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Simple Summary: Cold stress is a major environmental stressor affecting cattle performance in
temperate regions, which causes impaired welfare and economic losses to cattle producers. The
identification of biological mechanisms associated with cold stress response is paramount for de-
veloping effective mitigation strategies, such as genomic selection. In this study, we assessed the
short-term effects of hyper-cold stress on metabolite responses and metabolic pathways in the serum
of Inner-Mongolia Sanhe cattle. Moreover, 19 differential metabolites were found, mainly involved
in amino acid metabolism. A further integration of metabolome results and gene expression high-
lighted the regulation of metabolic changes and related pathways in severe cold exposure, such as
“aminoacyl-tRNA biosynthesis” and “valine, leucine, and isoleucine degradation”. In summary, we
presented new insights on the short-term effects of severe cold stress as well as metabolites and
metabolic pathways associated with cold stress response in Inner-Mongolia Sanhe cattle.

Abstract: Inner-Mongolia Sanhe cattle are well-adapted to low-temperature conditions, but the
metabolic mechanisms underlying their climatic resilience are still unknown. Based on the 1H Nuclear
Magnetic Resonance platform, 41 metabolites were identified and quantified in the serum of 10 heifers
under thermal neutrality (5 ◦C), and subsequent exposure to hyper-cold temperature (−32 ◦C) for
3 h. Subsequently, 28 metabolites were pre-filtrated, and they provided better performance in
multivariate analysis than that of using 41 metabolites. This indicated the need for pre-filtering of
the metabolome data in a paired experimental design. In response to the cold exposure challenge,
19 metabolites associated with cold stress response were identified, mainly enriched in “aminoacyl-
tRNA biosynthesis” and “valine, leucine, and isoleucine degradation”. A further integration of
metabolome and gene expression highlighted the functional roles of the DLD (dihydrolipoamide
dehydrogenase), WARS (tryptophanyl-tRNA synthetase), and RARS (arginyl-tRNA synthetase) genes
in metabolic pathways of valine and leucine. Furthermore, the essential regulations of SLC30A6
(solute carrier family 30 (zinc transporter), member 6) in metabolic transportation for propionate,
acetate, valine, and leucine under severe cold exposure were observed. Our findings presented
a comprehensive characterization of the serum metabolome of Inner-Mongolia Sanhe cattle, and
contributed to a better understanding of the crucial roles of regulations in metabolites and metabolic
pathways during cold stress events in cattle.
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1. Introduction

Exposure to low environmental temperatures can severely affect growth [1], produc-
tive efficiency [2], reproductive performance [3], welfare [4], and immune response [5] of
cattle. Therefore, low temperatures cause welfare and economic losses in the worldwide
livestock industry, especially in northern countries [1,5–7]. Furthermore, according to a
recent report from the Intergovernmental Panel on Climate Change (IPCC), the effects
of climate change, including extreme weather events, are expected to further increase
in the near future [8]. A better understanding of the biological mechanisms underlying
thermal stress in livestock is paramount for developing mitigation strategies to minimize
the negative effects of both heat and cold stress [9,10].

Inner-Mongolia Sanhe is a dual-purpose (milk and meat) cattle breed, which originated
in the Inner-Mongolia Autonomous Region of China, where the winter is harsh and lasts
for approximately 200 days a year [11]. Several studies have reported the high disease and
cold stress resilience of Sanhe cattle in comparison to other taurine breeds [12–14]. We have
also published associations between genomic polymorphisms and cold stress-related blood
biochemical parameters [14], and the impact of cold stress on differential gene expression
profiling in Sanhe cattle [11]. Therefore, Sanhe is a great resource for investigating the
genetic background of cold stress response in cattle through the integration of multi-
omics datasets.

Metabolites are the end product of various regulatory processes in the animal body,
and fluctuations in their levels are the ultimate response of biological systems to the
environmental challenges [15]. In this context, metabolomics has been shown to be a
powerful tool for various fields, such as disease diagnosis [16], drug screening [17], food
industry [18], and agriculture [19]. A study investigating Staphylococcus aureus response
to prolonged exposure to cold stress revealed that citric acid and certain amino acids
were involved in the rapid adaptation to low temperatures, indicating the importance
of thermal homeostasis [20]. Metabolomic studies have also been employed to better
understand coping mechanisms of cold tolerance in flies, in which remarkable metabolites
and metabolic pathways related to cold tolerance were found [21,22]. In rats, the effects
of both acute and chronic cold stress on their body fluids were investigated through
metabolomics profiling and revealed important biochemical responses (e.g., tricarboxylic
acid cycle, gut microbiota) to cold stress [23,24]. However, to the best of our knowledge,
there are few studies reporting metabolomic profiling and biological mechanisms associated
with cold-induced responses in livestock, especially in cattle.

Therefore, the main objectives of this study were to: (1) characterize the global
metabolic profiling in the blood serum of Inner-Mongolia Sanhe cattle exposed to se-
vere cold stress, and (2) determine the effects of cold stress on their metabolome and
metabolic pathways. The findings of this study contribute to a better understanding of
the biological processes and mechanisms underlying cold stress response in cattle and the
definition of novel traits that can be used for genetic and genomic selection for improved
climatic resilience in cattle.

2. Materials and Methods
2.1. Animals and Sample Collection

Animal care was followed in agreement with the Committee on Ethics of Animal
Experimentation from the Beijing Jiaotong University (Beijing, China) (ID: SS-QX-2014-06),
and the experiment was performed according to regulations and guidelines established
by this committee. Considering pedigree information and physiological condition that
may cause the metabolites’ variation among individuals, 10 healthy and unrelated Inner-
Mongolian Sanhe heifers with similar weight (430.0 ± 16.5 kg) and age (20.6 ± 1.3 months)
were selected from the Xiertala Cattle Breeding Farm (Inner Mongolia, China). The heifers
were semi-housed in the same cowshed and fed three times a day (5:00 a.m., 11:00 a.m., and
5:00 p.m.) with total mixed ration (TMR). Water was provided ad libitum during the whole
experiment. In order to induce severe cold stress, the animals were transferred outdoors
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and exposed to a hyper-cold temperature (also mentioned as severe cold stress in the
following text) of −32 ◦C for 3 h, followed by cowshed housing at 5 ◦C for 15 h (Figure 1,
Figure 2b). The experiment was conducted during the winter season (January) and the
environmental temperatures were measured by a handheld temperature equipment (with
precision of 0.1 ◦C). The experimental procedures were conducted under the management
of a local commercial farm in adverse winter conditions [13]. Non-anticoagulant blood
samples (10 mL) were collected from the tail vein of each animal before and after exposure
to cold stress, and then centrifuged at 1400× g for 10 min to obtain the upper serum. All
serum samples were stored at −80 ◦C until subsequent analyses.

Sanhe cattle (N=10)

Animals 

5 °C, 15 h -32 °C, 3 h

Sample collection

Determination 

metabolic profiling

1H NMR

41 metabolites

Filtered metabolites 

with biological 

meaning of the 

paired design

Pearson’s correlationPaired t-test

Selection differential 

metabolites

Metabolic pathways

and integration 

analysis

Enrichment analysis

Filtration out the 

noises and 

differences in 

animals from

metabolic profiling  

28 metabolites

Multivariate analysis

19 metabolites

Biological pathway Networks between genes and metabolites

Figure 1. The analytical workflow performed in this study.
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(a) (b)

Figure 2. Sanhe cattle during severe cold stress exposure. (a) Young bull, and (b) Heifer.

2.2. 1H Nuclear Magnetic Resonance (1H NMR) Analyses

In order to perform 1H Nuclear Magnetic Resonance (1H NMR), 20 serum samples
(n = 10 before and n = 10 after exposure to severe cold stress; paired samples in 10 animals)
were pre-treated and prepared as previously described by Beckonert et al. [25]. In brief,
samples were centrifuged at 14,500× g for 15 min and the upper layer was transferred to a
0.5 mL 3 KDa ultrafiltration filter (Merck & Co., Inc, Kenilworth, NJ, USA). Samples
were further centrifugated at 14,500× g for 45 min and a 450 µL aqueous layer was
collected into a clean 2 mL centrifuge tube, followed by adding 50 µL of 2,2-dimethyl-
2-silapentane-5-sulfonate (DSS) standard solution (Anachro Technologies Inc., Calgary,
AB, Canada). Finally, the mixture was transferred to a 5 mm NMR tube. According to
the instructions of the 1H NMR spectroscopy protocol, spectra were obtained using an
Agilent DD2 600 MHz spectrometer equipped with a triple-resonance cryoprobe. The first
increment of a 2D-1H, 1H-NOESY pulse sequence was utilized for the acquisition of 1H
NMR data and suppressing the solvent signal. Here, 100 milliseconds mixing time along
with 990 milliseconds pre-saturation (~80 Hz gammaB1) were used, and spectra data were
collected at 25 ◦C, with a total of 128 scans over a period of 15 min. Finally, spectra data for
Sanhe cattle serum were obtained.

The processing module in the Chenomx NMR Suite 8.1 software (Chenomx Inc.,
Edmonton, AB, Canada) was used to perform the automatically zero-filled and Fourier
transform of the collected Free Induction Decay (FID) signal. The data was carefully
phased, and the baseline was corrected in the Chenomx Processor. All the spectra were
referenced to the internal standard and analyzed by experienced analysts against the
Chenomx Compound Library. Lastly, the concentration information of all metabolites was
normalized by weight across parallel samples prior to performing the multivariate analyses.

2.3. Metabolome Analysis

A subset of the original data was generated by retaining the metabolites with more
than 70% of the samples in the same trend of change before and after the cold stress
treatment (Figure 1). The MetaboAnalyst 4.0 software (www.metaboanalyst.ca/faces/
home.xhtml, accessed on 25 January 2021) [26] was used to carry out the Principal Com-
ponent Analysis (PCA) for investigating the clustering trends and outliers. Partial Least
Squares Discriminant Analysis (PLS-DA) was performed to identify differential metabo-
lites between before and after the cold stress exposure. The model quality of PLS-DA
was determined by cross-validation (10-fold cross-validation, 9 groups for the training
sets and 1 for the test set in each validation) based on the R2Y and Q2Y parameters, and
1000 random permutation tests to avoid model overfitting [19,27]. Furthermore, metabo-
lites with Variable Importance in the Projection (VIP) values greater than 1 were considered
as the most powerful group discriminators between before and after cold stress treatment,

www.metaboanalyst.ca/faces/home.xhtml
www.metaboanalyst.ca/faces/home.xhtml
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and reported as differential metabolites. A paired t-test was also used to select differen-
tial metabolites between before and after cold stress treatment considering a significance
threshold of p-value < 0.05. The Pearson correlations of each two metabolites before and
after cold stress exposure were calculated using the “Hmisc” package implemented in
the R software (v 3.3.2) [28]. The Edraw Mind Map software (Edraw Software Co., Ltd.,
Shenzhen, Guangdong, China) was used to perform the visualization of metabolite correla-
tions with p-value < 0.05. All differential metabolites were analyzed using MetaboAnalyst
4.0 (www.metaboanalyst.ca/faces/home.xhtml, accessed on 26 January 2021) through the
Metabolite Set Enrichment Analysis (MSEA).

2.4. Integration Analysis of Transcriptome and Metabolome Datasets

To further illustrate the differential metabolites and their related pathways, an inte-
gration analysis was performed based on a published dataset of expression microarray
in blood samples [11]. This dataset was derived from three individuals, before and after
exposure to severe cold stress, which belonged to the same population of metabolome data
in this current study. A total of 193 genes were differentially expressed with significant
biological changes (fold change ≥ 1.3 or p < 0.05), and then integrated with the metabolome
data. The MetaboAnalyst 4.0 package (www.metaboanalyst.ca/faces/home.xhtml, ac-
cessed on 29 January 2021) with a list of gene and compound names as input was used to
identify candidate genes involved in key metabolic pathways. In addition, the IMPaLA
online software (http://impala.molgen.mpg.de./, accessed on 29 January 2021) was used
to integrate genes and metabolites into pathways corresponding to relevant biological pro-
cesses [29]. The visualization of networks between genes and metabolites was performed
using the Cytoscape software (v3.7.2, US National Institute of General Medical Sciences,
Bethesda, MD, USA) [30].

3. Results
3.1. The Serum Metabolome in Inner-Mongolia Sanhe Cattle

A set of 41 metabolites were commonly identified and quantified with 600 MHz
1H NMR (0–10 ppm) spectra in the serum metabolic profiling of Sanhe cattle (Figure 3a),
which corresponds to an average of 40 compounds per sample. These metabolites included
19 amino acids and their derivatives (alanine, arginine, betaine, citrulline, creatine, glu-
tamate, glutamine, glycine, hippurate, histidine, isoleucine, leucine, lysine, methionine,
phenylalanine, proline, threonine, trans-4-hydroxy-L-proline, and valine), 3 amine and am-
monium compounds (creatinine, choline, and trimethylamine N-oxide), 10 organic acids
(3-hydroxybutyrate, 3-hydroxyisobutyrate, 4-hydroxyphenylacetate, acetate, citrate, formate,
lactate, malonate, propionate, and pyruvate), 4 alcohols (ethanol, isopropanol, methanol, and
myo-Inositol), 2 sugars (arabinose, and glucose), and 3 other chemicals (dimethyl sulfone,
acetone, and creatine phosphate) (Figure 3b). As shown in Table 1, the metabolites in the
serum of Sanhe cattle were involved in the metabolism of amino acids, carbohydrates, and
lipids, as well as gut microbiome-derived metabolism. On the other hand, the identified
metabolites presented different abundance in the Sanhe cattle serum, and the three most
abundant metabolites found in the serum were glucose (with a mean value of 3.394 mmol/L),
followed by acetate (0.704 mmol/L), and 3-hydroxybutyrate (0.274 mmol/L), while the three
least detectable metabolites were isopropanol (0.0045 mmol/L), choline (0.0095 mmol/L),
and creatine phosphate (0.010 mmol/L). Supplementary Table S1 contains the complete set
of the 41 confirmed compounds in Sanhe cattle serum and their concentrations.

www.metaboanalyst.ca/faces/home.xhtml
www.metaboanalyst.ca/faces/home.xhtml
http://impala.molgen.mpg.de./
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(a) (b)

Figure 3. The serum metabolic profiling of Sanhe cattle. (a) The 1H NMR spectra (0–10.0 ppm) of serum from Sanhe cattle.
The numbers represent signals of equivalent hydrogen, and the DSS is 0 ppm for the chemical shift of the whole spectrum.
(b) Forty-one unique metabolites were commonly identified and quantified in the serum metabolic profiling of Sanhe cattle.

Table 1. Forty-one metabolites and their metabolic pathways in the serum of Inner-Mongolia Sanhe cattle.

No. Metabolite Metabolic Pathway No. Metabolite Metabolic Pathway

1 3-Hydrxyisobutyrate Amino acid 22 Trans-4-Hydroxy-L-proline Amino acid
2 4-Hydroxyphenylacetate Amino acid 23 Betaine Betaine metabolism
3 Alanine Amino acid 24 Acetate Carbohydrate
4 Arginine Amino acid 25 Arabinose Carbohydrate
5 Citrulline Amino acid 26 Citrate Carbohydrate
6 Creatine Amino acid 27 Ethanol Carbohydrate
7 Creatine phosphate Amino acid 28 Formate Carbohydrate
8 Creatinine Amino acid 29 Glucose Carbohydrate
9 Glutamate Amino acid 30 Isopropanol Carbohydrate

10 Glutamine Amino acid 31 Lactate Carbohydrate
11 Glycine Amino acid 32 Methanol Carbohydrate
12 Hippurate Amino acid 33 Propionate Carbohydrate
13 Histidine Amino acid 34 Pyruvate Carbohydrate
14 Isoleucine Amino acid 35 Myo-Inositol Carbohydrate

15 Leucine Amino acid 36 Trimethylamine N-oxide Gut microbiome-derived
metabolism

16 Lysine Amino acid 37 3-Hydroxybutyrate Lipid
17 Methionine Amino acid 38 Acetone Lipid
18 Phenylalanine Amino acid 39 Choline Lipid
19 Proline Amino acid 40 Malonate Lipid
20 Threonine Amino acid 41 Dimethyl sulfone Sulfur metabolism
21 Valine Amino acid

3.2. Pre-Selection of Candidate Metabolites Related to Severe Cold Stress in Sanhe Cattle

In order to evaluate the metabolic response to severe cold stress in 10 experimental an-
imals, comparison between the two concentration values of each metabolite corresponding
to before and after cold stress was conducted for each animal. As shown in Figure 4a,b, the
metabolic changes varied in 10 experimental animals under cold stress exposure. For in-
stance, the concentration value of 3-hydroxyisobutyrate increased in nine animals exposed
to severe cold stress, while arginine increased in five heifers but decreased in the other five
individuals. It revealed individual variability in metabolic changes when animals experi-
enced cold stress. Moreover, those irregular metabolites may either be the noises from the
baseline during detection or show irrelevant variables that will not be influenced by cold
stress. To find the candidate metabolites altered by severe cold stress instead of individual
variation and detection noises, a pre-selection analysis of all metabolites was performed
based on whether they had similar population patterns after severe cold exposure. In
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the present study, if one metabolite increased or decreased in ≥70% of animals after cold
exposure, this metabolic change was considered to be induced by cold stress. Filtering
the raw metabolic data with the above biological significance, 28 out of the 41 metabolites
remained for further analyses, and Figure 4c indicates good agreement in the changed
signs of 28 candidate metabolites in the 10 individuals. The score plot based on PCA with
28 metabolites displays a clear separation between the two groups (before and after cold
exposure) compared to the profiling of 41 metabolites (Figure 4d,e).

(d)
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Figure 4. The pre-selection of metabolic profiling. (a) The changes of 3-hydroxyisobutyrate in 10 animals exposed to severe
cold. (b) The changes of arginine in 10 animals exposed to severe cold. (c) Twenty-eight metabolites changed in the same
trend after cold stress. (d) Score plots of PCA with 28 metabolites (R2X = 0.636). (e) Score plots of PCA with 41 metabolites
(R2X = 0.616).
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3.3. Metabolite Changes in the Serum of Sanhe Cattle after Severe Cold Stress

As shown in Figure 5, PLS-DA was used to achieve the optimum distinction between
the pre- and post-cold stress groups and classify the differential metabolites. The first
two components explained 60.3% of the total variance in X (R2X = 0.603) and displayed
a strong distinction between the two groups, with a high total variance of Y (Figure 5a,
R2Y = 0.95) and a good predictability in cross-validation (Figure 5c, Q2Y = 0.62). Further-
more, the validation with 1000 random permutation tests provided p = 0.007, indicating
a low probability of overfitting in the model used (Figure 5e). At the same time, PLS-DA
was also used to check the raw data of 41 metabolites (Figure 5b,d,f). The multivariate
analysis of the 28 metabolites showed a clear separation trend, not only based on PCA
but also on PLS-DA, with higher R2Y and Q2Y values as well as lower p-values in the
permutation test. Hence, the current method could be an effective approach for excluding
the irrelevant metabolites corresponding to individual variation and baseline noises from
the raw metabolome. Furthermore, these 28 important metabolites were used to conduct
paired Student’s t-tests and Pearson correlation analysis.
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Figure 5. Cont.
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Figure 5. PLS-DA analyses of metabolic profiling with 28 and 41 metabolites. (a) Score plots of PLS-DA with 28 metabolites
(R2X = 0.603). (b) Score plots of PLS-DA with 41 metabolites (R2X = 0.383). (c) Cross-validation results of PLS-DA with
28 metabolites (components = 5, R2Y = 0.95, Q2Y = 0.62). (d) Cross-validation results of PLS-DA with 41 metabolites
(components = 5, R2Y = 0.94, Q2Y = 0.49). (e) 1000 random permutation tests in PLS-DA with 28 metabolites (p = 0.007).
(f) 1000 random permutation tests in PLS-DA with 41 metabolites (p = 0.087). *: p-Value < 0.05.

The VIP value of each metabolite within the PLS-DA model is typically thought to be
potent for group discriminators. Firstly, the VIP values were calculated to indicate their
contribution to classification, and VIP > 1 was used as a threshold to filter the significantly
changed metabolites after acute cold stress. Nine metabolites were found to account for
variations between cold stress and the control group, and the top two metabolites were
3-hydroxybutyrate (VIP = 2.44) and trimethylamine N-oxide (VIP = 2.07). The detailed
information of these nine metabolites is shown in Table 2. Secondly, based on the paired
Student’s t-test at the univariate level, the concentrations of 12 metabolites significantly
increased under cold stress (p < 0.05), and the trimethylamine N-oxide had the lowest
p-value (0.001). Taken together, six metabolites (trimethylamine N-oxide, methanol, hip-
purate, valine, 3-hydroxyisobutyrate, and leucine) were found to have both VIP value > 1
and p-value < 0.05 (Table 2).

Table 2. Metabolites changed in serum of Sanhe cattle after acute cold stress.

Metabolite VIP 1 p-Value 2 Correlation Coefficient
Difference 3

Regulation
Status 4

3-Hydroxybutyrate 2.44 0.072 >1 up
Trimethylamine N-oxide 2.07 0.001 NA up

Methanol 1.43 0.050 >1 up
Hippurate 1.34 0.002 >1 up

Acetate 1.33 0.400 NA up
Valine 1.29 0.050 >1 up

3-Hydroxyisobutyrate 1.22 0.002 >1 up
Alanine 1.08 NA NA down
Leucine 1.06 0.050 NA up

4-Hydroxyphenylacetate 0.84 0.027 >1 up
Betaine 0.06 0.830 >1 up
Creatine 0.92 0.049 >1 up

Creatine phosphate 0.44 0.086 >1 down
Creatinine 0.85 0.010 NA up

Dimethyl sulfone 0.31 0.170 >1 up
Methionine 0.43 NA >1 up

Myo-Inositol 0.62 0.050 NA up
Phenylalanine 0.81 0.050 NA up

Propionate 0.79 0.011 >1 up
1 Variable Importance in the Projection (VIP) values in Partial Least Squares-Discriminant Analysis (PLS-DA).
2 p-Value in paired t-test. 3 The difference of correlation coefficients was more than 1. 4 The upregulated means
the higher concentration in the serum after cold stress. NA: not applicable.



Animals 2021, 11, 2493 10 of 19

3.4. Changes of Correlation between Candidate Metabolites under Severe Cold Stress

A total of 28 metabolites under two conditions were used to make the metabolic
profiles and to be acquired for correlation analysis. Under normal conditions, 57 pairs
of metabolites showed a significant correlation (55 positive and two negative correla-
tions, Figure 6a,b), while after cold stress exposure, 50 pairs were found to be signif-
icantly correlated (47 positive and three negative correlations, Figure 6a,c), with only
12 out of 107 metabolite pairs showing no alteration after cold stress exposure (Figure 6a).
Based on the Pearson’s correlation coefficient of each two metabolites generated from
before and after cold stress, a total of 12 metabolite pairs were determined with the differ-
ence of correlation coefficient being more than 1 between before and after cold exposure
(Supplementary Table S2). Highly significant changes of correlation were observed in
creatine phosphate and methanol, which showed a strong positive correlation in neutral
temperature (r = 0.78, p < 0.01), but highly negative correlations were seen after cold stress
(r = −0.82, p < 0.01). Overall, 12 metabolites were identified to be discrepant metabolites
(Table 2).
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Figure 6. Correlation-based networks of 28 metabolites in Sanhe cattle. (a) The correlation among metabolites that were
common in the serum of Sanhe cattle before and after severe cold stress. (b) The correlation among metabolites that were
only found in the serum of Sanhe cattle before severe cold stress. (c) The correlation among metabolites that were only
found in the serum of Sanhe cattle after severe cold stress. The solid line is significantly positive correlated, while the dotted
line is significantly negative correlated. The purple circles are the metabolites with a VIP value > 1 in PLS-DA, and the
green flags are the metabolites with a p-value < 0.05 in the paired t-test.
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3.5. Key Metabolic Pathways Involved in Severe Cold Stress

Based on the thresholds of VIP > 1 in PLS-DA, p-value < 0.05 in the paired t-test, or
metabolites pairs with the difference in correlation coefficient > 1, a total of 19 metabolites
in the serum of Sanhe cattle were identified to be significantly associated with cold stress
(Table 2). A total of 20 metabolic pathways were found to be enriched based on the MSEA
analysis (Supplementary Table S3). As shown in Figure 7a, “aminoacyl-tRNA biosynthesis”
and “valine, leucine, and isoleucine degradation” were the top two enriched pathways,
with five and three metabolites, respectively. In addition, “phenylalanine metabolism”,
“pyruvate metabolism”, “propanoate metabolism”, and “glycolysis/gluconeogenesis” were
identified and are mainly related to five metabolites (propionate, acetate, phenylalanine,
valine, and leucine).

(a)

(c)

(b) Metabolic pathways

Figure 7. Networks between metabolites and genes involved in metabolic pathways. (a) Overview for metabolite set
enrichment analysis of metabolic response to cold stress in Sanhe cattle. (b) Relevant metabolic pathways involved in
the response to cold stress in Sanhe cattle. Triangles represent metabolites, ovals represent genes, and rectangles are
the metabolic pathways. (c) The changes of gene expressions involved in metabolic pathways. *: p-Value < 0.05; ns: no
significance; SEPHS1: selenophosphate synthetase 1; ECHDC1: enoyl coenzyme A hydratase domain containing 1; DLD:
dihydrolipoamide dehydrogenase; RARS: arginyl-tRNA synthetase; WARS: tryptophanyl-tRNA synthetase.
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We then performed the integration analysis based on the datasets of 19 differential
metabolites and 193 candidate genes from our previous study [9], with detailed results pro-
vided in Supplementary Table S4. Eight metabolic pathways were identified (Figure 7b), in
which five genes, including three downregulated (selenophosphate synthetase 1, SEPHS1;
enoyl coenzyme A hydratase domain containing 1, ECHDC1; dihydrolipoamide dehydro-
genase, DLD) and two upregulated (arginyl-tRNA synthetase, RARS; tryptophanyl-tRNA
synthetase, WARS) genes (Figure 7c) were found to play functional roles in the metabolic
pathways of ten related metabolites (propionate, acetate, phenylalanine, valine, leucine,
creatine, betaine, 3-hydroxyisobutyrate, methionine, and alanine). Both DLD and ac-
etate were observed to be involved in three pathways, e.g., “glyoxylate and dicarboxylate
metabolism”, “glycolysis/gluconeogenesis”, and “pyruvate metabolism”. Two pathways,
“valine, leucine, and isoleucine degradation” and “aminoacyl-tRNA biosynthesis”, were
commonly enriched with three genes (DLD, WARS, and RARS) and two metabolites (valine
and leucine). These findings indicated that cold stress induced metabolic changes and
activated related metabolic pathways.

3.6. Significant Biological Processes Related to Metabolites’ Regulation in Severe Cold Stress

Figure 8a,b highlight the associated pathways in metabolic transportation, such as
“SLC-mediated transmembrane transport”, “transport of bile salts and organic acids”,
“metal ions and amine compounds”, and “transport of small molecules”. Among them,
one (solute carrier family 30 (zinc transporter), member 6, SLC30A6) out of six genes were
commonly linked to these pathways and related to eight metabolites (such as propionate,
acetate, valine, and leucine), suggesting the perspective of changeable transportation
efficiency for most metabolites when exposed to cold stress. Additionally, valine and
leucine were identified to be enriched in translation and tRNA charging (Figure 8c,d), and
eight genes were differentially expressed in those relevant processes which could further
discriminate the effects of cold stress on protein biosynthesis (Figure 9).
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(a) Transportation pathways. (b) Protein biosynthesis. Triangles represent metabolites, ovals represent genes, and rectangles
represent the metabolic pathways. (c) The changes of gene expressions involved in transportation pathways. (d) The
changes of gene expressions involved in protein biosynthesis. *: p-Value < 0.05; **: p-Value < 0.01; ns: no significance;
SLC30A6: solute carrier family 30 (zinc transporter), member 6; LPL: lipoprotein lipase; LIPA: lipase A, lysosomal acid,
cholesterol esterase; EIF2S3: eukaryotic translation initiation factor 2, subunit 3 gamma; FXYD3: FXYD domain containing
ion transport regulator 3; NPC1: Niemann-Pick disease, type C1; EIF2B1: eukaryotic translation initiation factor 2B, subunit
1 alpha; MRPL30: mitochondrial ribosomal protein L30; RARS: arginyl-tRNA synthetase; SRP72: signal recognition particle
72 kDa; RPL22L1: ribosomal protein L22-like 1; RPS18: ribosomal protein S18; WARS: tryptophanyl-tRNA synthetase;
RPLP2: ribosomal protein, large, P2.
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Figure 9. Proposed mechanisms of cold stress response to related functional pathways. Red indicates upregulated metabolites,
and blue represents downregulated metabolites, however, blue italics indicates downregulated genes. RPL22L1: ribosomal
protein L22-like 1; SRP72: signal recognition particle 72 kDa; EIF2B1: eukaryotic translation initiation factor 2B, subunit
1 alpha; MRPL30: mitochondrial ribosomal protein L30; RPS18: ribosomal protein S18; RARS: arginyl-tRNA synthetase; RPLP2:
ribosomal protein, large, P2; WARS: tryptophanyl-tRNA synthetase; SLC30A6: solute carrier family 30 (zinc transporter), member
6; EIF2S3: eukaryotic translation initiation factor 2, subunit 3 gamma; LPL: lipoprotein lipase; LIPA: lipase A, lysosomal acid,
cholesterol esterase; FXYD3: FXYD domain containing ion transport regulator 3; NPC1: Niemann-Pick disease, type C1; DLD:
dihydrolipoamide dehydrogenase; ECHDC1: enoyl coenzyme A hydratase domain containing 1.
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4. Discussion

Inner-Mongolia Sanhe is a dual-purpose cattle breed in China that has been an impor-
tant genetic resource for studying the effects of cold stress response on blood biochemical
parameters [31], gene expression profile in the peripheral blood [9], characterization of
genetic variation related to cold tolerance [14], and signatures of selection related to ther-
mal tolerance [32]. However, serum metabolome and metabolic regulation in response to
severe cold exposure had not been studied in this population. Considering the balance
between analytical cost and statistical power, 10 Sanhe heifers were used in this experiment.
Forty-one unique metabolites were identified, and to the best of our knowledge, this is the
first characterization of the metabolic profiling of serum in this local breed [19]. Some of
the most abundant molecules are involved in carbohydrate metabolism, while the least
abundant compounds serve as intermediate products in the metabolism of amino acids
and lipids. Furthermore, this metabolome data also provides basic information of serum
compounds in cattle.

4.1. The Pre-Filtration for the Paired Metabolome Data

The paired experimental design, which differs from the ordinary case-control design
with its feature of the pairs of observations, was conducted for identifying differential
metabolites in our study. This approach has been widely used in clinical and behavioral
studies in humans [33,34] and livestock feeding trials [35,36]. In addition, as a typical
design in which the baseline of all subjects is observed in pre-intervention (as control),
it can increase the effectiveness of univariate tests. However, the challenge for multi-
variate analyses is that paired metabolome data is still not accommodated by the most
common software, such as SIMCA-P (http://umetrics.com/products/simca, accessed
on 20 December 2020) [37] and XCMS Online (https://xcmsonline.scripps.edu, accessed
on 20 December 2020) [38]. MetaboAnalyst (www.metaboanalyst.ca/faces/home.xhtml,
accessed on 20 December 2020) allows the users to upload a list of metabolite pairs [26],
but the score and loading plots of PCA and PLS-DA for paired data are completely the
same as the unpaired one (Supplementary Figure S1), neglecting the powerful biological
interpretation of paired data. Most studies have analyzed the paired structure metabolome
data under the classical case and control approach [39,40], and most importantly, the
large amount of information contained in the pairing design were ignored. In our study,
the pre-selection made a reform with more obvious separation trends in score plots of
both PCA and PLS-DA, as well as higher R2Y and Q2Y of PLS-DA with values of 0.95%
(0.95% versus 0.94%) and 0.62% (0.62% versus 0.49%, increased 26.5%) respectively, and
a goodness of fit in PLS-DA with a lower p-value in 1000 permutation tests (0.007% ver-
sus 0.087%). In general, R2Y represents the cumulative interpretation ability, and Q2Y
indicates the predictive ability, and the PLS-DA model can be accepted when they are
both greater than 0.5 [19]. Besides, permutation tests are used to verify the probability
of overfitting [27], and the lower p-value indicated a goodness of fit in the given PLS-DA
model with 28 metabolites. The results suggest that the statistical power in multivariate
analyses significantly improved by using the method of pre-filtration. Similarly, Westerhuis
et al. [41] have proposed the consideration of individual variations with the method of
multilevel PLS-DA for cross-over design. Thiébaut et al. [42] then described it with an
extension for two-factor data. In our case, as the impact of cold exposure may differ among
animals, the pre-filtration was performed according to the biological meaning, following
previous studies [41,42]. Furthermore, options in pre-selection also removed the noises
of the baseline from the detection. Overall, our findings provide strong evidence that
the pre-selection for metabolites through the biological significance of paired design is an
effective way to reduce the effects of other factors in the multivariate approach.

4.2. The Metabolic Pathways’ Response to Severe Cold Stress in Sanhe Cattle

Nineteen metabolites in the serum of Sanhe cattle significantly changed after the
animals were exposed to severe cold stress. Generally, organic acids, amino acids, and

http://umetrics.com/products/simca
https://xcmsonline.scripps.edu
www.metaboanalyst.ca/faces/home.xhtml
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their derivatives are distributed for 95% of all differential metabolites, which may account
for the features of the 1H NMR method [43]. On the other hand, this study indicated
that the changes of metabolite concentrations in serum following cold stress can be in-
vestigated using the 1H NMR platform. Moreover, 17 upregulated metabolites, such as
3-hydroxybutyrate, propionate, acetate, valine, and leucine, were observed when indi-
viduals experienced severe cold stress, while only two metabolites (alanine and creatine
phosphate) were downregulated (Figure 9). These findings suggest that short-term expo-
sure to severe cold stress induced the upregulation of energy supply, thereby resulting in
elevated circulation of a number of important compounds. Furthermore, the gene expres-
sions involved in metabolic pathways, transportation pathways, and protein biosynthesis
were affected concomitantly. Furthermore, there was little overlap among the metabolites
identified in this study when compared to the cold stress responses in the urine samples
of rats under both acute and chronic cold stress patterns [23,25,44], in the liver of yellow
drum [45], and in the blood of dairy goats [46] exposed to cold stress. These studies
reveal the diversity of metabolic regulation under cold conditions due to the differences
presented in experimental species, detection platform, and the degree and intensity of the
cold treatments.

In the current study, 3-hydroxybutyrate, as the representative metabolite with the
largest VIP value, is a key ketone body from fat metabolism that supplies energy and is
associated with the adaptive response to multiple sources of stress [47]. Previous studies
reported a significant difference in the level of 3-hydroxybutyrate between control and heat-
stressed animals, such as in the plasma and milk of dairy cows [37,48], serum of broilers [49],
and serum of finishing pigs [50]. These results indicate a similar mechanism of metabolic
compensatory regulation responding to cold and heat stress. Moreover, cold stress might
contribute to the regulation of amino acids’ metabolism [23]. The metabolic pathways of
“glycine, serine, and threonine metabolism” and “valine, leucine, and isoleucine degra-
dation” were altered in the serum of Sanhe cattle in response to cold stress, which is
in agreement with the increased concentration of involved compounds, such as betaine,
creatine, 3-hydroxyisobutyrate, leucine, and valine. Valine and leucine are branched chain
amino acids that can uptake into the tricarboxylic acid cycle to increase energy supply. In-
deed, the relationship between their concentration and stress has been previously reported
in rats under foot shock [51] and psychological stress [52]. Additionally, the serum levels
of creatine and creatinine, which play important roles in energy balance when animals
have high energy requirements [53], were higher after exposure to cold stress in our study.
Therefore, cold stress induced the increased concentrations in those amino acids, and their
intermediate products indicate that the metabolism of amino acids has been derived fol-
lowing a period of severe cold stress. At the same time, valine and leucine were also found
to be enriched in the pathways of transportation and protein biosynthesis. However, the
genes involved in those pathways were downregulated, suggesting that the utilization of
valine and leucine may be inhibited in the leukocytes when Sanhe cattle experience severe
cold conditions. Additionally, the stress-related DLD (dihydrolipoamide dehydrogenase)
gene (Figure 9), which can generate the mitochondrial enzyme with diaphorase activity
and associate with multiple pathways, was observed to be downregulated in circulating
leukocytes. This evidence provides functional evidence for the above results.

In the terms of acetate and propionate, they are the volatile fatty acids (VFA) from
the metabolism of microorganisms in the rumen, and mostly attribute to generate glucose
by gluconeogenesis [54,55]. Given the significantly different concentrations of the above
two metabolites between cattle under thermoneutral conditions and after cold exposure,
our results indicate that VFA might also play an important role in the regulation of cold
response in Sanhe cattle. Not surprisingly, the expressions of most genes in transportation
pathways (including “transport of small molecules” and “SLC-mediated transmembrane
transport”) for acetate and propionate were decreased in the leukocytes after exposure
to cold conditions. Among those crucial genes, SLC30A6, which is an important zinc
transporter from the SLC30 family, was shared in two transportation pathways and found
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to be involved in the cellular transportation of acetate and propionate. The corresponding
lower expression in circulating blood may represent the metabolic adaptation mecha-
nism. Furthermore, we also observed that cold exposure influenced the excretion levels of
4-hydroxyphenylacetate, trimethylamine N-oxide, methanol, and hippurate, all of which
are considered to be involved in the metabolism of the gut microbiome [37,56]. These
findings show the involvement of gut microbiota in the response to cold exposure in Sanhe
cattle. However, the regulation mechanisms should be studied further.

5. Conclusions

There were 41 metabolites identified and quantified in the serum metabolic profiling
of Inner-Mongolia Sanhe cattle using the 1H NMR platform, and 28 metabolites were found
as potential cold-related variations by the biological significance of paired design. By com-
bining further analyses of PLS-DA, paired t-test, and correlation network, 19 metabolites
were determined to be differential metabolites and involved in the metabolic regulation of
fat metabolism, amino acid metabolism, and gut microbial metabolism to cold response in
Sanhe cattle. The results of integration analysis with transcriptome and metabolome data
further clarified that cold stress induced metabolic changes and activated related metabolic
pathways. Our results provide novel insights on the shifts in metabolic pathways for
energy supply on the responses to cold stress in cattle.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ani11092493/s1, Figure S1: The comparison between standard PLS-DA and paired PLS-DA
with 41 metabolites, Table S1: The concentrations of metabolites in the serum of Sanhe cattle, Table S2:
Metabolite pairs with a difference of correlation coefficient of more than 1 between before and after
severe cold stress in Sanhe cattle, Table S3: Relevant metabolic pathway by enrichment analysis
with 19 differential metabolites in Sanhe cattle, Table S4: Networks between metabolites and genes
associated with severe cold stress.
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