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Simple Summary: The different gut sections potentially provide different habitats for gut microbiota.
We found that Bacteroidetes, Firmicutes, and Proteobacteria were the three primary phyla in gut micro-
biota of C. versicolor. The relative abundance of dominant phyla Bacteroidetes and Firmicutes exhibited
an increasing trend from the small intestine to the large intestine, and there was a higher abun-
dance of genus Bacteroides (Class: Bacteroidia), Coprobacillus and Eubacterium (Class: Erysipelotrichia),
Parabacteroides (Family: Porphyromonadaceae) and Ruminococcus (Family: Lachnospiraceae), and Family
Odoribacteraceae and Rikenellaceae in the hindgut, and some metabolic pathways were higher in the
hindgut. Our results reveal the variations of gut microbiota composition and metabolic pathways in
different parts of the lizards’ intestine.

Abstract: Vertebrates maintain complex symbiotic relationships with microbiota living within their
gastrointestinal tracts which reflects the ecological and evolutionary relationship between hosts and
their gut microbiota. However, this understanding is limited in lizards and the spatial heterogeneity
and co-occurrence patterns of gut microbiota inside the gastrointestinal tracts of a host and variations
of microbial community among samples remain poorly understood. To address this issue and
provide a guide for gut microbiota sampling from lizards, we investigated the bacteria in three gut
locations of the oriental garden lizard (Calotes versicolor) and the data were analyzed for bacterial
composition by 16S ribosomal RNA (16S rRNA) gene amplicon sequencing. We found the relative
abundance of the dominant phyla exhibited an increasing trend from the small intestine to the large
intestine, and phyla Firmicutes, Bacteroidetes and Proteobacteria were the three primary phyla in the
gut microbiota of C. versicolor. There were a higher abundance of genus Bacteroides (Class: Bacteroidia),
Coprobacillus and Eubacterium (Class: Erysipelotrichia), Parabacteroides (Family: Porphyromonadaceae)
and Ruminococcus (Family: Lachnospiraceae), and Family Odoribacteraceae and Rikenellaceae in the
sample from the hindgut. The secondary bile acid biosynthesis, glycosaminoglycan degradation,
sphingolipid metabolism and lysosome were significantly higher in the hindgut than that in the
small intestine. Taken together our results indicate variations of gut microbiota composition and
metabolic pathway in different parts of the oriental garden lizard.

Keywords: Calotes versicolor; gut microbiota; spatial heterogeneity; 16s rRNA

1. Introduction

The gut is the primary site for absorbing and reformulating nutrients from the
food [1,2]. Microbiota of the vertebrate gastrointestinal tract have complex symbiotic rela-
tionships with their host. The gut microbial community structure significantly influences
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the host ecology and evolution via energy budget [3], foraging behavior [4], immunity [5–7],
nutrient metabolism [8,9], and reproductive performance [10,11]. However, the composi-
tion of the gut microbial community is influenced by environmental factors, pH, oxygen
concentration, nutrient composition, and other physiological characteristics in different
gut chambers [12–17]. To date most microbiota and their relationship with host studies
have focused on invertebrates [18,19], fish [20–23], amphibians [24–26], birds [15,27,28],
mammals [29–31] and some reptiles [2,11,13,32]. However, studies on lizards’ gut microbial
ecology and their relationship with the host are very limited. The lizrads’ gut microbial
community compositions and structures were similar to those observed in mammals, and
previous studies have documented general patterns. Further, gut bacterial diversity did
not depend on the diversification of lizard hosts [33], but it varied along altitudes, diet and
captive environment [2,14,34–38], and changed due to climate warming [32]. There was no
significant difference in gut bacterial diversity between juveniles and adults [35], but males
had significantly higher gut bacterial diversity and richness than do females [39], while
non-gestation females had higher gut bacterial richness than do late-gravid females [11].

There is a complex gut microbiota composition that varies between different regions
in the gastrointestinal tract [40]. Physiological changes in different areas of the small
intestine and the large intestine, including chemical and nutritional gradients and isolated
host immune activity, are thought to affect the composition of bacterial communities [41].
The microbiome composition differs between the large intestine and small intestine in
Agkistrodon piscivorus [42]. However, the differences in the relative abundance in Shin-
isaurus crocodilurus were reported, such as Bacteroidetes (32.1%) and Proteobacteria (47.9%)
were the dominant phyla in the cloacal swab samples [38], whereas Firmicutes (61.2%) and
Proteobacteria (35.8%) were the dominant phyla in fecal samples [35]. The majority of these
studies have been conducted using fecal samples, cloaca swabs, or the intestinal contents
collected from wild-caught or captive individuals. Microbiota plays an important role in
host physiology, such as in nutrient digestion and uptake, and in the synthesis of fatty
acids, amino acids and vitamins [43,44]. The microbial metabolites include short chain fatty
acids from bacterial degradation of dietary fiber [45], secondary bile acids originating from
the bacterial conversion of bile acids in the colon [46], and the product of microbial-host
co-metabolism of nutrients [45] protect host health [47]. There are differences in metabolic
production in different intestines basing on the bacterial community compositions. How-
ever, this understanding is limited in lizards and the spatial variations and co-occurrence
patterns of gut microbiota inside the gastrointestinal tracts of a host and variations of
microbial community among samples remain poorly understood.

To address this issue from lizards and provide a guide for gut microbiota sampling
from lizards, we investigated the bacteria in three gut locations and microbiota composition
of the oriental garden lizard (Calotes versicolor) and analyzed using 16S ribosomal RNA (16S
rRNA) gene amplicon sequencing. Considering the other studies [13–16], we hypothesize
that (1) the microbial community composition appears to be different between the small
intestine and hindgut, and (2) the difference of metabolic pathway is associated with the
bacterial community.

2. Materials and Methods
2.1. Ethics Statement

All experiments, including the sample collection, complied with the current laws of
China for the care and use of experimental animals, and followed the principles of the
Ethical Committee for Experimental Animal Welfare of the Hangzhou Normal University
(No. 2018135).

2.2. Sample Collection

We collected healthy and non-pregnant C. versicolor females from Hainan, China in
June 2019. Then, we selected nine lizards (no significant difference in body mass) that were
transported to the lab and raised under the same conditions for one week to experiment,
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with water and foods with the vitamin and minerals. To get the sample from living
individuals, hindgut contents were collected from the large intestine (AI) as described in a
previous study [48]: Firstly, the animal was kept in a suitable environment and a stable
position, and secondly, the cloaca was cleaned using 70% ethanol. Thirdly, a sterile soft
plastic tube 2 mm in diameter was inserted through the anus and allowed to travel about
1 cm into the intestine; fourthly, the tube was removed, along with any fecal material
collected; and finally, the tube was cut into sections. Sections that did not contain fecal
material were discarded and sections containing fecal material were placed in a sterilized
1.5 mL Eppendorf tube. Then we killed the nine lizards by declaration, dissected out
the whole intestine from them, and defined two regions as small intestine (SI) and large
intestine (LI), and then the entire contents in each region were gently squeezed out and
harvested separately. Finally, 27 samples were stored at −80 ◦C in the laboratory for
microbiota analysis.

2.3. DNA Extraction and Amplification

Total DNA was extracted using the cetyltrimethylammonium bromide (CTAB)/sodium
dodecyl sulfate (SDS) method. Universal primer pairs 338F (5′-ACTCCTACGGGAGG-
CAGCA-3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′) were used to amplify the
V3-V4 region of the bacteria 16S rRNA gene using GeneAmp 2720 (ABI, Foster City, CA,
USA). The 5′- end of forward primers harbors 7–12 bp unique barcodes, which were used to
split each sample. All samples were mixed with an equal molar amount from the purified
PCR product of each sample, and library was prepared using the TruSeq Nano DNA LT
Library Prep Kit (Illumina, Sangon Biotech Co., Ltd., Shanghai, China). The purified library
was sequenced using a MiSeq Reagent Kit V3 (Illumina, Sangon Biotech Co., Ltd., Shanghai,
China) with an Illumina MiSeq platform (San Diego, CA, USA) to sequence according to
the Wuhan Frasergen Bio-pharm Technology (Wuhan, Hubei, China).

2.4. Sequence Analyses

We used the QIIME2 software package (https://qiime2.org/, accessed on 24 Novem-
ber 2020) to process and analysis the raw reads [49]. According to the unique barcodes,
sequences were identified and allocated to each sample. To get the unique amplicon
sequence variant (ASV) which can be thought of as 100% operational taxonomic unit
(OTUs), quality control, merging, filtering and removing low-quality sequences (reads
length < 30 bp, with ambiguous base ‘N’, and average base quality score < 30) were per-
formed using Divisive Amplicon Denoising Algorithm 2 [50]. To identify taxonomically,
we employed the classify-sklearn function in QIIME2 to blast sequences against the Green-
genes database (Release 13.8; http://greengenes.secondgenome.com/, accessed on 20
October 2020) [51] and the Silva database (Release 132; http://www.arb-silva.de, accessed
on 20 October 2020) [52].

2.5. Statistical Analyses

Alpha-diversity index (the Chao1 index, the Observed species number, the Shannon
index, the Simpson index, the Good’s coverage, the Faith’s PD, and the Pielou’s even-
ness) was calculated by vegan [53] and picante [54] package in R version 4.0.4 [55]. The
Shannon–Wiener index curve is a sufficient amount of OTUs were detected and leveled
off generally at sequencing depth, and Good’s coverage estimation indicates the sample
size we have sequenced is representative of the bacterial microbiota. The one-way ANOVA
was performed to detect variations in alpha diversity indices among three groups. For the
beta diversity metrics, principal coordinate analysis (PCoA) and analysis of similarities
(ANOSIM) were used to determine the communities and structure of the gut microbiota
among three groups, based on the weighted UniFrac distances in vegan package in R
version 4.0.4. The linear discriminant analysis effect size (LEfSe) method was employed to
obtain variations in microbial communities based on linear discriminant analysis (LDA)
sources [56].

https://qiime2.org/
http://greengenes.secondgenome.com/
http://www.arb-silva.de
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PICRUSt was also employed to predict the potential gene profiles from 16S rRNA gene
sequencing, which allowed for the identification of several functional KEGG categories
and pathways expressed. The PICRUSt2 (https://github.com/picrust/picrust2, accessed
on 24 November 2020) was used to predict all ASVs based on the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database with the E value < 1 × 10 −5 [57]. These genes were
assigned to KEGG pathways [58] and the relative abundance in each group was calculated.
The unique and shared genes between populations were also plotted in the Venn diagram
and a heatmap was used to visualize genes with high relative abundance. We identified
the difference of KEGG pathways at the third level for both groups by the fitFeatureModel
function in the metagenomeSeq package [59].

3. Results
3.1. Bacterial Community Compositions

A total of 497,643, 484,884 and 497,237 raw reads were obtained from SI, AI and LI
groups, respectively. The Shannon–Wiener index curve for all samples showed suggest-
ing that there were sufficient sequences for further analyses (Figure S1A). Furthermore,
the Good’s coverage estimation minimum values were >99.9%, indicating that most gut
bacterial communities of diverse species were retrieved from all samples (Figure S1B).

At the phylum level, Proteobacteria (31.81%), Firmicutes (39.41%), Bacteroidetes (21.13%),
Actinobacteria (1.86%) were four identified dominant phyla (mean relative abundance > 1%),
which contributed more than 94% of abundance across all samples (Figure 1A). At the
family level, the top 17 families were listed (Figure 1B). For all samples, Ruminococcaceae
(14.54%), Bacteroidaceae (9.09%) and Enterobacteriaceae (9.00%) were the dominant families
(mean relative abundance > 9.00%), but Brucellaceae was more than 9.00% in SI group,
Lachnospiraceae and Erysipelotrichaceae were more than 9% in LI group and AI group. At the
genus level, Bacteroides, Citrobacter, Eubacterium, Ochrobactrum, Parabacteroides, Akkermansia,
Coprobacillus, Sediminibacterium, Acinetobacter (mean relative abundance > 2%) genera were
consistently present in each group (Figure 1C).
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Figure 1. Composition of the gut microbiota of each group at the phylum (A), family (B) and genus (C) levels. SI: sample
from the small intestine, LI: sample from the large intestine, and AI: sample from the large intestine when individuals are
free-living. The visualization was prepared with R package circlize.

The relative abundances of plylum Firmicutes (t = −2.93, df = 8, p < 0.05) and plylum
Bacteroidetes (t = −2.37, df = 8, p < 0.05) showed an increasing trend from small intestine
to large intestine, but plylum Proteobacteria (t = 4.40, df = 8, p < 0.01) showed a decreasing
trend from small intestine to large intestine (Figure 1A and Figure S2). Furthermore, LI
and AI groups tended to have more genus Bacteroides (t = −3.04, df = 8, p < 0.05 for LI;
t = −2.73, df = 8, p < 0.05 for AI), but less genus Ochrobactrum (t = 4.95, df = 8, p < 0.01 for
LI; t = 3.13, df = 8, p < 0.05 for AI) than SI samples (Figure 1C).

https://github.com/picrust/picrust2
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The alpha diversities were employed to evaluate the diversity differences in the gut
microbial community among the three groups (Table 1). No significant differences were
detected in Chao1, the Observed species number, Shannon, Simpson, Pielou’s E, and
Good’s coverage (all p > 0.05) upon one-way Anova except Faith’s PD, that SI had the
lowest measurement of phylogenetic diversity.

Table 1. The alpha diversity of microbiota among three groups in Calotes versicolor.

Species SI LI AI One-Way Anova

Chao1 695.22 ± 21.47 805.21 ± 25.71 866.02 ± 25.07 F2,24 = 2.155, p = 0.138
Observed species 691.04 ± 20.93 762.60 ± 15.03 799.51 ± 40.77 F2,24 = 2.327, p = 0.119

Shannon 0.92 ± 0.02 0.93 ± 0.01 0.94 ± 0.01 F2,24 = 0.657, p = 0.527
Simpson 5.98 ± 0.42 5.85 ± 0.30 6.09 ± 0.28 F2,24 = 0.216, p = 0.808

Pielou’s Evenness 0.59 ± 0.03 0.61 ± 0.02 0.64 ± 0.02 F2,24 = 0.161, p = 0.852
Good’s coverage 0.996 ± 0.001 0.997 ± 0.001 0.996 ± 0.001 F2,24 = 0.389, p = 0.682

Faith’s PD 56.07 ± 2.77 b 81.44 ± 2.40 a 83.21 ± 4.59 a F2,24 = 4.640, p = 0.020

Alpha diversity estimates mean ± se. SI: sample from the small intestine, LI: sample from the large intestine, and AI: sample from the large
intestine when individuals are free-living. α = 0.05, a > b.

With regard to beta diversity, the results of the PCoA plot (Figure 2) and ANOSIM
showed significant differences between the SI group and other groups, respectively (SI-LI,
R = 0.84, p < 0.01; SI-AI, R = 0.41, p < 0.01), with similarity between LI group and AI group
(R = 0.02, p = 0.534).
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Figure 2. The beta diversity of the gut microbiota composition of three groups by PCoA. The variation
explanation is indicated on each respective axis. SI: sample from the small intestine, LI: sample from
the large intestine, and AI: sample from the large intestine when individuals are free-living.

3.2. LEfSe Analysis of Bacterial Communities

Forty biomarkers were significantly different (LDA > 4.0, p < 0.05), of which 23 biomark-
ers in the SI group were higher, 8 biomarkers in the LI group were higher, and 9 biomarkers
in the AI group were higher than the other two groups based on the LDA scores (>4.0),
respectively (Figure 3). Compared to SI, the AI had a higher abundance of the genus
Bacteroides (Class: Bacteroidia), Coprobacillus and Eubacterium (Class: Erysipelotrichia), and
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the LI had a higher abundance of the genus Parabacteroides (Family: Porphyromonadaceae)
and Ruminococcus (Family: Lachnospiraceae), and Families: Odoribacteraceae and Rikenel-
laceae. However, SI had a higher abundance of the genus Acinetobacter and Pseudomonas
(Class: Gammaproteobacteria), Sediminibacterium (Class: Chitinophagia), and Ochrobactrum
and Sphingomonas (phylum: Proteobacteria), Comamonadaceae and Oxalobacteraceae (Class:
Betaproteobacteria) than that in the other two groups (Figure 3).
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Figure 3. Linear discriminative analysis of effect size (LEfSe) analysis of taxonomic biomarkers of
gut microbiota. Cladogram of significant changes at all taxonomic levels. The root of the cladogram
represents the domain bacteria. The size of the node represents the abundance of taxa. LDA scores > 4
were shown. SI: sample from the small intestine, LI: sample from the large intestine, and AI: sample
from the large intestine when individuals are free-living.

3.3. Functional Predictions of Bacterial

All bacterial Amplicon Sequence Variant (ASV) species possessed Nearest Sequenced
Taxon Index (NSTI) values < 2 (range from ~0.00 to 1.76). At the top level, 182 KEGG
metabolic pathways were identified as metabolism (79.84%), genetic information processing
(12.19%), cellular processes (4.54%), environmental information processing (2.65%), organis-
mal systems (0.41%, Figure 4A) and other (0.38%). At the second level, 35 functions were
identified, including (top 10) carbohydrate metabolism, amino acid metabolism, metabolism
of cofactors and vitamins, metabolism of terpenoids and polyketides, metabolism of other
amino acids, lipid metabolism, energy metabolism, replication and repair, xenobiotics
biodegradation and metabolism and glycan biosynthesis and metabolism (Figure 4B),
while at the third level, the biosynthesis of ansamycins was a primary function (mean
relative abundance > 2%, Figure 4C).
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Figure 4. Functional classifications of 16s RNA in microbiota at (A) the top level, (B) the second level, and (C) the third
levels of relative abundance, and (D) Venn and (E) clusters analysis of functions among three groups. SI: sample from the
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The shared genes indicated that most of the knockouts (KOs) were common among
the three groups, while 658, 14 and 32 KOs were exclusive to the SI, LI and AI groups, re-
spectively (Figure 4D). The heatmap of the cluster indicated that at the top level, the KOs of
SI group were enriched in Cellular processes (Figure 4E). There were significant differences
at 16 pathways between SI and LI group (adj p < 0.05), and at 14 pathways between SI and
AI group (adj p < 0.05), especially, secondary bile acid biosynthesis, glycosaminoglycan
degradation, sphingolipid metabolism and lysosome, the four functions were higher in AI
and LI group (Figure 5). There were no significant differences between AI and LI groups
(all adj p > 0.05).
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4. Discussion

The gut microbiota, a complex network of bacteria, fungi, protists, archaea and viruses
plays a crucial role in the health of the host [2,11]. In general, the vertebrates’ gastroin-
testinal tract harbors a conservative bacterial assemblage dominated by Bacteroidetes, Fir-
micutes and Proteobacteria [60]. In lizards, the Phylum Bacteroidetes (4.2–29.1%), Firmicutes
(2.6–81.1%) and Proteobacteria (1.4–85.0%) have been identified as the dominant gut mi-
crobiota [2,14,33–38,61]. In this study, Proteobacteria (31.81%), Firmicutes (39.41%), Bac-
teroidetes (21.13%) and Actinobacteria (1.86%) were identified as four dominant phyla, which
contributed more than 94% of abundance across all samples (Figure 1A). However, the
community composition is a significantly different as the hindgut samples tended to have
more Firmicutes and Bacteroidetes and less Proteobacteria than those from the small intestine
in C. versicolor. The difference may be resulting from the digestion status of individuals.
Bacteroidetes was identified as the dominant phylum from fasting 30 days individuals,
whereas Firmicutes was the dominate the dominant phylum from post-feeding individuals
in Python molurus [62].

The small intestine (with a primary role of absorbing nutrients from food) provides
a more challenging environment for bacteria with a faster flow rate and lower pH, while
in comparison, the larger intestine (with a primary function to absorb water and salt
from ingested material) provides a more stable environment with mild pH and slower
flow rates [14]. There was no significant difference in alpha diversity among SI, LI and
AI (Table 1), but there were significant differences in beta diversity between the SI and
other groups, respectively, while there is a similarity in beta diversity between LI and
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AI (Figure 2). Those results indicated that the microbial species and proportion were
similar to each group, but the microbial composition is different between SI and other
groups, and in AI is similar to LI, which is consistent with previous studies that the relative
abundance of dominant phyla Bacteroidetes and Firmicutes exhibited an increasing trend
from small intestine to large intestine in vertebrates [13–17,63]. The biochemical properties
of gut chambers of the intestinal tract depend on pH, nutrient composition and other
characteristics [12], which may impact the microbial community structure. There was
a higher relative abundance of anaerobic bacteria and facultative anaerobes bacteria in
the small intestine than that in the large intestine as genus Acinetobacter, Pseudomonas,
Ochrobactrum and Sphingomonas (phylum: Proteobacteria) (Figure 3). The genus Acinetobacter
is associated with the immune regulation that it into autoimmunity against myelin [64],
and Acinetobacter calcoaceticus encode peptides that mimic the amino acid sequences of
myelin [65]; Proteobacteria contribute to the cellulose activity, degrade a variety of aromatic
compounds, and boosts the nutrient absorption of their host [9].

There were higher abundances of Bacteroides (Class: Bacteroidia), Coprobacillus and
Eubacterium (Order: Erysipelotrichales), Parabacteroides (Family: Porphyromonadaceae),
Ruminococcus (Family: Lachnospiraceae) and Family Odoribacteraceae and Rikenellaceae
in hindgut samples than those in the small intestine samples. These taxa have also been
observed to assist in the maintenance of the host gut physiology, including the production
of short-chain fatty acids [66,67]. Bacteroides and Parabacteroides were the most abundant
genera in the gastrointestinal tract and feces in birds, mammals, reptiles and insects [2].
Bacteroides participate in the degradation of biopolymers, mainly polysaccharides [68],
which are important in fermenting soluble carbohydrates in the human large intestine [69],
Bacteroidetes are degrade carbohydrates and proteins in the human large intestine [70,71].
Lachnospiraceae has been demonstrated to be related to the production of butyrate, which
is necessary to sustain the health of colonic epithelial tissue [72].

For encoding the energy metabolism-related enzymes, Firmicutes helps its host di-
gest and absorb nutrients [73]. More exclusive KOs were found in the small intestines
(Figure 4D), but the abundance of 16 KEGG pathways at the third levels were significant
differences between large intestines and small intestines; there was a similar trend be-
tween AI and SI. Secondary bile acid is one of the major types of bacterial metabolites in
the colon [74], gut bacteria expressing bile salt hydrolase include species in the genera
Bacteroides, Bifidobacterium, Lactobacillus, and Clostridium [75]. Sphigolipid, are produced
by the phylum Bacteroidetes (genera Bacteroides, Parabacteroides, Prevotella, Porphyromonas,
Flectobacillus) and the Chlorobi (genera Chlorobium) [76]. Associated with the microbial
composition and the function categories, the results indicated the co-evolution between
a function and microbial compositions that the hindgut have more Firmicutes and Bac-
teroidetes and less Proteobacteria than those of the small intestine in C. versicolor. Even
though some functional categories of genes of gut microbiota were found in this study,
further studies are required to identify the association between the function and the gut
microbiota community/assemblage. Moreover, to understand the function underlying gut
microbiota, further studies exploring the genome or metagenome are required.

5. Conclusions

We identified significant community composition variation in the microbiota of small
and large intestines in an oviparous lizard. The relative abundance of the dominant phyla
exhibited an increasing trend from the small intestine to the large intestine, especially
in the hindgut samples which tended to have more Firmicutes and Bacteroidetes and less
Proteobacteria than those of the small intestine in C. versicolor. The difference of metabolic
pathway is associated with the bacterial community, especially secondary bile acid biosyn-
thesis, glycosaminoglycan degradation, sphingolipid metabolism and lysosome which
were significantly higher in the hindgut than that in the small intestine.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ani11082461/s1, Figure S1: Alpha diversity index curve. Shannon index curve (A) and
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Good’s coverage index curve (B), Figure S2: The relative abundance of phylum among three groups,
Proteobacteria (A), Firmicutes (B), Bacteroidetes (C) and Actinobacteria (D). SI: sample from the
small intestine, LI: sample from the large intestine, and AI: sample from the large intestine when
individuals are free-living.
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