, the largest female had a 72.9 cm disc width (DW) and the largest male had a
52.1 cm DW [37], while for T. torpedo, the total length reported for females was 47.7 cm
TL and for males it was 44.5 cm TL. For T. marmorata, the difference was also 20 cm TL
(55.3 cm TL for females and 36.4 cm TL for males). Additionally, in T. torpedo, the sex ratio
did not differ among size groups, but in T. marmorata, the presence of females exceeded
males at sizes >34.1 cm TL [38]. According to Rolim et al. [39], the length structure of
Narcine brasiliensis is different between males (from 23.6 cm to 38.0 cm LT) and females
(from 23.7 cm to 47.0 cm LT). The dominance of females measured from sex ratio for the
populations of rays previously referred to were always higher than males, with females
attaining larger sizes.

According to Koob and Callard [40], the reproductive cycles in elasmobranchs can
be classified into three types, made up of distinct species assemblages: (1) continuous
breeders, (2) seasonal breeders, and (3) punctuated breeders. Narcine entemedor is classified
as an organism with lecithotrophic viviparity. Lecithotrophy is a developmental pattern
in which yolk, produced by the maternal liver and sequestered in the yolk sac, provides
embryonic nutrition [17]. However, Burgos-Vázquez et al. [18] suggested that the giant
electric ray presented limited histotrophy as a reproductive mode and has a continuous
annual reproductive cycle; one peak of ovulation occurs between July and September,
but two peaks of parturition occur (minor peak in January–February and major peak in
August–September). In the Bahía de La Paz, the reproductive period of Narcine entemedor
was not temporally defined because the presence of a reproductive peak for mature females
was not observed from the mature/immature ratio. This feature could be associated
to its northernmost distribution zone, where the environmental conditions (e.g., food,
temperature) have an influence on its population structure and reproductive strategy.

Species with lecithotrophic oviparity, in which a continuous annual reproductive cycle
has been reported, are relatively commonly. These include Raja clavata (Gulf of Gabés)
with an absence of a reproductive peak [41]. This species attains maturity at a younger
age off the Strait of Sicily, meanwhile in North Wales the maturity is commonly observed
at an older age [42,43]. Conversely, Leucoraja naevus (L. naevus) has a reproductive peak
in Southern European waters (January–May), Celtic Seas (February), and the North Sea
(September–December) [44]. Additionally, both species exhibit a latitudinal gradient in size
structure: Raja clavate (R. clavate) was larger in the Celtic Seas (98 cm TL) than in the North
Sea (92 cm TL). For L. naevus, the maximum total length was 69 cm in the Celtic Seas and
62 cm TL in the North Sea [45].

The length at maturity of N. entemedor off the southwest coast of the Baja California
Peninsula (Bahía Magdalena) was reported to vary between 62 cm and 63 cm TL. This
length interval represented approximately 68% of its maximum total length [19]. Mean-
while, Burgos-Vázquez et al. [18] estimated a value of 58.5 cm TL (CI = 51.7–65.4 cm TL) in
the Bahía de la Paz (Gulf of California) using a logistic regression model. In this study, the
length at maturity was less than that previously reported by Villavicencio-Garayzar [19].
This value was supported by a sigmoid model (GOM) with a different trajectory in com-
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parison to WHI. The advantage of the GOM was that it had a more flexible form; it had
a rapid inflexion point in the first length classes, showing a slower approach to the max-
imum fraction of mature females (asymptotic value). Thus, the comparison among the
length-at-maturity models more frequently used and reported in the literature showed that
the GOM fitted to the data was better than the logistic model.

For several batoid populations, changes in length structure and L50 estimates have
been found, mainly through latitudinal gradients. For N. entemedor, differences were found
in the Equatorial zone, where this species attains larger sizes (110 cm TL) and L50 = 70 cm
TL [46]. This study reported lower values, with the maximum length being 84 cm TL and
L50 = 55.8 cm TL. Moreover, Raja clavata distributed in the Atlantic Ocean from Iceland
to southern Africa [47] has differences in L50 estimates. According to McCully et al. [45],
the females inhabiting the North Sea showed the values L50 = 73.7 cm and 77.1 cm TL,
versus those from the Black Sea varying between L50 = 66.7 cm and 74.6 cm TL. Similar
results were reported for Leucoraja naevus distributed from Norway to Morocco and Tunisia,
including in the Mediterranean Sea [48]. McCully et al. [45] found significant statistical
differences between estimates from the North Sea (L50 = 53.6 cm TL) and the Celtic Sea
(L50 = 59.8 cm TL).

5. Conclusions

In conclusion, considering that Narcine entemedor is distributed from the northwest
Mexican Pacific to Peru, the population in this study inhabited the northernmost limit
for the species. Therefore, reproductive biology values were different from populations
elsewhere. This included sex ratio, proportions of maturity, and length at maturity over a
year’s period. This species did not appear to have a reproductive peak and had a continuous
annual reproductive cycle. The estimates of L50 for this species showed that a sigmoid
model (GOM) was better than the logistic model.
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