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Simple Summary: Automatic behavior monitoring, also called automated analytics or automated
reporting, is the ability of an analytics platform to auto-detect relevant insights—anomalies, trends,
patterns—and deliver them to users in real time, without users having to manually explore their data
to find the answers they need. An analytics platform with automated behavior monitoring uses algo-
rithms to auto-analyze datasets to search for notable changes in data. It then generates alerts at fixed
intervals or triggers (thresholds), and delivers the findings to each user, ready-made. In-aquaculture
scoring of behavioral indicators of aquatic animal welfare is challenging, but the increasing availabil-
ity of low-cost technology now makes the automated monitoring of behavior feasible.

Abstract: Crustacean farming is a fast-growing sector and has contributed to improving incomes.
Many studies have focused on how to improve crustacean production. Information about crustacean
behavior is important in this respect. Manual methods of detecting crustacean behavior are usually
infectible, time-consuming, and imprecise. Therefore, automatic growth situation monitoring ac-
cording to changes in behavior has gained more attention, including acoustic technology, machine
vision, and sensors. This article reviews the development of these automatic behavior monitoring
methods over the past three decades and summarizes their domains of application, as well as their
advantages and disadvantages. Furthermore, the challenges of individual sensitivity and aquaculture
environment for future research on the behavior of crustaceans are also highlighted. Studies show
that feeding behavior, movement rhythms, and reproduction behavior are the three most important
behaviors of crustaceans, and the applications of information technology such as advanced machine
vision technology have great significance to accelerate the development of new means and techniques
for more effective automatic monitoring. However, the accuracy and intelligence still need to be
improved to meet intensive aquaculture requirements. Our purpose is to provide researchers and
practitioners with a better understanding of the state of the art of automatic monitoring of crustacean
behaviors, pursuant of supporting the implementation of smart crustacean farming applications.

Keywords: aquaculture; crustacean behavior; acoustic technology; machine vision; movement sensor

1. Introduction

Aquaculture has become one of the largest commercial and economically important
industries in recent years [1]. Lobsters, crayfish, crabs, crayfish, prawns, and shrimp are
the most valuable crustacean species groups with significant production. Shrimp and
prawn catches recorded new highs in 2017 and 2018 at over 336,000 tons [2]. In aquaculture,
most of the modern information technologies are applied to production management and
reliable monitoring of crustacean behavior is very important for aquaculture industries
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because it provides a starting point for welfare assessment [3,4]. Traditional crustacean
behavior monitoring is mostly based on manual measurement. However, manual monitor-
ing is usually laborious, time-consuming, and ineffective which thus limits its economic
benefits [5,6].

Modern-day crustacean aquaculture originated in Japan in the 1930s [7], and auto-
matic monitoring methods were developed in the 1970s and expanded rapidly around
the world [8]. Automatic behavior monitoring in aquaculture is defined as the appli-
cation of process engineering principles and techniques to precision fishery farming to
automatically monitor and recognize animal behavior [9,10]. Until now, scholars and
researchers have developed various automatic methods to monitor crustacean behaviors
in laboratories or ponds, including acoustic technology [11], machine vision [12], and
movement sensors [13,14]. Compared with the environmental parameter detection system,
automatic behavior monitoring is a posteriori indicated, but it is very meaningful for
welfare evaluation [15,16]. In terms of feeding, moving, home range, and activity, rhythms
may grasp biological behavior information, monitor animal health in real time, and provide
early warning of diseases [17]. Therefore, real-time monitoring of individual behavior is
important for improving production in crustaceans, and there is an urgent need for farmers
to monitor behavior in real time, which allows fishermen to take actions in the initial stages
of welfare or disease problems to meet the intensive aquaculture requirements [18].

This paper aims to summarize the characteristics of different crustacean behaviors and
various automatic aquaculture behavior monitoring methods that have been used over the
past three decades. In addition, this article also discusses and summarizes the advantages
and disadvantages of each method. Finally, we present potential applications and new
techniques for the automatic monitoring of crustacean behavior and the major obstacles
that need to be overcome. This review could provide a valuable reference to guide future
research into intelligent technologies for behavior monitoring and help practitioners to
assess crustacean welfare.

2. Important Behaviors in Crustacean Aquaculture

Modern technology offers the possibility for real-time shrimp behavior monitoring in
aquaculture as a fast and automatic research topic and a repeatable method [19]. In general,
when shrimps are in different physiological states, their behavioral profile will change, such
as posture, sound frequency, and activity rhythms [20–22]. Figure 1 shows the number of
papers related to different methods and monitoring behaviors. The most popular methods
are acoustic technology, machine vision, and movement sensors. Notably, feeding behavior,
movement rhythms and reproductive behavior are the main focus of automated monitoring
methods. We will focus on understanding the characteristics and influencing factors of the
above three behaviors, which can provide a basis for the development of various automatic
monitoring methods.

2.1. Feeding Behavior

Feeding is the primary factor for determining the efficiency and cost of aqua feed,
which may represent a considerable proportion of the crustacean farming budget [23].
Crustaceans use visual, mechanoreceptor, and chemoreceptor systems to detect the location
of food sources, and when food is available, crustaceans change their sound signatures and
movements [24]. Feeding behavior can reflect many aspects of an individual organism. The
survival rate and molting cycle of red swamp crayfish are associated with different feeding
rates [25]. Santos et al. revealed that white shrimp display nocturnal feeding and locomotor
rhythms [26]. Thus far, scholars have only used computer vision and passive acoustics to
recognize feeding behavior. In the future, we can focus on variables that reflect feeding
behavior, such as activity rhythms, posture, and position, and use more types of sensors to
indirectly monitor feeding behavior. Feeding table and schedule is a common and accurate
feeding method, but automated feeding behavior recognition also has great potential in
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determining when to start and stop feeding in order to improve feed conversion rate and
reduce costs [27].

Figure 1. Number of papers with different methods and monitoring behaviors.

2.2. Movement Rhythms

In addition to feeding behavior, movement also plays a major role in determining
the structure of populations and communities, as well as the evolution and diversity
of life [28,29]. Movement rhythms are defined as the recurrence of any event within a
biological system at more or less regular intervals. Crustacean movements can be catego-
rized spatially as homing, nomadic, or migratory, and temporally as daily, ontogenetic, or
seasonal [30,31]. As a basis for welfare assessment, the rhythms of movement behavior
can only be used to help choose the correct location for fishing, and are not the core of
assessing performance under aquaculture conditions. Therefore, monitoring of movement
rhythms during the fishing season will be of great help for choosing the correct location for
fishing. Studies designed to understand crustacean behaviors have used techniques such as
tag–recapture [32,33], visual tracking [34,35], acoustic telemetry [36,37], or a combination
of some of these techniques [38]. However, differently from land organisms, marine species
present technical difficulties when their movement is monitored over prolonged period of
time, due to the presence of saline water [39,40].

2.3. Reproductive Behavior

The reproductive behavior of animals is a significant manifestation of their life and
mating is a key step in reproduction [41,42]. The mating process includes approach,
touch, mount, turn, rolling, and thrust [43], and this process lasts between 28 s and
6.40 min [44,45]. Obvious external action characteristics and behavior duration are the basis
for monitoring using automated methods. Monitoring reproductive behavior can accurately
determine when mating occurs, and guide fishermen to perform artificial insemination,
thereby increasing reproductive yield. In addition, by monitoring whether the reproductive
behavior is normal, disease monitoring and prevention can also be effectively carried out.
Therefore, analysis of reproductive behavior can effectively improve crustacean production
and larval quality. However, many factors influence reproduction, which are broadly
divided into temperature effect, photoperiod effect, and season effect [46]. In addition to
environmental effects, individual-level factors also affect reproduction, such as body size,
the history of sex, investment in offspring, fitness, and dominance status [47].
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We can only effectively analyze behaviors that have been monitored by automated
methods. There are also some behaviors such as struggle behaviors that reflect changes
within the population, but understanding these behaviors is limited by the inefficacies of
manual observation. Under intensive cultivation conditions, the accuracy and precision
of the monitoring results are dependent on multiple factors spanning individuals, the
environment, water quality, and device model [48]. Based on the studies discussed above,
we can appreciate that crustacean behaviors are complex and difficult to monitor. Discussed
below are the current technical shortcomings and the future development direction, which
suggest a pressing need for providing new ideas for further improvement of intelligent
monitoring for farmers and information technicians.

3. Behavior Monitoring Methods Based on Acoustic Technology

Autonomous acoustic monitoring is a technique using sound waves to remotely mea-
sure information. Acoustic technology has been widely used in species identification [49],
biomass estimation [50], and behavior monitoring without causing stress to crustaceans [51].
For underwater monitoring, acoustic technology has key advantages over light waves and
electromagnetic waves because of the long propagation distances [16]; another advantage
of acoustic technology is that its measurement results are less affected by water turbidity
and underwater light [52]. According to data acquisition methods, acoustic technology can
be divided into passive acoustics and active acoustics. Active acoustics includes sonar, echo,
and acoustic telemetry. Sonar and echo technology are more used to measure the density
of crustaceans, and acoustic telemetry is more common to monitor crustacean behaviors.

3.1. Passive Acoustics

According to Howe et al. [11], passive acoustics is the action of listening for sounds,
often at specific frequencies or for purposes of specific analyses. The basic technique
involves using one or more hydrophones or appropriate acoustic processing systems
to detect natural vocalizations made by underwater creatures. However, the frequency
of the sound is very broad. Therefore, the hydrophones in the passive acoustic system
placed into farm ponds will be equipped with an amplifier attached to a digital acquisition
unit [53]. The digital acquisition unit is attached to a personal computer, which is used to
provide valuable information and this process is often undertaken by complex and specific
algorithms [54]. Many investigations have indicated that when some behaviors occur,
crustaceans emit different sound frequencies, including feeding [55], mating [56], carapace
vibrations [57], snap [58], and stick and slip friction [59–61]. With such variety of sound
production mechanisms, the characteristics of the sounds produced by crustaceans are
diverse [62,63]. According to the above theoretical basis, experts can identify crustacean
behaviors via long-term acoustic monitoring of sounds.

The mechanisms and spectral characteristics of crustacean behaviors are heteroge-
nous. In terms of feeding sounds, the physical production mechanism is that shrimp use
mandibles and maxillae to tear feed pellets into pieces before entering the oral cavity [63].
Some scholars have used the sound spectral features of feeding as an indication of pellet
consumption [64]. These experimental results show that the correlation between sound
and feeding behavior can reach more than 95%. Although passive acoustic technology
can provide guidance for measuring the relative intensity of feeding activity, it is unclear
how accurate it is at estimating the quantity of consumed pellets from feeding sounds. In
terms of activity rhythms, calibrated hydrophones can be used to measure the relationship
between crustacean sound signals and intraspecific interactions (encounter/approach,
fighting, and successive tail flips), circadian rhythm [65], and seasonal rhythm [66]. If the
p-value of the significant difference between activity rhythm and sound is less than 0.05,
it fully proves the reliability of using passive acoustic technology to monitor crustacean
activity rhythm. In addition to monitoring activity rhythms, Kikuchi et al. also found that
the frequency of stridulating sounds from Japanese spiny lobsters tended to increase at
night with the degree of tidal change, and that they are more active during large tidal
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changes [67]. Bohnenstiehl et al. showed that sound pressure levels were positively corre-
lated with snap rate (r = 0.71−0.92) and varied seasonally by 15 decibels in the 1.5–20 kHz
range [21]. The activity rhythm and snap information measured by passive acoustic tech-
nology can provide guidance to determine crustacean distribution and optimal harvest
time. Commonly cited advantages of passive acoustics include that they can rapidly and
noninvasively sample large crustacean volumes. However, other forms of impulse may be
similar to the characteristics that could potentially be misclassified as specified behavior,
which is also the main cause of error [53]. Therefore, the key challenges are improvements
in automated signal detection and classification. The signal detection method based on
machine learning can extract the time–frequency characteristics of the sound and filter
out the interference of noisy sounds. In addition, post-processing and analysis of large
datasets are current difficulties [68,69]. In order for passive acoustics to be better applied
to crustacean behavioral monitoring, specialists can use big data technology to achieve
intelligent data processing and analysis and develop user-friendly software that can be
used by fishermen and ecologists.

3.2. Acoustic Telemetry

Acoustic telemetry is technology to transfer information underwater using sound; it
was first used in the early 1970s and has been continuously improved over time [70,71].
Figure 2 is a schematic diagram of acoustic telemetry. An acoustic telemetry system
designed specifically for aquaculture includes an acoustic receiver with hydrophones, radio
smart transmitters, tags, and base station with antenna and computer [29]. Hydrophones
are usually mounted on surface buoys, which listen to the tagged animals [72], and an
acoustic transmitter sends out information, e.g., an ID code, as short tone-bursts, which
are picked up, decoded, and timestamped by an acoustic receiver [73]. Finally, the radio
sends tag information and a time stamp to the base station. Commonly, the base station
analyzes the arrival time of different signals to determine the location of the underwater
animals; this information consists of presence, movement, and behaviors of the tagged
animal [74]. Therefore, this method is effective for estimating daily home ranges, core areas
of activity [75], nomadic movements [76,77], activity patterns [78], and distance traveled,
as well as behaviors [79] such as feeding, molting, and reproduction. It is worth noting
that this technology cannot accurately gauge local movements.

Figure 2. Acoustic technology overview.

As the most critical step of monitoring crustacean behavior, individual data concern-
ing underwater animals collected by acoustic telemetry are very important for fishermen
and researchers, and the range is from small ponds to large lakes and coastal areas [73].
Compared with radio and PIT-tag telemetry, acoustic telemetry is more effective for track-
ing aquatic organisms in both estuaries and oceans [71]. For different crustacean behaviors,
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the acoustic telemetry monitoring system also has subtle differences in data processing
and analysis. Due to the maturity and completeness of the equipment, many scholars have
used Canadian VEMCO-brand (Halifax, NS, Canada) acoustic telemetry systems with tags,
which are one of the most widely used systems to obtain data on crustacean positions. The
position information can be directly quantified into diurnal activity rhythms [29,80–82],
seasonal movements [83], home range [31,75,84], nomadic behavior [72,76], and migratory
patterns [85–87]. Compared with passive acoustic monitoring, acoustic telemetry tech-
nology is more effective in determining the activity pattern of individual crustaceans. In
addition to activity rhythms, VEMCO VR2 systems have been used to reveal that female
lobsters’ reproductive migration occurred between 5 June and 25 August. This result pro-
vides reference for revealing the reproductive behavior of the lobster [31,79]. Information
such as this can guide fishermen to carry out artificial breeding in time or create suitable
natural mating environments to improve breeding production.

In summary, all the above studies show that acoustic telemetry can monitor aquatic
animals in a free-living state with the advantage of location. The detailed information
concerning crustacean behaviors derived from acoustic technology studies is listed in
Table 1. Of course, acoustic telemetry also faces some difficulties and challenges. A
common concern is the potentially adverse effects on animal survival and behaviors.
The difficulty is that in order to obtain behavior data, the animal to be monitored must
be tagged. In addition, telemetry projects are often relatively expensive. Although the
acoustic receivers and base station can be used repeatedly, tags are usually considered
expendables [88]. Compared with passive acoustics, fewer crustaceans tend to be monitored
and tracked in acoustic telemetry contexts. The data resolution has tended be very high,
but some complex behaviors such as sublime aggression, courtship, and some actions that
are transmitted by chemical signals are hard to identify by acoustic telemetry. Another
technical difficulty is quantifying spatial location. This represents an important focus
area for future research and development. By combining the Internet of Things, artificial
intelligence, and cloud computing, it is possible to identify the spatial position information
of crustacean movements pursuant of intelligent optimization and decision-making control
functions in smart aquaculture.

Table 1. Detailed information for behavior monitoring by acoustic technology.

Technology Species Application Results or Accuracy Culture Model Acoustic Features/Principle Reference

Passive acoustics

Tiger prawns Feeding R2 = 0.95 and R2 = 0.96 Tank and pond 3 kHz–7.6 kHz [53]

Prawn Confidence intervals:
98.4 ± 0.6 Pond 51.2 kHz [64]

Family Alpheidae Snap R = 0.71–0.92 West Bay Marine Reserve 1.5–20 kHz [21]

Red swamp crayfish Intraspecific interactions
and activities 45% and p < 0.0001 Tank and natural

environment
Peak frequency = 28 kHz

Bandwidth RMS = 20 kHz [65]

European lobster Seasonal activity p < 0.05 Site Vemco 12 VR2W [66]

Japanese spiny lobster Movement Island 0.04–21 kHz [67]

Acoustic
telemetry

Active acoustics

European spiny lobster

Home range

p < 0.001 Protected area Ultrasonic telemetry [78]
American lobsters (523.2 ± 78.1 m/day−1; r2 = 0.62, p = 0.0001) Enclosure VEMCO V8SC-2L [75]

Lobster SE = 0.09, p = 0.02 Coast Vemco V13P–L [6]
European spiny lobster Ranged from 1629.3 to 8641.3 m2 Coast Vemco V9P-1L 69 kHz [76]

Spiny lobster 923 versus 871 m/day, Channel Vemco V16 69 kHz [31]

American lobsters 51% moved <5 km, 19% moved 5–10 km, and
30% moved >10 km Inshore Vemco V13-1L 69 kHz [83]

Lobster
The mean daily home range (n = 18) was 1002.0

± 195.7 m2 (mean ± SEM)
Castle VRAP model, VEMCO [84]

American lobsters Home ranges (≈27.4−111.6 m2) Castle VRAP
Lobster Jasus lalandii Nomadic behavior p = 0.0002 Aquarium Vemco V8-2LR [77]

Lobster Reproductive migrations Three migrations per year by an
individual female

Western Sambo Ecological
Reserve Vemco V16 69 kHz [79]

Lobster Feeding 90% confidence level (p = 0.09, K–S test) Field enclosure Vemco VR2W 69 kHz [51]

Spider crab Migratory patterns 70% recapture rate Coast VEMCO V16 [85]
Norway lobsters Error < 1 m European waters Vemco [87]

Lobster

Movement patterns

r2 = 0.82, DF = 70,
p < 0.0001 2.5 km2 lobster Vemco VRAP [29]

Spider crab R = 0.353; R = 0.805 Coast VEMCO Ltd. [80]

Blue crabs R > 0.64; R = 0.71–0.97;
R = 0.25–0.32 Coast Tucson Arizona [86]

Lobsters; crab Tank VEMCO Ltd. [81]
Edible crab p < 0.001–0.042 Coast Vemco VR 60 [82]
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4. Behavior Monitoring Based on Machine Vision

Underwater machine vision technology has been used since the 1950s to study the be-
havior, distribution, and abundance of marine and freshwater organisms [89]. Applications
of machine vision have increased considerably in two major aquaculture domains, namely:
(1) pre-harvesting and growth of underwater animals and (2) post-harvesting [90]. This
technology can provide an effective means for the analysis of individual features [91,92],
species classification [93], vocalizations [94], and behavior recognition within complex data
sets at scales and resolutions not previously possible [95,96]. Machine vision technology
can help us solve some important problems concerning ecology, social structure, collec-
tive behavior, communication, and welfare [97]. It can also save initial raw information
for potential re-analysis, and record both visible benthic organisms and other biological
activity [98]. Machine vision methods can quantitatively analyze behavior and greatly in-
crease the efficiency, repeatability, and accuracy of image review, which is also a prominent
advantage compared to acoustic technology. The typical equipment includes an industrial
camera, source, acquisition card, and image processor. Based on the different wavelengths
utilized by cameras, light can be divided into visible and infrared. The system structure and
monitoring flow chart which utilizes visible light as the light source is shown in Figure 3.

Figure 3. System structure and monitoring flow chart.
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4.1. Machine Vision Based on Visible Light

Machine vision technology based on visible light is widely used for crustacean behav-
ior monitoring compared to other types of light sources. Extant studies on the monitoring
of shrimp behavior can be divided into two categories. Direct methods use the measured
videos or images to obtain the feature, trajectory, angle, velocity, and range of crustacean
activities, as well as other parameters. With indirect methods, crustacean behavior is
monitored from information on uneaten pellets recorded by a camera.

4.1.1. Direct Behavior Monitoring

Studies have shown that crustaceans exhibit particular behaviors in different physi-
ological states [99]. According to the specifics of the experimental environment and the
characteristics of action occurrence, image processing systems usually approach this by the
applicable algorithms, including image preprocessing, image segmentation, and feature
extraction. There are three major branches of image preprocessing, namely image recon-
struction, image restoration, and image enhancement [100]. This involves many methods
such as linear transformation, histogram equalization, filtering, increasing, and frequency
domain enhancement [101]. Especially for aquatic creatures such as crustaceans, which
can easily cause water turbidity, image preprocessing is commonly applied to improve the
quality of turbid images. Due to the temporal and spatial characteristics of video images,
the main idea of the moving target detection method is to extract the changed regions from
the background in the video image [102,103]. In recent years, more and more methods
have been proposed to provide accurate and consistent segmentation for moving target
extraction; commonly used methods include threshold segmentation, region segmentation,
and edge detection [104,105]. Analysis and extraction of target features is the final step
of behavior identification of moving targets, involving color features, texture features,
geometric features, and motion characteristics.

Crustacean behaviors are related to their size, shape, speed, and color. The appear-
ance detection method can identify static visual appearance features that are lacking in
motion-based technologies, and it performs well in a stationary scene where crustaceans
exhibit minimal motion. Feature extraction from texture is a basic approach for identifying
behavior, e.g., the texture feature was used to extract the patterns of bay lobsters’ exoskele-
tons to automatically classify the molting stage with a maximum accuracy of 98.61% [106].
Oishi et al. successfully detected shrimp mating motions using cubic higher-order local
auto-correlation (CHLAC) features in conjunction with a subspace method, with a standard
deviation of 5.8 ± 1.3 [107]. Although posture analysis based on skeleton characteristics
is often used in agriculture for large animals such as cattle and pigs, Yan and Alfredsen
also extracted the lobster skeleton to quantify the posture of the lobster; the migration
of this technology will provide more technical support for the application of skeleton
feature extraction methods in aquaculture [18]. Machine vision monitoring methods are
also widely used in the measurement of crustacean movement rhythms. The working prin-
ciple is that the visual monitoring system obtains the pixel coordinates of the crustacean
according to the position of the crustacean in the image. The computer then converts the
pixel unit to the actual distance (mm) according to the x, y Cartesian coordinates recorded
by the tracking software. The researchers calculate the Euclidean distance between the
coordinates to obtain the total distance traveled by each shrimp [12]. Using the methods
mentioned above, Aguzzi et al. found that the measurement of displacement of lobsters
displays diurnal activity rhythms and burrow-related behavior [93]. Crustaceans offer the
benefits of delineated developmental life stages and the accumulation of environmental
toxins which change their behavior [108]. Therefore, some scholars have been able detect
changes by tracking and analyzing the locomotion behavior of shrimp exposed to toxic
chemicals in the environment, especially their movement speed, which yielded a p-value
less than 0.08 [109,110]. In addition to image processing algorithms, mature video behavior
monitoring software platforms have been developed in recent years. Commercial soft-
ware uses graphics and mathematical methods to describe motion trajectories [111,112]; a
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real-time monitoring system can analyze multiple behaviors at the same time [34,35], and
an underwater imaging system has been independently developed by researchers [113].
Real-time monitoring systems can be operated in aquaculture over the long term to cover
the entire crustacean life cycle, from nursery to fishing, identifying the growth status of
crustaceans in real time, and providing early warnings and alarms for abnormal behaviors
in a way which minimizes labor inputs. However, the high price is the main issue that
restricts it from being widely used in aquaculture.

4.1.2. Indirect Behavior Monitoring

In addition, other information can be used to indirectly quantify crustacean behavior.
Uneaten pellets and displacement represent important information for analyzing, identify-
ing, and monitoring shrimp behavior. Therefore, such methods can be used to quantify
particular behaviors that are difficult to detect [114].

Detection of uneaten pellets is another way of using machine vision to monitor feeding
behavior. During this process, the corresponding area and other parameters of the food
pellets can be used to indirectly monitor feeding behavior [113]. Those authors also
measured organic matter residues in pond sediments to estimate feeding behavior at night
time. The remaining pellets can be used as an indicator of the feeding intensity, thereby
saving the amount of feed and effectively reducing pollution in culture ponds, but the
accuracy of the results cannot be quantified [115]. Although indirect information can be
used to monitor behavior, compared with the direct monitoring method, it is less accurate
and prone to errors. This information can also be stored in a big data database, and it can
help information technology staff build an expert farming system. Long-term underwater
imaging and expert systems can also help in terms of smart feeding decisions, smart sewage
decisions, and abnormal status warnings. In summary, machine vision technology has
improved task performance (automatic monitoring) in achieving a task (e.g., classifying
images) from image data. This technology can be a highly reliable and accurate method
for objectively measuring activity levels in aquaculture with a low consumption of labor
and time. However, regardless of whether direct or indirect measurements are used, it is
still in the experimental stage, and large-scale applications still need to overcome many
practical problems. Crustacean activities are mainly concentrated at night; the water
can lead to reflections and the dark surface of the shrimp will directly reduce the clarity
of the acquired video images. In addition to these practical problems, machine vision
technology also faces some challenges in monitoring shrimp movements. The complexity
of the monitoring environment and the uncertainty of the monitored objects are the biggest
factors that interfere with shrimp behavior monitoring. There is an urgent need to improve
the technology for extracting moving targets in underwater video images, and software to
analyze more specific behaviors will become more important in the future.

4.2. Machine Vision Based on Invisible Light

Invisible light is an electromagnetic wave that cannot be seen by humans. The wave-
length range is greater than 760 nm and less than 380 nm. The principle applied in
aquaculture is based on the absorption of invisible light in water, resulting in variable
brightness, which is not affected by visible light intensity and can yield good imaging
results in dark places such as inside animal shelters [116,117]. Most crustacean species
are nocturnal, remaining inside shelters during the day and actively foraging outside at
night [118]. Therefore, invisible light technology is more suitable for capturing dim images
of shrimp at night than visible light technology. Due to the low cost and low requirements
of visible light intensity, it has a unique ability to fully understand the behaviors and
rhythms of shrimp in aquaculture, which has poor lighting.

Invisible light technology provides a new method for accurately identifying crus-
tacean behavior and mainly includes infrared imaging technology and X-ray imaging.
The advantages of using infrared imaging technology to monitor crustacean behavior,
including the fact that crustacean eyes are not sensitive to the infrared light used in the
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system and the scattering of infrared light in water does not tend to present a problem [117].
However, the major disadvantage of infrared light is that the attenuation coefficient and
absorption of light in water increases dramatically as the light wavelength increases into
the visible red region and then increases exponentially in the infrared region [119]. Hesse
et al. used infrared photoelectric sensors to collect infrared images and study the different
reactions of lobsters when different predators approach [120]. Ahvenharju and Ruohonen
used ballotini glass beads to label diets with X-ray, and the number of ingested glass
beads in the digestive track was counted from the X-ray images [121]. The accuracy rate
was 92.8 ± 8.6% and the results confirm that using an X-radio graph technique makes
it possible to measure the individual food consumption of freshwater crayfish juveniles
reared communally. Invisible light technology is not affected by the light of the aquaculture
environment, which can monitor crustaceans at night.

Invisible light has been used for monitoring crustacean behavior in laboratories and
ponds. Compared with visible light systems, invisible light imaging technology requires
no calibration, and is more suitable for measurements in turbid water with complex light
conditions. In addition to behavior monitoring, it has also been used in aquaculture
biomass estimation, 2D and 3D tracking, positioning of crustacean stocks, and various
behavioral analyses [122]. However, further research is needed before such technology
can be applied to commercial aquaculture to obtain real-time data on crustacean behavior
pursuant of minimizing the interference caused by absorption, refraction, and scattering.
Therefore, there is a need to improve the ability of invisible light technology to monitor
crustaceans under high illumination levels or longer distances. For both visible light and
invisible light methods to monitor the movement of crustaceans, improving image feature
extraction technology and solving the problem that machine vision technology cannot
be applied in high-density and large-population breeding contexts are still challenges to
be overcome.

Overall, monitoring crustacean behavior through images with machine vision tech-
nology is currently an important application and research focus for realizing precision
aquaculture, and the detailed information concerning machine vision technology for crus-
tacean behavior monitoring is listed in Table 2. However, most research is still at the
laboratory stage, and this method is not suitable for detecting some inconspicuous behav-
iors and behavioral transmission between crustaceans based on chemical signals which
also cannot be detected. Therefore, it is necessary to develop a high-resolution monitoring
system capable of local amplification.

Table 2. Summary of methods based on machine vision.

Principle Application Species Culture Model Result/Accuracy Advantage/Disadvantage Reference

Visible light

Molting behavior Bay Lobsters Tank 98.61% Requires few training images [106]
Posture estimation Lobster Laboratory Simple algorithm [18]

Mating behavior Shrimp Tank Standard deviation:
5.8 ± 1.3

Affected by distance between
shrimp and the camera [107]

Toxic behavior
Shrimp Tank 0.05 < p < 0.08 Low cost [109]
Crayfish Tank p < 0.001 Poor timeliness [110]

Daily locomotor activity Norway Lobster Tank 60% and 89.5% For long-term monitoring [123]

Activity rhythms

Norway Lobster Tank p < 0.01 Faster detection [124]

Norway Lobster Tank range:
139.8–1917.1 cm Low cost [114]

Norway lobster Tank 98.7% and 76.9%
(p = 0.329)

Poor detection result of
oblique camera [12]

Shrimp Pond Successfully
detected Function can be expanded [113]

Feeding Shrimp Shrimp farming 0.03–0.63 Need better image
enhancement techniques [114]

Cleaning, food burying,
feeding, moving,
substrate, resting

Lobster Artificial lobster
cavity

Wide application range, can
monitor multiple behaviors [34]

Burrowing, walking,
resting, ventilating Mud shrimp Aquarium 82.7% Expensive [35]

Motion tracking Gammarus pulex Tank Flexible data analysis [111]
Crayfish Tank p = 0.05 Noninvasive [112]

Near infrared Activity rhythm Norway lobster Tank p < 0.5 Noninvasive [39]
X-ray Feeding Crayfish Tank 92.8 ± 8.6% Damaged [121]
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In summary, future research and development directions can be demarcated as fol-
lows: (1) The focus on spatiotemporal and spatial sequence will continue to improve
the accuracy and robustness of machine vision recognition of crustacean behavior. It is
expected that algorithms similar to two-stream networks and 3D convolutional networks
will be developed that can account for spatiotemporal sequences to achieve higher perfor-
mance vis à vis shrimp behavior recognition methods. (2) The embedded vision system
has the characteristics of compact structure, fast processing speed, and low cost; this is
an important direction for the development of machine vision systems in the future. It
also makes it possible to combine machine vision systems for large-scale popularization
in aquaculture. (3) Machine vision systems that incorporate multiple technologies are
also current and future research hotspots. For example, the fusion of the machine vision
system and the Beidou navigation system can achieve high precision and low cost in
the context of farmland navigation systems; the multiple video systems can collect more
behavior information from crustaceans. The combined use of bio-floc technology and
machine vision technology can make it possible to identify individual animals in intensive
high-density environments.

5. Electrosensors

In addition to acoustic and optical technology, other sensors based on different param-
eters have been leveraged to identify and monitor crustacean behavior [125]. More broadly,
sensors are often used for farming purposes. In recent years, more and more sensors
suitable for crustacean behavior monitoring have been developed, and some equipment
has been proposed for monitoring in aquaculture.

5.1. Accelerometer

Accelerometers are electromechanical devices designed to measure acceleration forces
caused by gravity and the moving or vibrating activity of a subject. In particular, three-
axial accelerometers can measure the motion, vibration, and displacement of underwater
animals in X, Y, and Z directions [126]. When crustaceans undergo behavioral changes,
they are usually accompanied by changes in movement speed or acceleration. Therefore,
the high correlation between accelerometer data and movement of free-living individuals
in different behavioral contexts is the key to identifying and monitoring different behavior
states [127]. The development of accelerometer data loggers has made it possible to monitor
daily patterns of behavior in many crustacean species, mainly lobsters, including slipper,
spiny, and clawed.

Accelerometers are very effective in monitoring the activity rhythm of crustaceans,
and are currently one of the main application areas of acceleration sensors. The collected
accelerometer outputs can be converted into distances moved per unit time and scholars
can estimate the distance moved by shrimp in a period of time according to this method to
an extent that is statistically significant, that is, p < 0.005 [125,128]. However, the correlation
between the movement and accelerometer is uncertain. Jury et al. obtained the value of r2

between the video activity and accelerometer activity of 0.898. The activity was defined
as forward, backward, or sideways locomotion (>2 cm) for each lobster [128]. Goldstein
et al. obtained the value of r2 between the video distance and acceleration of 0.53 and
0.63 [125]. These results indicate that the accelerometer can only estimate activity, and it is
still not accurate enough for more demanding distance calculations. The system structure
of monitoring crustacean behavior with sensors is shown in Figure 4; the acceleration
sensor usually needs to be fixed on the crustacean, so it will apply pressure and thus cannot
be used on small crustaceans (e.g., krill and fairy shrimp) This is also one of the challenges
faced by intrusive automated monitoring methods. In addition to pure activity discipline
assessment, some researchers have constructed models based on acceleration data and
estimated the physiological status and welfare of crustaceans [13,14]. Thus, acceleration
sensors can effectively be used to monitor the relative activity of lobsters over long periods
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in the laboratory and field, and this technology provides important reference information
for the development of intelligent decision systems.

Figure 4. Crustacean behavior recognition based on an accelerometer.

The accelerometer is similar to acoustic technology in that high turbidity and changing
light levels will not affect the recording, and the sensor systems are readily adaptable to
the field. The distance traveled and rate of movement can be estimated by calibrating
accelerometer outputs compared to actual movements. Therefore, once appropriately
calibrated, accelerometry appears to be a suitable method for assessment of movement
patterns and distance traveled by animals above a certain size.

5.2. Electromyography

Electromyography (EMG) is an electrodiagnostic automated technique for evaluating
and recording the electrical activity produced by skeletal muscles. An electromyograph
detects the electric potential generated by muscle cells when these cells are electrically
or neurologically activated. The structure of the system using EMG to monitor shrimp
behavior is shown in Figure 5. The signal collected by EMG is converted and transmitted
to computers, and the signals can be analyzed to detect physiological abnormalities, acti-
vation level, recruitment order, and the biomechanics of crustacean movement [129,130].
Therefore, these electrical signals can be used to design automated growth monitoring
systems and develop intelligent decision-making and control systems for aquaculture.

According to some studies, the behavior of crustaceans can cause muscle cells to
generate electrical potential [131,132]. EMG has been used to monitor the feeding behavior
of individual crustacean. Gripping action is a key element of the feeding behavior of
crustacean, especially lobsters. Therefore, the recorded electromyogram of the lobster claw
muscle can characterize feeding behavior to an extent that is statistically significant at
the 0.05 level [133,134]. It is reliable for monitoring feeding behavior and estimating the
intensity of behavior based on chemical and biological EMG methods to gain a deeper
understanding of crustacean feeding status, and the obtained data can be used to establish
accurate growth models. The principle of studying lobster movement patterns is similar
to monitoring eating behavior; the difference is that chronic electrodes are implanted on
the shrimp’s legs instead of on the claws [129]. More importantly, the EMG pattern can be
analyzed to determine whether the behavior is reflexive or spontaneous [130,135], which
solves the problem that machine vision and acoustics cannot monitor some behaviors that
are not obvious.
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Figure 5. Crustacean behavior monitoring based on EMG.

The studies above have shown that these sensors are highly accurate in detecting
motion states and have great potential for estimating the intensity of behavior. Table 3
shows detailed information on sensor technologies. However, sensors need to be in contact
with the crustacean, or even implanted in the crustacean during the measurement, which is
an interventional monitoring method. The pressure and interference caused by this on the
crustacean is difficult to gauge. In the future, miniaturized, lightweight sensors have great
potential for reducing the pressure in small-scale biological monitoring contexts. Recently,
namely, the fusion of acceleration sensors and other sensors (such as pressure, GPS, and
acoustic tags); this has successfully been applied to monitor the ecology, physiology, and
behavior of different fish [136]. This method of multi-information fusion could also be used
in crustacean behavior monitoring. For behaviors such as motion rhythms that require
long-term monitoring, the development of corrosion-resistant equipment materials will be
another problem that needs to be overcome in future development.

Table 3. Summary of methods based on movement sensors.

Technology Application Species Culture Model Result/Accuracy Advantages/Disadvantages Reference

Acceleration sensor

Diel activity
patterns

Slipper lobsters Tanks R2 = 0.898; p ≤ 0.01 Direct detection,
high

accuracy/contact,
damage to shrimp

body

[125]

Spiny lobster Tank
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Movement Lobster Laboratory R2 = 0.63, p < 0.001 [128]
Lobster Laboratory accuracy > 90% [14]

Electromyogram
(EMG) transmitter

Walking Crayfish Tank p < 0.05
Directly reflects
hunger levels;

damage to fish body

[130]
Leg movement American lobster Laboratory p < 0.05 [133]

Circadian rhythms Crayfish Laboratory p < 0.05 [135]

Grasping behavior American lobster Laboratory p = 3.099 × 10−9,
<0.05 [134]

6. Other Methods

In addition to the methods mentioned above, other technologies have been used to mon-
itor behaviors and may be feasible alternatives, although there is no large-scale application.

The information collected by using a single technology is insufficient. In order to
obtain more comprehensive and accurate behavioral information, researchers are trying
to simultaneously use different technologies to obtain crustacean behavioral information
from multiple angles. The combination of acoustic technology and sensor technology
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can yield behavior information from multiple angles. The technical fusion of acoustics
and sensors can not only be used without obstacles in muddy underwater environments,
but there is also an obvious absolute correspondence between the sound frequency of
crustacean and the motion acceleration [127]. Therefore, it is feasible to use information
fusion technology to make up for the blind spot of a single technology. This also provides a
favorable theoretical basis for future large-scale research into information fusion technology
in crustacean behavior monitoring.

Radio tag technology can also be used to quantify the behavioral characteristics of
crustaceans; it transmits individual information to a receiving station or monitoring center.
An RFID tag consists of a tiny radio transponder. When triggered by an electromagnetic
interrogation pulse from a nearby RFID reader device, the tag transmits digital data, usually
an identifying inventory number, back to the reader [103]. Radio tags are cheaper than
acoustic tags and can be used to develop a low-cost real-time tracking system. However,
tag loss during molting of the exoskeleton is the main difficulty and challenge of labeling
technology to monitor crustacean behavior [137]. Therefore, the invention of internal
elastomer tags could provide a new solution for the fixation of the label, and these tags
would likely have large-scale applications in commercial fisheries in the future.

7. Challenges and Future Perspectives

The acquisition of crustacean behavior information is critical because it helps fish-
ermen to know the behavior state in time, for applications such as grasping the best
harvesting location according to the seasonal movement, and timely adjustment of the
most suitable environmental parameters of crustaceans in the breeding period to provide
a reference for obtaining the maximum welfare harvest. However, automatic monitoring
of crustacean behavior is very difficult and challenging. One of the major reasons is that
crustaceans are sensitive and translucent, and while monitoring behaviors the free move-
ment of the crustacean should be ensured, which limits the application of many methods.
Another reason is that the environmental characteristics of aquaculture are not conducive to
crustacean behavior monitoring, such as low visibility, poor optical path through biofouling
on optical systems, impossibility to discriminate individual animals, noise interference
from apparatuses, inaccurate accelerometers, and electronic sensors being disturbed by
electric fields. Manual monitoring is often ineffective, expensive, and damaging. With
the development of advanced automation technologies such as machine vision, acoustics,
and sensors there is significant potential to improve the precision of crustacean farming.
However, the unique defect of each technology is also objective. The technical difficul-
ties that need to be solved urgently include the substantive damage caused by sensors
to crustaceans, how to move beyond single to multiple technology approaches, the low
degree of automation, and the weak tracking ability of individual shrimp. Therefore, we
propose future development trends in crustacean behavior monitoring to improve the level
of precision aquaculture.

(1) It is necessary to expand and improve the application of imaging technology in
aquaculture, which is suitable for crustacean breeding environments with low visibility
and high density. In future studies, multiple types of imaging technologies can be used
for behavior monitoring in aquaculture, moving beyond just to infrared imaging and
RGB imaging. Microwave technology has been widely used in underwater imaging.
Digital holography is one of the most advanced technologies used for monitoring aquatic
animals. Therefore, to avoid the interference caused by the turbid water quality, microwave
technology and digital holography can be used to monitor the behavior of crustaceans in
the turbid water environment.

(2) Most machine-vision-based behavior monitoring uses planar images for analysis.
Underwater 3D technology can conveniently obtain 3D coordinate information of crus-
taceans, which makes it easier to track individual crustaceans, improving the monitoring
accuracy of the movement rhythm. Real-time aquatic behavior monitoring will support
improved aquaculture management, welfare, and policy interventions.
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(3) Deep learning (DL) is an algorithm that is highly suitable for underwater recog-
nition. Performance comparisons with traditional methods based on manually extracted
features indicate that the greatest contribution of DL is its ability to automatically extract
features. Moreover, DL can also output high-precision processing results. A rapid, low-
cost deep learning system would be highly suitable for the identification of individual
crustaceans in a high-density stocking environment. Therefore, deep learning technology
can be used to develop non-invasive, reproducible, and automated individual crustacean
tracking and behavior monitoring.

(4) The combination of multiple technologies has been preliminarily explored in crus-
tacean behavior monitoring. However, these electronic monitoring devices are inevitably
affected by electric fields and accuracy. Therefore, a non-invasive method that combines
multiple technologies has greater potential. For example, information fusion technology
based on images and sensors is formed to solve the problem of a single device being
affected by the environment and failure.

(5) Currently, the acoustic technology behavior monitoring method is seriously dis-
turbed by noise. In addition to reducing the noise of equipment in the aquaculture environ-
ment as much as possible, the ability of acoustic technology should also be improved. Big
data technology can efficiently analyze more data collected in one area or data collected
across a larger area more frequently; fishermen will be able to determine changes in acoustic
patterns more readily and compare them to other environmental data to provide a holistic
understanding of crustaceans.

8. Conclusions

Over the past three decades, researchers have developed various automatic techniques
and methods to monitor crustacean behaviors. This paper reviews current research con-
cerning intelligent crustacean behavior monitoring, including acoustics, machine vision,
sensors, and other emerging options. Based on an extensive analysis of the literature,
Table 4 summarizes the advantages and disadvantages of various monitoring technologies
and their wide range of applications, which could help provide the most suitable behavior
monitoring means for different aquaculture environments. As a large-scale application
technology, acoustics are not affected by water turbidity and they can work well in almost
invisible conditions. Therefore, acoustic technology is more suitable than other methods
for use in low visibility environments. However, their non-reusability, high cost, and noise
interference limit their application in aquaculture. Compared with acoustics technology,
machine vision is objective, repeatable, inexpensive, and not affected by noise; it can
identify crustacean behavior remotely without causing damage or stress to the crustacean.
The application of machine vision is limited by water surface reflectivity and low image
quality. This problem can be solved by using near-infrared machine vision as its imaging
quality is not affected by the intensity of visible light. In addition, it is necessary to develop
more general sensors for a variety of crustaceans. The advantage of sensors is that they
are inexpensive and highly accurate. However, they only work for large fish; the stress
and damage caused by sensors on small aquatic animals limits their current development
and applications. With the increasing diffusion of automation technology aquaculture in
future, it can be expected that improved algorithms and new software will be developed
for intelligent crustacean behavior monitoring to realize automatic aquaculture, and even
unmanned fisheries.

Table 4. Advantages and disadvantages of different automatic monitoring methods.

Technology Advantages Disadvantage Application and Acceptance Level

Acoustic

Passive acoustics Rapid and noninvasive, useful in water
with low ambient light

Many other forms of impulse, large amount
of data, difficult to distinguish

Large-volume aquaculture model,
such as a tank system,

Acoustic telemetry High precision and high data resolution,
regardless of turbidity and light

Expensive, acoustic label is a contact
technology, limited number of tracked

shrimps
Small-scale farming
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Table 4. Cont.

Technology Advantages Disadvantage Application and Acceptance Level

Machine vision

Visible light Low cost, repeatability, real time,
noninvasive

Higher visibility requirements, susceptible to
water turbidity Good lighting condition

Invisible light Regardless of visible light intensity, no
calibration

The short penetration, refraction, and
scattering of infrared rays Laboratory conditions

Sensors

Acceleration sensor Regardless of turbidity and light, readily
adaptable to field

Contact with shrimp, damage to shrimp
body, susceptible to other parameters Specific tank and pond

EMG High precision, can determine whether
the behavior is reflexive or spontaneous

Implanted in shrimp, cannot be used on
small shrimp Laboratory conditions
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